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Global Optimization Toolbox Product Description
Solve multiple maxima, multiple minima, and nonsmooth optimization problems

Global Optimization Toolbox provides functions that search for global solutions to problems that
contain multiple maxima or minima. Toolbox solvers include surrogate, pattern search, genetic
algorithm, particle swarm, simulated annealing, multistart, and global search. You can use these
solvers for optimization problems where the objective or constraint function is continuous,
discontinuous, stochastic, does not possess derivatives, or includes simulations or black-box
functions. For problems with multiple objectives, you can identify a Pareto front using genetic
algorithm or pattern search solvers.

You can improve solver effectiveness by adjusting options and, for applicable solvers, customizing
creation, update, and search functions. You can use custom data types with the genetic algorithm and
simulated annealing solvers to represent problems not easily expressed with standard data types. The
hybrid function option lets you improve a solution by applying a second solver after the first.

Key Features
• Surrogate solver for problems with lengthy objective function execution times and bound

constraints
• Pattern search solvers for single and multiple objective problems with linear, nonlinear, and bound

constraints
• Genetic algorithm for problems with linear, nonlinear, bound, and integer constraints
• Multiobjective genetic algorithm for problems with linear, nonlinear, and bound constraints
• Particle swarm solver for bound constraints
• Simulated annealing solver for bound constraints
• Multistart and global search solvers for smooth problems with linear, nonlinear, and bound

constraints

1 Introducing Global Optimization Toolbox Functions
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Compare Several Global Solvers, Problem-Based
This example shows how to minimize Rastrigin’s function with several solvers. Each solver has its
own characteristics. The characteristics lead to different solutions and run times. The results,
summarized in Compare Solvers and Solutions on page 1-0 , can help you choose an appropriate
solver for your own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):

ras = @(x, y) 20 + x.^2 + y.^2 - 10*(cos(2*pi*x) + cos(2*pi*y));

Plot the function scaled by 10 in each direction.

rf3 = @(x, y) ras(x/10, y/10);
fsurf(rf3,[-30 30],"ShowContours","on")
title("rastriginsfcn([x/10,y/10])")
xlabel("x")
ylabel("y")

Usually you don't know the location of the global minimum of your objective function. To show how
the solvers look for a global solution, this example starts all the solvers around the point [20,30],
which is far from the global minimum.

fminunc Solver

To solve the optimization problem using the default fminunc Optimization Toolbox™ solver, enter:

 Compare Several Global Solvers, Problem-Based
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x = optimvar("x");
y = optimvar("y");
prob = optimproblem("Objective",rf3(x,y));
x0.x = 20;
x0.y = 30;
[solf,fvalf,eflagf,outputf] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

solf = struct with fields:
    x: 19.8991
    y: 29.8486

fvalf = 12.9344

eflagf = 
    OptimalSolution

outputf = struct with fields:
             iterations: 3
              funcCount: 5
               stepsize: 1.7773e-06
           lssteplength: 1
          firstorderopt: 2.0461e-09
              algorithm: 'quasi-newton'
                message: 'Local minimum found....'
    objectivederivative: "reverse-AD"
                 solver: 'fminunc'

fminunc solves the problem in very few function evaluations (only five, as shown in the outputf
structure), and reaches a local minimum near the start point. The exit flag indicates that the solution
is a local minimum.

patternsearch Solver

To solve the optimization problem using the patternsearch Global Optimization Toolbox solver,
enter:

x0.x = 20;
x0.y = 30;
[solp,fvalp,eflagp,outputp] = solve(prob,x0,"Solver","patternsearch")

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

solp = struct with fields:
    x: 19.8991
    y: -9.9496

fvalp = 4.9748

1 Introducing Global Optimization Toolbox Functions
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eflagp = 
    SolverConvergedSuccessfully

outputp = struct with fields:
         function: @(x)fun(x,extraParams)
      problemtype: 'unconstrained'
       pollmethod: 'gpspositivebasis2n'
    maxconstraint: []
     searchmethod: []
       iterations: 48
        funccount: 174
         meshsize: 9.5367e-07
         rngstate: [1x1 struct]
          message: 'Optimization terminated: mesh size less than options.MeshTolerance.'
           solver: 'patternsearch'

Like fminunc, patternsearch reaches a local optimum, as shown in the exit flag exitflagp. The
solution is better than the fminunc solution, because it has a lower objective function value.
However, patternsearch takes many more function evaluations, as shown in the output structure.

ga Solver

To solve the optimization problem using the ga Global Optimization Toolbox solver, enter:

rng default % For reproducibility
x0.x = 10*randn(20) + 20;
x0.y = 10*randn(20) + 30; % Random start population near [20,30];
[solg,fvalg,eflagg,outputg] = solve(prob,"Solver","ga")

Solving problem using ga.
Optimization terminated: maximum number of generations exceeded.

solg = struct with fields:
    x: 0.0064
    y: 7.7057e-04

fvalg = 8.1608e-05

eflagg = 
    SolverLimitExceeded

outputg = struct with fields:
      problemtype: 'unconstrained'
         rngstate: [1x1 struct]
      generations: 200
        funccount: 9453
          message: 'Optimization terminated: maximum number of generations exceeded.'
    maxconstraint: []
       hybridflag: []
           solver: 'ga'

ga takes many more function evaluations than the previous solvers, and arrives at a solution near the
global minimum. The solver is stochastic, and can reach a suboptimal solution.
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particleswarm Solver

To solve the optimization problem using the particleswarm Global Optimization Toolbox solver,
enter:

rng default % For reproducibility
[solpso,fvalpso,eflagpso,outputpso] = solve(prob,"Solver","particleswarm")

Solving problem using particleswarm.
Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

solpso = struct with fields:
    x: 7.1467e-07
    y: 1.4113e-06

fvalpso = 4.9631e-12

eflagpso = 
    SolverConvergedSuccessfully

outputpso = struct with fields:
      rngstate: [1x1 struct]
    iterations: 120
     funccount: 2420
       message: 'Optimization ended: relative change in the objective value ...'
    hybridflag: []
        solver: 'particleswarm'

The solver takes fewer function evaluations than ga, and arrives at an even more accurate solution.
Again, the solver is stochastic and can fail to reach a global solution.

simulannealbnd Solver

To solve the optimization problem using the simulannealbnd Global Optimization Toolbox solver,
enter:

rng default % For reproducibility
x0.x = 20;
x0.y = 30;
[solsim,fvalsim,eflagsim,outputsim] = solve(prob,x0,"Solver","simulannealbnd")

Solving problem using simulannealbnd.
Optimization terminated: change in best function value less than options.FunctionTolerance.

solsim = struct with fields:
    x: 0.0025
    y: 0.0018

fvalsim = 1.8311e-05

eflagsim = 
    SolverConvergedSuccessfully

1 Introducing Global Optimization Toolbox Functions
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outputsim = struct with fields:
     iterations: 1967
      funccount: 1986
        message: 'Optimization terminated: change in best function value less than options.FunctionTolerance.'
       rngstate: [1x1 struct]
    problemtype: 'unconstrained'
    temperature: [2x1 double]
      totaltime: 0.8824
         solver: 'simulannealbnd'

The solver takes about the same number of function evaluations as particleswarm, and reaches a
good solution. This solver, too, is stochastic.

surrogateopt Solver

surrogateopt does not require a start point, but does require finite bounds. Set bounds of –70 to
130 in each component. To have the same sort of output as the other solvers, disable the default plot
function.

rng default % For reproducibility
x = optimvar("x","LowerBound",-70,"UpperBound",130);
y = optimvar("y","LowerBound",-70,"UpperBound",130);
prob = optimproblem("Objective",rf3(x,y));
options = optimoptions("surrogateopt","PlotFcn",[]);
[solsur,fvalsur,eflagsur,outputsur] = solve(prob,...
    "Solver","surrogateopt",...
    "Options",options)

Solving problem using surrogateopt.
surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

solsur = struct with fields:
    x: -1.3383
    y: -0.3022

fvalsur = 3.5305

eflagsur = 
    SolverLimitExceeded

outputsur = struct with fields:
        elapsedtime: 4.1246
          funccount: 200
    constrviolation: 0
               ineq: [1x1 struct]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'
             solver: 'surrogateopt'

The solver takes relatively few function evaluations to reach a solution near the global optimum.
However, each function evaluation takes much more time than those of the other solvers.
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Compare Solvers and Solutions

One solution is better than another if its objective function value is smaller than the other. The
following table summarizes the results.

sols = [solf.x solf.y;
    solp.x solp.y;
    solg.x solg.y;
    solpso.x solpso.y;
    solsim.x solsim.y;
    solsur.x solsur.y];
fvals = [fvalf;
    fvalp;
    fvalg;
    fvalpso;
    fvalsim;
    fvalsur];
fevals = [outputf.funcCount;
    outputp.funccount;
    outputg.funccount;
    outputpso.funccount;
    outputsim.funccount;
    outputsur.funccount];
stats = table(sols,fvals,fevals);
stats.Properties.RowNames = ["fminunc" "patternsearch" "ga" "particleswarm" "simulannealbnd" "surrogateopt"];
stats.Properties.VariableNames = ["Solution" "Objective" "# Fevals"];
disp(stats)

                              Solution            Objective     # Fevals
                      ________________________    __________    ________

    fminunc               19.899        29.849        12.934         5  
    patternsearch         19.899       -9.9496        4.9748       174  
    ga                 0.0063672    0.00077057    8.1608e-05      9453  
    particleswarm     7.1467e-07    1.4113e-06    4.9631e-12      2420  
    simulannealbnd      0.002453     0.0017923    1.8311e-05      1986  
    surrogateopt         -1.3383      -0.30217        3.5305       200  

These results are typical:

• fminunc quickly reaches the local solution within its starting basin, but does not explore outside
this basin at all. Because the objective function has analytic derivatives, fminunc uses automatic
differentiation and takes very few function evaluations to reach an accurate local minimum.

• patternsearch takes more function evaluations than fminunc, and searches through several
basins, arriving at a better solution than fminunc.

• ga takes many more function evaluations than patternsearch. By chance it arrives at a better
solution. In this case, ga finds a point near the global optimum. ga is stochastic, so its results
change with every run. ga requires extra steps to have an initial population near [20,30].

• particleswarm takes fewer function evaluations than ga, but more than patternsearch. In
this case, particleswarm finds a point with lower objective function value than patternsearch
or ga. Because particleswarm is stochastic, its results change with every run. particleswarm
requires extra steps to have an initial population near [20,30].

• simulannealbnd takes about the same number of function evaluations as particleswarm. In
this case, simulannealbnd finds a good solution, but not as good as particleswarm. The solver
is stochastic and can arrive at a suboptimal solution.

1 Introducing Global Optimization Toolbox Functions
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• surrogateopt stops when it reaches a function evaluation limit, which by default is 200 for a
two-variable problem. surrogateopt requires finite bounds. surrogateopt attempts to find a
global solution, and in this case succeeds. Each function evaluation in surrogateopt takes a
longer time than in most other solvers, because surrogateopt performs many auxiliary
computations as part of its algorithm.

See Also
solve | patternsearch | ga | particleswarm | simulannealbnd | surrogateopt

Related Examples
• “Comparison of Six Solvers” on page 1-10
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Comparison of Six Solvers
In this section...
“Function to Optimize” on page 1-10
“Six Solution Methods” on page 1-11
“Compare Syntax and Solutions” on page 1-16

Function to Optimize
This example shows how to minimize Rastrigin’s function with six solvers. Each solver has its own
characteristics. The characteristics lead to different solutions and run times. The results, examined in
“Compare Syntax and Solutions” on page 1-16, can help you choose an appropriate solver for your
own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):

Ras(x) = 20 + x1
2 + x2

2− 10 cos2πx1 + cos2πx2 .

Usually you don't know the location of the global minimum of your objective function. To show how
the solvers look for a global solution, this example starts all the solvers around the point [20,30],
which is far from the global minimum.

The rastriginsfcn.m file implements Rastrigin’s function. This file comes with Global Optimization
Toolbox software. This example employs a scaled version of Rastrigin’s function with larger basins of
attraction. For information, see “Basins of Attraction” on page 1-26.

rf2 = @(x)rastriginsfcn(x/10);

1 Introducing Global Optimization Toolbox Functions
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This example minimizes rf2 using the default settings of fminunc (an Optimization Toolbox™
solver), patternsearch, and GlobalSearch. The example also uses ga and particleswarm with
nondefault options to start with an initial population around the point [20,30]. Because
surrogateopt requires finite bounds, the example uses surrogateopt with lower bounds of -70
and upper bounds of 130 in each variable.

Six Solution Methods
• “fminunc” on page 1-11
• “patternsearch” on page 1-12
• “ga” on page 1-13
• “particleswarm” on page 1-13
• “surrogateopt” on page 1-14
• “GlobalSearch” on page 1-15

fminunc

To solve the optimization problem using the fminunc Optimization Toolbox solver, enter:

rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xf,ff,flf,of] = fminunc(rf2,x0)

fminunc returns
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Local minimum found.

Optimization completed because the size of the gradient is 
less than the default value of the function tolerance.

xf =
   19.8991   29.8486
ff =
   12.9344
flf =
     1
of =

  struct with fields:

       iterations: 3
        funcCount: 15
         stepsize: 1.7776e-06
     lssteplength: 1
    firstorderopt: 5.9907e-09
        algorithm: 'quasi-newton'
          message: 'Local minimum found.…'

• xf is the minimizing point.
• ff is the value of the objective, rf2, at xf.
• flf is the exit flag. An exit flag of 1 indicates xf is a local minimum.
• of is the output structure, which describes the fminunc calculations leading to the solution.

patternsearch

To solve the optimization problem using the patternsearch Global Optimization Toolbox solver,
enter:

rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xp,fp,flp,op] = patternsearch(rf2,x0)

patternsearch returns
Optimization terminated: mesh size less than options.MeshTolerance.
xp =
   19.8991   -9.9496
fp =
    4.9748
flp =
     1
op =

  struct with fields:

        function: @(x)rastriginsfcn(x/10)
     problemtype: 'unconstrained'
      pollmethod: 'gpspositivebasis2n'
   maxconstraint: []
    searchmethod: []
      iterations: 48
       funccount: 174
        meshsize: 9.5367e-07
        rngstate: [1x1 struct]
         message: 'Optimization terminated: mesh size less than options.MeshTolerance.'

• xp is the minimizing point.
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• fp is the value of the objective, rf2, at xp.
• flp is the exit flag. An exit flag of 1 indicates xp is a local minimum.
• op is the output structure, which describes the patternsearch calculations leading to the

solution.

ga

To solve the optimization problem using the ga Global Optimization Toolbox solver, enter:

rng default % for reproducibility
rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
initpop = 10*randn(20,2) + repmat(x0,20,1);
opts = optimoptions('ga','InitialPopulationMatrix',initpop);
[xga,fga,flga,oga] = ga(rf2,2,[],[],[],[],[],[],[],opts)

initpop is a 20-by-2 matrix. Each row of initpop has mean [20,30], and each element is normally
distributed with standard deviation 10. The rows of initpop form an initial population matrix for the
ga solver.

opts is the options that set initpop as the initial population.

The final line calls ga, using the options.

ga uses random numbers, and produces a random result. In this case ga returns:
Optimization terminated: maximum number of generations exceeded.

xga =

   -0.0042   -0.0024

fga =

   4.7054e-05

flga =

     0

oga = 

  struct with fields:

      problemtype: 'unconstrained'
         rngstate: [1×1 struct]
      generations: 200
        funccount: 9453
          message: 'Optimization terminated: maximum number of generations exceeded.'
    maxconstraint: []

• xga is the minimizing point.
• fga is the value of the objective, rf2, at xga.
• flga is the exit flag. An exit flag of 0 indicates that ga reached a function evaluation limit or an

iteration limit. In this case, ga reached an iteration limit.
• oga is the output structure, which describes the ga calculations leading to the solution.

particleswarm

Like ga, particleswarm is a population-based algorithm. So for a fair comparison of solvers,
initialize the particle swarm to the same population as ga.
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rng default % for reproducibility
rf2 = @(x)rastriginsfcn(x/10); % objective
opts = optimoptions('particleswarm','InitialSwarmMatrix',initpop);
[xpso,fpso,flgpso,opso] = particleswarm(rf2,2,[],[],opts)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

xpso =

    9.9496    0.0000

fpso =

    0.9950

flgpso =

     1

opso = 

  struct with fields:

      rngstate: [1×1 struct]
    iterations: 56
     funccount: 1140
       message: 'Optimization ended: relative change in the objective value ↵over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.'

• xpso is the minimizing point.
• fpso is the value of the objective, rf2, at xpso.
• flgpso is the exit flag. An exit flag of 1 indicates xpso is a local minimum.
• opso is the output structure, which describes the particleswarm calculations leading to the

solution.

surrogateopt

surrogateopt does not require a start point, but does require finite bounds. Set bounds of –70 to
130 in each component. To have the same sort of output as the other solvers, disable the default plot
function.

rng default % for reproducibility
lb = [-70,-70];
ub = [130,130];
rf2 = @(x)rastriginsfcn(x/10); % objective
opts = optimoptions('surrogateopt','PlotFcn',[]);
[xsur,fsur,flgsur,osur] = surrogateopt(rf2,lb,ub,opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

xsur =

   -0.0033    0.0005

fsur =

   2.2456e-05

flgsur =

     0

osur = 
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  struct with fields:

    elapsedtime: 2.3877
      funccount: 200
       rngstate: [1×1 struct]
        message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by ↵'options.MaxFunctionEvaluations'.'

• xsur is the minimizing point.
• fsur is the value of the objective, rf2, at xsur.
• flgsur is the exit flag. An exit flag of 0 indicates that surrogateopt halted because it ran out of

function evaluations or time.
• osur is the output structure, which describes the surrogateopt calculations leading to the

solution.

GlobalSearch

To solve the optimization problem using the GlobalSearch solver, enter:

rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
problem = createOptimProblem('fmincon','objective',rf2,...
    'x0',x0);
gs = GlobalSearch;
[xg,fg,flg,og] = run(gs,problem)

problem is an optimization problem structure. problem specifies the fmincon solver, the rf2
objective function, and x0=[20,30]. For more information on using createOptimProblem, see
“Create Problem Structure” on page 4-4.

Note You must specify fmincon as the solver for GlobalSearch, even for unconstrained problems.

gs is a default GlobalSearch object. The object contains options for solving the problem. Calling
run(gs,problem) runs problem from multiple start points. The start points are random, so the
following result is also random.

In this case, the run returns:
GlobalSearch stopped because it analyzed all the trial points.

All 10 local solver runs converged with a positive local solver exit flag.

xg =

   1.0e-07 *

   -0.1405   -0.1405

fg =

     0

flg =

     1

og = 

  struct with fields:

                funcCount: 2350
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         localSolverTotal: 10
       localSolverSuccess: 10
    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'GlobalSearch stopped because it analyzed all the trial points.↵↵All 10 local solver runs converged with a positive local solver exit flag.'

• xg is the minimizing point.
• fg is the value of the objective, rf2, at xg.
• flg is the exit flag. An exit flag of 1 indicates all fmincon runs converged properly.
• og is the output structure, which describes the GlobalSearch calculations leading to the

solution.

Compare Syntax and Solutions
One solution is better than another if its objective function value is smaller than the other. The
following table summarizes the results, accurate to one decimal.

Results fminunc patternsearch ga particleswar
m

surrogateopt GlobalSearch

solution [19.9 29.9] [19.9 -9.9] [0 0] [10 0] [0 0] [0 0]
objective 12.9 5 0 1 0 0
# Fevals 15 174 9453 1140 200 2178

These results are typical:

• fminunc quickly reaches the local solution within its starting basin, but does not explore outside
this basin at all. fminunc has a simple calling syntax.

• patternsearch takes more function evaluations than fminunc, and searches through several
basins, arriving at a better solution than fminunc. The patternsearch calling syntax is the
same as that of fminunc.

• ga takes many more function evaluations than patternsearch. By chance it arrived at a better
solution. In this case, ga found a point near the global optimum. ga is stochastic, so its results
change with every run. ga has a simple calling syntax, but there are extra steps to have an initial
population near [20,30].

• particleswarm takes fewer function evaluations than ga, but more than patternsearch. In
this case, particleswarm found a point with lower objective function value than
patternsearch, but higher than ga. Because particleswarm is stochastic, its results change
with every run. particleswarm has a simple calling syntax, but there are extra steps to have an
initial population near [20,30].

• surrogateopt stops when it reaches a function evaluation limit, which by default is 200 for a
two-variable problem. surrogateopt has a simple calling syntax, but requires finite bounds.
surrogateopt attempts to find a global solution, and in this case succeeded. Each function
evaluation in surrogateopt takes a longer time than in most other solvers, because
surrogateopt performs many auxiliary computations as part of its algorithm.

• GlobalSearch run takes the same order of magnitude of function evaluations as ga and
particleswarm, searches many basins, and arrives at a good solution. In this case,
GlobalSearch found the global optimum. Setting up GlobalSearch is more involved than
setting up the other solvers. As the example shows, before calling GlobalSearch, you must
create both a GlobalSearch object (gs in the example), and a problem structure (problem).
Then, you call the run method with gs and problem. For more details on how to run
GlobalSearch, see “Workflow for GlobalSearch and MultiStart” on page 4-3.
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See Also

More About
• “Compare Several Global Solvers, Problem-Based” on page 1-3
• “Solver-Based Optimization Problem Setup”
• “Solver Behavior with a Nonsmooth Problem” on page 1-18

 Comparison of Six Solvers

1-17



Solver Behavior with a Nonsmooth Problem
This example shows the importance of choosing an appropriate solver for optimization problems. It
also shows that a single point of non-smoothness can cause problems for Optimization Toolbox™
solvers.

In general, the solver decision tables provide guidance on which solver is likely to work best for your
problem. For smooth problems, see “Optimization Decision Table”. For nonsmooth problems, see
“Table for Choosing a Solver” on page 1-30 first, and for more information consult “Global
Optimization Toolbox Solver Characteristics” on page 1-31.

A Function with a Single Nonsmooth Point

The function f (x) = | |x | |1/2 is nonsmooth at the point 0, which is the minimizing point. Here is a 2-D

plot using the matrix norm for the 4-D point 
x(1) x(2)

0 0
 .

figure
x = linspace(-5,5,51);
[xx,yy] = meshgrid(x);
zz = zeros(size(xx));
for ii = 1:length(x)
    for jj = 1:length(x)
        zz(ii,jj) = sqrt(norm([xx(ii,jj),yy(ii,jj);0,0]));
    end
end

surf(xx,yy,zz)
xlabel('x(1)')
ylabel('x(2)')
title('Norm([x(1),x(2);0,0])^{1/2}')
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This example uses matrix norm for a 2-by-6 matrix x. The matrix norm relates to the singular value
decomposition, which is not as smooth as the Euclidean norm. See “2-Norm of Matrix”.

Minimize Using patternsearch

patternsearch is the recommended first solver to try for nonsmooth problems. See “Table for
Choosing a Solver” on page 1-30. Start patternsearch from a nonzero 2-by-6 matrix x0, and
attempt to locate the minimum of f . For this attempt, and all others, use the default solver options.

Return the solution, which should be near zero, the objective function value, which should likewise be
near zero, and the number of function evaluations taken.

fun = @(x)norm([x(1:6);x(7:12)])^(1/2);
x0 = [1:6;7:12];
rng default
x0 = x0 + rand(size(x0))

x0 = 2×6

    1.8147    2.1270    3.6324    4.2785    5.9575    6.1576
    7.9058    8.9134    9.0975   10.5469   11.9649   12.9706

[xps,fvalps,eflagps,outputps] = patternsearch(fun,x0);

Optimization terminated: mesh size less than options.MeshTolerance.

xps,fvalps,eflagps,outputps.funccount
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xps = 2×6
10-4 ×

    0.1116   -0.1209    0.3503   -0.0520   -0.1270    0.2031
   -0.3082   -0.1526    0.0623    0.0652    0.4479    0.1173

fvalps = 0.0073

eflagps = 1

ans = 10780

patternsearch reaches a good solution, as evinced by exit flag 1. However, it takes over 10,000
function evaluations to converge.

Minimize Using fminsearch

The documentation states that fminsearch sometimes can handle discontinuities, so this is a
reasonable option.

[xfms,fvalfms,eflagfms,outputfms] = fminsearch(fun,x0);

 
Exiting: Maximum number of function evaluations has been exceeded
         - increase MaxFunEvals option.
         Current function value: 3.197063 

xfms,fvalfms,eflagfms,outputfms.funcCount

xfms = 2×6

    2.2640    1.1747    9.0693    8.1652    1.7367   -1.2958
    3.7456    1.2694    0.2714   -3.7942    3.8714    1.9290

fvalfms = 3.1971

eflagfms = 0

ans = 2401

Using default options, fminsearch runs out of function evaluations before it converges to a solution.
Exit flag 0 indicates this lack of convergence. The reported solution is poor.

Use particleswarm

particleswarm is recommended as the next solver to try. See “Choosing Between Solvers for
Nonsmooth Problems” on page 1-33.

[xpsw,fvalpsw,eflagpsw,outputpsw] = particleswarm(fun,12);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

xpsw,fvalpsw,eflagpsw,outputpsw.funccount

xpsw = 1×12
10-12 ×
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   -0.0386   -0.1282   -0.0560    0.0904    0.0771   -0.0541   -0.1189    0.1290   -0.0032    0.0165    0.0728   -0.0026

fvalpsw = 4.5222e-07

eflagpsw = 1

ans = 37200

particleswarm finds an even more accurate solution than patternsearch, but takes over 35,000
function evaluations. Exit flag 1 indicates that the solution is good.

Use ga

ga is a popular solver, but is not recommended as the first solver to try. See how well it works on this
problem.

[xga,fvalga,eflagga,outputga] = ga(fun,12);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

xga,fvalga,eflagga,outputga.funccount

xga = 1×12

   -0.0061   -0.0904    0.0816   -0.0484    0.0799   -0.1925    0.0048    0.3581    0.0848    0.0232    0.0237   -0.1294

fvalga = 0.6257

eflagga = 1

ans = 65190

ga does not find as good a solution as patternsearch or particleswarm, and takes about twice as
many function evaluations as particleswarm. Exit flag 1 is misleading in this case.

Use fminunc from Optimization Toolbox

fminunc is not recommended for nonsmooth functions. See how it performs on this one.

[xfmu,fvalfmu,eflagfmu,outputfmu] = fminunc(fun,x0);

Local minimum possible.

fminunc stopped because the size of the current step is less than
the value of the step size tolerance.

xfmu,fvalfmu,eflagfmu,outputfmu.funcCount

xfmu = 2×6

   -0.5844   -0.9726   -0.4356    0.1467    0.3263   -0.1002
   -0.0769   -0.1092   -0.3429   -0.6856   -0.7609   -0.6524

fvalfmu = 1.1269

eflagfmu = 2

ans = 429
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The fminunc solution is not as good as the ga solution. However, fminunc reaches the rather poor
solution in relatively few function evaluations. Exit flag 2 means you should take care, the first-order
optimality conditions are not met at the reported solution.

Use fmincon from Optimization Toolbox

fmincon can sometimes minimize nonsmooth functions. See how it performs on this one.

[xfmc,fvalfmc,eflagfmc,outputfmc] = fmincon(fun,x0);

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.

xfmc,fvalfmc,eflagfmc,outputfmc.funcCount

xfmc = 2×6
10-10 ×

    0.2066   -0.3225    0.0684    0.2739   -0.2820   -0.2964
    0.4100    0.3742   -0.0238    0.5316    0.0990   -0.0954

fvalfmc = 9.7096e-06

eflagfmc = 2

ans = 1020

fmincon with default options produces an accurate solution after fewer than 1000 function
evaluations. Exit flag 2 does not mean that the solution is inaccurate, but that the first-order
optimality conditions are not met. This is because the gradient of the objective function is not zero at
the solution.

Summary of Results

Choosing the appropriate solver leads to better, faster results. This summary shows how disparate
the results can be. The solution quality is 'Poor' if the objective function value is greater than 0.1,
'Good' if the value is smaller than 0.01, and 'Mediocre' otherwise.

Solver = {'patternsearch';'fminsearch';'particleswarm';'ga';'fminunc';'fmincon'};
SolutionQuality = {'Good';'Poor';'Good';'Poor';'Poor';'Good'};
FVal = [fvalps,fvalfms,fvalpsw,fvalga,fvalfmu,fvalfmc]';
NumEval = [outputps.funccount,outputfms.funcCount,outputpsw.funccount,...
    outputga.funccount,outputfmu.funcCount,outputfmc.funcCount]';
results = table(Solver,SolutionQuality,FVal,NumEval)

results=6×4 table
         Solver          SolutionQuality       FVal       NumEval
    _________________    _______________    __________    _______

    {'patternsearch'}       {'Good'}         0.0072656     10780 
    {'fminsearch'   }       {'Poor'}            3.1971      2401 
    {'particleswarm'}       {'Good'}        4.5222e-07     37200 
    {'ga'           }       {'Poor'}           0.62572     65190 
    {'fminunc'      }       {'Poor'}            1.1269       429 
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    {'fmincon'      }       {'Good'}        9.7096e-06      1020 

Another view of the results.

figure
hold on
for ii = 1:length(FVal)
    clr = rand(1,3);
    plot(NumEval(ii),FVal(ii),'o','MarkerSize',10,'MarkerEdgeColor',clr,'MarkerFaceColor',clr)
    text(NumEval(ii),FVal(ii)+0.2,Solver{ii},'Color',clr);
end
ylabel('FVal')
xlabel('NumEval')
title('Reported Minimum and Evaluations By Solver')
hold off

While particleswarm achieves the lowest objective function value, it does so by taking over three
times as many function evaluations as patternsearch, and over 30 times as many as fmincon.
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fmincon is not generally recommended for nonsmooth problems. It is effective in this case, but this
case has just one nonsmooth point.

See Also

More About
• “Comparison of Six Solvers” on page 1-10
• “Table for Choosing a Solver” on page 1-30
• “Global Optimization Toolbox Solver Characteristics” on page 1-31
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What Is Global Optimization?

In this section...
“Local vs. Global Optima” on page 1-25
“Basins of Attraction” on page 1-26

Local vs. Global Optima
Optimization is the process of finding the point that minimizes a function. More specifically:

• A local minimum of a function is a point where the function value is smaller than or equal to the
value at nearby points, but possibly greater than at a distant point.

• A global minimum is a point where the function value is smaller than or equal to the value at all
other feasible points.

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can be a global
optimum.) They find the optimum in the basin of attraction of the starting point. For more
information, see “Basins of Attraction” on page 1-26.

In contrast, Global Optimization Toolbox solvers are designed to search through more than one basin
of attraction. They search in various ways:

• GlobalSearch and MultiStart generate a number of starting points. They then use a local
solver to find the optima in the basins of attraction of the starting points.

• ga uses a set of starting points (called the population) and iteratively generates better points from
the population. As long as the initial population covers several basins, ga can examine several
basins.

• particleswarm, like ga, uses a set of starting points. particleswarm can examine several
basins at once because of its diverse population.

• simulannealbnd performs a random search. Generally, simulannealbnd accepts a point if it is
better than the previous point. simulannealbnd occasionally accepts a worse point, in order to
reach a different basin.

• patternsearch looks at a number of neighboring points before accepting one of them. If some
neighboring points belong to different basins, patternsearch in essence looks in a number of
basins at once.

• surrogateopt begins by quasirandom sampling within bounds, looking for a small objective
function value. surrogateopt uses a merit function that, in part, gives preference to points that
are far from evaluated points, which is an attempt to reach a global solution. After it cannot
improve the current point, surrogateopt resets, causing it to sample widely within bounds
again. Resetting is another way surrogateopt searches for a global solution.
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Basins of Attraction
If an objective function f(x) is smooth, the vector –∇f(x) points in the direction where f(x) decreases
most quickly. The equation of steepest descent, namely

d
dtx(t) = − ∇ f (x(t)),

yields a path x(t) that goes to a local minimum as t gets large. Generally, initial values x(0) that are
close to each other give steepest descent paths that tend to the same minimum point. The basin of
attraction for steepest descent is the set of initial values leading to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different basins of
attraction with different line styles, and it shows directions of steepest descent with arrows. For this
and subsequent figures, black dots represent local minima. Every steepest descent path, starting at a
point x(0), goes to the black dot in the basin containing x(0).

The following figure shows how steepest descent paths can be more complicated in more dimensions.

The following figure shows even more complicated paths and basins of attraction.
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Constraints can break up one basin of attraction into several pieces. For example, consider
minimizing y subject to:

• y ≥ |x|
• y ≥ 5 – 4(x–2)2.

The figure shows the two basins of attraction with the final points.
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The steepest descent paths are straight lines down to the constraint boundaries. From the constraint
boundaries, the steepest descent paths travel down along the boundaries. The final point is either
(0,0) or (11/4,11/4), depending on whether the initial x-value is above or below 2.

See Also

More About
• “Visualize the Basins of Attraction” on page 4-24
• “Comparison of Six Solvers” on page 1-10

1 Introducing Global Optimization Toolbox Functions

1-28



Optimization Workflow
To solve an optimization problem:

1 Decide what type of problem you have, and whether you want a local or global solution (see
“Local vs. Global Optima” on page 1-25). Choose a solver per the recommendations in “Table for
Choosing a Solver” on page 1-30.

2 Write your objective function and, if applicable, constraint functions per the syntax in “Compute
Objective Functions” on page 2-2 and “Write Constraints” on page 2-6.

3 Set appropriate options using optimoptions, or prepare a GlobalSearch or MultiStart
problem as described in “Workflow for GlobalSearch and MultiStart” on page 4-3. For details,
see “Pattern Search Options” on page 17-7, “Particle Swarm Options” on page 17-44,
“Genetic Algorithm Options” on page 17-23, “Simulated Annealing Options” on page 17-57, or
“Surrogate Optimization Options” on page 17-50.

4 Run the solver.
5 Examine the result. For information on the result, see “Solver Outputs and Iterative Display” or

Examine Results for GlobalSearch or MultiStart.
6 If the result is unsatisfactory, change options or start points or otherwise update your

optimization and rerun it. For information, see “Global Optimization Toolbox Solver
Characteristics” on page 1-31 or Improve Results. For information on improving solutions that
applies mainly to smooth problems, see “When the Solver Fails”, “When the Solver Might Have
Succeeded”, or “When the Solver Succeeds”.

See Also

More About
• “Solver-Based Optimization Problem Setup”
• “What Is Global Optimization?” on page 1-25
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Table for Choosing a Solver
Choose a solver based on problem characteristics and on the type of solution you want. “Solver
Characteristics” on page 1-34 contains more information to help you decide which solver is likely to
be most suitable. This table gives recommendations that are suitable for most problems.

Problem Type Recommended Solver
Smooth (objective twice differentiable), and you
want a local solution

An appropriate Optimization Toolbox solver; see
“Optimization Decision Table”

Smooth (objective twice differentiable), and you
want a global solution or multiple local solutions

GlobalSearch or MultiStart

Nonsmooth, and you want a local solution patternsearch
Nonsmooth, and you want a global solution or
multiple local solutions

surrogateopt or patternsearch with several
initial points x0

To start patternsearch at multiple points when you have finite bounds lb and ub on every
component, try:

x0 = lb + rand(size(lb)).*(ub - lb);

Many other solvers provide different solution algorithms, including the genetic algorithm solver ga
and the particleswarm solver. Try some of them if the recommended solvers do not perform well on
your problem. For details, see “Global Optimization Toolbox Solver Characteristics” on page 1-31.

See Also

Related Examples
• “Solver Behavior with a Nonsmooth Problem” on page 1-18

More About
• “Optimization Workflow” on page 1-29
• “Global Optimization Toolbox Solver Characteristics” on page 1-31
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Global Optimization Toolbox Solver Characteristics
In this section...
“Solver Choices” on page 1-31
“Explanation of “Desired Solution”” on page 1-31
“Choosing Between Solvers for Smooth Problems” on page 1-33
“Choosing Between Solvers for Nonsmooth Problems” on page 1-33
“Solver Characteristics” on page 1-34
“Why Are Some Solvers Objects?” on page 1-36

Solver Choices
This section describes Global Optimization Toolbox solver characteristics. The section includes
recommendations for obtaining results more effectively.

To achieve better or faster solutions, first try tuning the recommended solvers on page 1-30 by
setting appropriate options or bounds. If the results are unsatisfactory, try other solvers.

Desired Solution Smooth Objective and Constraints Nonsmooth Objective or
Constraints

“Explanation of “Desired
Solution”” on page 1-31

“Choosing Between Solvers for Smooth
Problems” on page 1-33

“Choosing Between Solvers for
Nonsmooth Problems” on page 1-33

Single local solution Optimization Toolbox functions; see
“Optimization Decision Table”

fminbnd, patternsearch,
fminsearch, ga, particleswarm,
simulannealbnd, surrogateopt

Multiple local solutions GlobalSearch, MultiStart patternsearch, ga,
particleswarm, simulannealbnd,
or surrogateopt started from
multiple initial points x0 or from
multiple initial populations

Single global solution GlobalSearch, MultiStart,
patternsearch, particleswarm,
ga, simulannealbnd, surrogateopt

patternsearch, ga,
particleswarm, simulannealbnd,
surrogateopt

Single local solution using
parallel processing

MultiStart, Optimization Toolbox
functions

patternsearch, ga,
particleswarm, surrogateopt

Multiple local solutions using
parallel processing

MultiStart patternsearch, ga, or
particleswarm started from multiple
initial points x0 or from multiple initial
populations

Single global solution using
parallel processing

MultiStart patternsearch, ga,
particleswarm, surrogateopt

Explanation of “Desired Solution”
To understand the meaning of the terms in “Desired Solution,” consider the example
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f(x)=100x2(1–x)2–x,

which has local minima x1 near 0 and x2 near 1:

The minima are located at:

fun = @(x)(100*x^2*(x - 1)^2 - x);
x1 = fminbnd(fun,-0.1,0.1)
x1 =
    0.0051

x2 = fminbnd(fun,0.9,1.1)
x2 =
    1.0049

Description of the Terms

Term Meaning
Single local solution Find one local solution, a point x where the objective function f(x)

is a local minimum. For more details, see “Local vs. Global Optima”
on page 1-25. In the example, both x1 and x2 are local solutions.

Multiple local solutions Find a set of local solutions. In the example, the complete set of
local solutions is {x1,x2}.

Single global solution Find the point x where the objective function f(x) is a global
minimum. In the example, the global solution is x2.
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Choosing Between Solvers for Smooth Problems
• “Single Global Solution” on page 1-33
• “Multiple Local Solutions” on page 1-33

Single Global Solution

1 Try GlobalSearch first. It is most focused on finding a global solution, and has an efficient local
solver, fmincon.

2 Try MultiStart next. It has efficient local solvers, and can search a wide variety of start points.
3 Try patternsearch next. It is less efficient, since it does not use gradients. However,

patternsearch is robust and is more efficient than the remaining local solvers To search for a
global solution, start patternsearch from a variety of start points.

4 Try surrogateopt next. surrogateopt attempts to find a global solution using the fewest
objective function evaluations. surrogateopt has more overhead per function evaluation than
most other solvers. surrogateopt requires finite bounds, and accepts integer constraints,
linear constraints, and nonlinear inequality constraints.

5 Try particleswarm next, if your problem is unconstrained or has only bound constraints.
Usually, particleswarm is more efficient than the remaining solvers, and can be more efficient
than patternsearch.

6 Try ga next. It can handle all types of constraints, and is usually more efficient than
simulannealbnd.

7 Try simulannealbnd last. It can handle problems with no constraints or bound constraints.
simulannealbnd is usually the least efficient solver. However, given a slow enough cooling
schedule, it can find a global solution.

Multiple Local Solutions

GlobalSearch and MultiStart both provide multiple local solutions. For the syntax to obtain
multiple solutions, see “Multiple Solutions” on page 4-17. GlobalSearch and MultiStart differ in
the following characteristics:

• MultiStart can find more local minima. This is because GlobalSearch rejects many generated
start points (initial points for local solution). Essentially, GlobalSearch accepts a start point only
when it determines that the point has a good chance of obtaining a global minimum. In contrast,
MultiStart passes all generated start points to a local solver. For more information, see
“GlobalSearch Algorithm” on page 4-35.

• MultiStart offers a choice of local solver: fmincon, fminunc, lsqcurvefit, or lsqnonlin.
The GlobalSearch solver uses only fmincon as its local solver.

• GlobalSearch uses a scatter-search algorithm for generating start points. In contrast,
MultiStart generates points uniformly at random within bounds, or allows you to provide your
own points.

• MultiStart can run in parallel. See “How to Use Parallel Processing in Global Optimization
Toolbox” on page 16-11.

Choosing Between Solvers for Nonsmooth Problems
Choose the applicable solver with the lowest number. For problems with integer constraints, use ga.
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1 Use fminbnd first on one-dimensional bounded problems only. fminbnd provably converges
quickly in one dimension.

2 Use patternsearch on any other type of problem. patternsearch provably converges, and
handles all types of constraints.

3 Try surrogateopt for problems that have time-consuming objective functions. surrogateopt
searches for a global solution. surrogateopt requires finite bounds, and accepts integer
constraints, linear constraints, and nonlinear inequality constraints.

4 Try fminsearch next for low-dimensional unbounded problems. fminsearch is not as general
as patternsearch and can fail to converge. For low-dimensional problems, fminsearch is
simple to use, since it has few tuning options.

5 Try particleswarm next on unbounded or bound-constrained problems. particleswarm has
little supporting theory, but is often an efficient algorithm.

6 Try ga next. ga has little supporting theory and is often less efficient than patternsearch or
particleswarm. ga handles all types of constraints. ga and surrogateopt are the only Global
Optimization Toolbox solvers that accept integer constraints.

7 Try simulannealbnd last for unbounded problems, or for problems with bounds.
simulannealbnd provably converges only for a logarithmic cooling schedule, which is
extremely slow. simulannealbnd takes only bound constraints, and is often less efficient than
ga.

Solver Characteristics
Solver Convergence Characteristics
GlobalSearch Fast convergence to local optima for

smooth problems
Deterministic iterates
Gradient-based
Automatic stochastic start points
Removes many start points heuristically

MultiStart Fast convergence to local optima for
smooth problems

Deterministic iterates
Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 16-11
Gradient-based
Stochastic or deterministic start points, or
combination of both
Automatic stochastic start points
Runs all start points
Choice of local solver: fmincon, fminunc,
lsqcurvefit, or lsqnonlin

patternsearch Proven convergence to local
optimum; slower than gradient-
based solvers

Deterministic iterates
Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 16-11
No gradients
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Solver Convergence Characteristics
User-supplied start point

surrogateopt Proven convergence to global
optimum for bounded problems;
slower than gradient-based solvers;
generally stops by reaching a
function evaluation limit or other
limit

Stochastic iterates
Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 16-11
Best used for time-consuming objective
functions
Requires bound constraints, accepts linear
constraints and nonlinear inequality
constraints
Allows integer constraints; see “Mixed-
Integer Surrogate Optimization” on page
11-62
No gradients
Automatic start points or user-supplied
points, or a combination of both

particleswarm No convergence proof Stochastic iterates
Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 16-11
Population-based
No gradients
Automatic start population or user-
supplied population, or a combination of
both
Only bound constraints

ga No convergence proof Stochastic iterates
Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 16-11
Population-based
No gradients
Allows integer constraints; see “Mixed
Integer ga Optimization” on page 8-38
Automatic start population or user-
supplied population, or a combination of
both

simulannealbnd Proven to converge to global
optimum for bounded problems with
very slow cooling schedule

Stochastic iterates
No gradients
User-supplied start point
Only bound constraints
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Explanation of some characteristics:

• Convergence — Solvers can fail to converge to any solution when started far from a local
minimum. When started near a local minimum, gradient-based solvers converge to a local
minimum quickly for smooth problems. patternsearch provably converges for a wide range of
problems, but the convergence is slower than gradient-based solvers. Both ga and
simulannealbnd can fail to converge in a reasonable amount of time for some problems,
although they are often effective.

• Iterates — Solvers iterate to find solutions. The steps in the iteration are iterates. Some solvers
have deterministic iterates. Others use random numbers and have stochastic iterates.

• Gradients — Some solvers use estimated or user-supplied derivatives in calculating the iterates.
Other solvers do not use or estimate derivatives, but use only objective and constraint function
values.

• Start points — Most solvers require you to provide a starting point for the optimization in order to
obtain the dimension of the decision variables. ga and surrogateopt do not require any starting
points, because they take the dimension of the decision variables as an input or infer dimensions
from bounds. These solvers generate a start point or population automatically, or they accept a
point or points that you supply.

Compare the characteristics of Global Optimization Toolbox solvers to Optimization Toolbox solvers.

Solver Convergence Characteristics
fmincon, fminunc,
fseminf, lsqcurvefit,
lsqnonlin

Proven quadratic convergence to
local optima for smooth problems

Deterministic iterates
Gradient-based
User-supplied starting point

fminsearch No convergence proof —
counterexamples exist.

Deterministic iterates
No gradients
User-supplied start point
No constraints

fminbnd Proven convergence to local optima
for smooth problems, slower than
quadratic.

Deterministic iterates
No gradients
User-supplied start interval
Only one-dimensional problems

All these Optimization Toolbox solvers:

• Have deterministic iterates
• Require a start point or interval
• Search just one basin of attraction

Why Are Some Solvers Objects?
GlobalSearch and MultiStart are objects. What does this mean for you?

• You create a GlobalSearch or MultiStart object before running your problem.
• You can reuse the object for running multiple problems.
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• GlobalSearch and MultiStart objects are containers for algorithms and global options. You
use these objects to run a local solver multiple times. The local solver has its own options.

For more information, see the “Classes” documentation.

See Also

Related Examples
• “Solver Behavior with a Nonsmooth Problem” on page 1-18

More About
• “Optimization Workflow” on page 1-29
• “Table for Choosing a Solver” on page 1-30
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Write Files for Optimization Functions

• “Compute Objective Functions” on page 2-2
• “Maximizing vs. Minimizing” on page 2-5
• “Write Constraints” on page 2-6
• “Set and Change Options” on page 2-9
• “View Options” on page 2-10
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Compute Objective Functions
In this section...
“Objective (Fitness) Functions” on page 2-2
“Write a Function File” on page 2-2
“Write a Vectorized Function” on page 2-3
“Gradients and Hessians” on page 2-4

Objective (Fitness) Functions
To use Global Optimization Toolbox functions, first write a file (or an anonymous function) that
computes the function you want to optimize. This is called an objective function for most solvers, or
fitness function for ga. The function should accept a vector, whose length is the number of
independent variables, and return a scalar. For gamultiobj, the function should return a row vector
of objective function values. For vectorized solvers, the function should accept a matrix, where each
row represents one input vector, and return a vector of objective function values. This section shows
how to write the file.

Write a Function File
This example shows how to write a file for the function you want to optimize. Suppose that you want
to minimize the function

f (x) = exp − x1
2 + x2

2 x1
2− 2x1x2 + 6x1 + 4x2

2− 3x2 .

The file that computes this function must accept a vector x of length 2, corresponding to the variables
x1 and x2, and return a scalar equal to the value of the function at x.

1 Select New > Script (Ctrl+N) from the MATLAB® File menu. A new file opens in the editor.
2 Enter the following two lines of code:

function z = my_fun(x)
z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);

3 Save the file in a folder on the MATLAB path.

Check that the file returns the correct value.

my_fun([2 3])

ans =
   31

For gamultiobj, suppose you have three objectives. Your objective function returns a three-element
vector consisting of the three objective function values:

function z = my_fun(x)
z = zeros(1,3); % allocate output
z(1) = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2);
z(2) = x(1)*x(2) + cos(3*x(2)/(2+x(1)));
z(3) = tanh(x(1) + x(2));
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Write a Vectorized Function
The ga, gamultiobj, paretosearch, particleswarm, and patternsearch solvers optionally
compute the objective functions of a collection of vectors in one function call. This method can take
less time than computing the objective functions of the vectors serially. This method is called a
vectorized function call.

To compute in vectorized fashion:

• Write your objective function to:

• Accept a matrix with an arbitrary number of rows.
• Return the vector of function values of each row.
• For gamultiobj or paretosearch, return a matrix, where each row contains the objective

function values of the corresponding input matrix row.
• If you have a nonlinear constraint, be sure to write the constraint in a vectorized fashion. For

details, see “Vectorized Constraints” on page 2-7.
• Set the UseVectorized option to true using optimoptions. For patternsearch or

paretosearch, also set UseCompletePoll to true. Be sure to pass the options to the solver.

For example, to write the objective function of “Write a Function File” on page 2-2 in a vectorized
fashion,

function z = my_fun(x)
z = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ...
   4*x(:,2).^2 - 3*x(:,2);

To use my_fun as a vectorized objective function for patternsearch:

options = optimoptions('patternsearch','UseCompletePoll',true,'UseVectorized',true);
[x fval] = patternsearch(@my_fun,[1 1],[],[],[],[],[],[],...
    [],options);

To use my_fun as a vectorized objective function for ga:

options = optimoptions('ga','UseVectorized',true);
[x fval] = ga(@my_fun,2,[],[],[],[],[],[],[],options);

For gamultiobj or paretosearch,

function z = my_fun(x)
z = zeros(size(x,1),3); % allocate output
z(:,1) = x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + ...
   4*x(:,2).^2 - 3*x(:,2);
z(:,2) = x(:,1).*x(:,2) + cos(3*x(:,2)./(2+x(:,1)));
z(:,3) = tanh(x(:,1) + x(:,2));

To use my_fun as a vectorized objective function for gamultiobj:

options = optimoptions('ga','UseVectorized',true);
[x fval] = gamultiobj(@my_fun,2,[],[],[],[],[],[],options);

For more information on writing vectorized functions for patternsearch, see “Vectorize the
Objective and Constraint Functions” on page 6-79. For more information on writing vectorized
functions for ga, see “Vectorize the Fitness Function” on page 8-99.
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Gradients and Hessians
If you use GlobalSearch or MultiStart, your objective function can return derivatives (gradient,
Jacobian, or Hessian). For details on how to include this syntax in your objective function, see
“Including Gradients and Hessians”. Use optimoptions to set options so that your solver uses the
derivative information:

Local Solver = fmincon, fminunc

Condition Option Setting
Objective function contains gradient 'SpecifyObjectiveGradient' = true; see

“How to Include Gradients”
Objective function contains Hessian 'HessianFcn' = 'objective' or a function

handle; see “Including Hessians”
Constraint function contains gradient 'SpecifyConstraintGradient' = true; see

“Including Gradients in Constraint Functions”

Local Solver = lsqcurvefit, lsqnonlin

Condition Option Setting
Objective function contains Jacobian 'SpecifyObjectiveGradient' = true

See Also

Related Examples
• “Vectorize the Objective and Constraint Functions” on page 6-79
• “Vectorize the Fitness Function” on page 8-99
• “Maximizing vs. Minimizing” on page 2-5
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Maximizing vs. Minimizing
Global Optimization Toolbox optimization functions minimize the objective (or fitness) function. That
is, they solve problems of the form

min
x

f (x) .

If you want to maximize f(x), minimize –f(x), because the point at which the minimum of –f(x) occurs is
the same as the point at which the maximum of f(x) occurs.

For example, suppose you want to maximize the function

f (x) = exp − x1
2 + x2

2 x1
2− 2x1x2 + 6x1 + 4x2

2− 3x2 .

Write a function to compute

g(x) = − f (x) = − exp − x1
2 + x2

2 x1
2− 2x1x2 + 6x1 + 4x2

2− 3x2 ,

and then minimize g(x). Start from the point x0 = [0 0].

f = @(x)exp(-(x(1)^2 + x(2)^2))*(x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2));
g = @(x)-f(x);
x0 = [0 0];
[xmin,gmin] = fminsearch(g,x0)

xmin =

    0.5550   -0.5919

gmin =

   -3.8683

The maximum of f is the value of f(xmin), which is –gmin.

f(xmin)

ans =

    3.8683

See Also

Related Examples
• “Compute Objective Functions” on page 2-2
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Write Constraints
In this section...
“Consult Optimization Toolbox Documentation” on page 2-6
“Set Bounds” on page 2-6
“Ensure ga Options Maintain Feasibility” on page 2-6
“Gradients and Hessians” on page 2-7
“Vectorized Constraints” on page 2-7

Consult Optimization Toolbox Documentation
Many Global Optimization Toolbox functions accept bounds, linear constraints, or nonlinear
constraints. To see how to include these constraints in your problem, see “Write Constraints”. Try
consulting these pertinent links to sections:

• “Bound Constraints”
• “Linear Constraints”
• “Nonlinear Constraints”

Note The surrogateopt solver uses a different syntax for nonlinear constraints than other solvers,
and requires finite bounds on all components. For details, see the function reference page and
“Convert Nonlinear Constraints Between surrogateopt Form and Other Solver Forms” on page 11-
74.

Set Bounds
It is more important to set bounds for global solvers than for local solvers. Global solvers use bounds
in a variety of ways:

• GlobalSearch requires bounds for its scatter-search point generation. If you do not provide
bounds, GlobalSearch bounds each component below by -9999 and above by 10001. However,
these bounds can easily be inappropriate.

• If you do not provide bounds and do not provide custom start points, MultiStart bounds each
component below by -1000 and above by 1000. However, these bounds can easily be
inappropriate.

• ga uses bounds and linear constraints for its initial population generation. For unbounded
problems, ga uses a default of 0 as the lower bound and 1 as the upper bound for each dimension
for initial point generation. For bounded problems, and problems with linear constraints, ga uses
the bounds and constraints to make the initial population.

• simulannealbnd and patternsearch do not require bounds, although they can use bounds.

Ensure ga Options Maintain Feasibility
The ga solver generally maintains strict feasibility with respect to bounds and linear constraints. This
means that, at every iteration, all members of a population satisfy the bounds and linear constraints.
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However, you can set options that cause this feasibility to fail. For example if you set MutationFcn
to @mutationgaussian or @mutationuniform, the mutation function does not respect constraints,
and your population can become infeasible. Similarly, some crossover functions can cause infeasible
populations, although the default gacreationlinearfeasible does respect bounds and linear
constraints. Also, ga can have infeasible points when using custom mutation or crossover functions.

To ensure feasibility, use the default crossover and mutation functions for ga. Be especially careful
that any custom functions maintain feasibility with respect to bounds and linear constraints.

Note When a problem has integer constraints, ga ensures that all operators (mutation, crossover,
and creation) return feasible populations with respect to bounds, linear constraints, and integer
constraints at each iteration. This feasibility holds to within a small tolerance.

Gradients and Hessians
If you use GlobalSearch or MultiStart with fmincon, your nonlinear constraint functions can
return derivatives (gradient or Hessian). For details, see “Gradients and Hessians” on page 2-4.

Vectorized Constraints
The ga and patternsearch solvers optionally compute the nonlinear constraint functions of a
collection of vectors in one function call. This method can take less time than computing the objective
functions of the vectors serially. This method is called a vectorized function call.

For the solver to compute in a vectorized manner, you must vectorize both your objective (fitness)
function and nonlinear constraint function. For details, see “Vectorize the Objective and Constraint
Functions” on page 6-79.

As an example, suppose your nonlinear constraints for a three-dimensional problem are

x1
2

4 +
x2

2

9 +
x3

2

25 ≤ 6

x3 ≥ cosh x1 + x2
x1x2x3 = 2.

The following code gives these nonlinear constraints in a vectorized fashion, assuming that the rows
of your input matrix x are your population or input vectors:

function [c ceq] = nlinconst(x)

c(:,1) = x(:,1).^2/4 + x(:,2).^2/9 + x(:,3).^2/25 - 6;
c(:,2) = cosh(x(:,1) + x(:,2)) - x(:,3);
ceq = x(:,1).*x(:,2).*x(:,3) - 2;

For example, minimize the vectorized quadratic function

function y = vfun(x)
y = -x(:,1).^2 - x(:,2).^2 - x(:,3).^2;

over the region with constraints nlinconst using patternsearch:

options = optimoptions('patternsearch','UseCompletePoll',true,'UseVectorized',true);
[x fval] = patternsearch(@vfun,[1,1,2],[],[],[],[],[],[],...
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    @nlinconst,options)
Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

x =
    0.2191    0.7500   12.1712

fval =
 -148.7480

Using ga:

options = optimoptions('ga','UseVectorized',true);
[x fval] = ga(@vfun,3,[],[],[],[],[],[],@nlinconst,options)
Optimization terminated: maximum number of generations exceeded.

x =
   -1.4098   -0.1216   11.6664

fval =
 -138.1066

For this problem patternsearch computes the solution far more quickly and accurately.

See Also

More About
• “Write Constraints”
• “Vectorize the Objective and Constraint Functions” on page 6-79
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Set and Change Options
For all Global Optimization Toolbox solvers except GlobalSearch and MultiStart, the
recommended way to set options is to use the optimoptions function. Set GlobalSearch and
MultiStart options using their name-value pairs; see “Changing Global Options” on page 4-52.

For example, to set the ga maximum time to 300 seconds and set iterative display:

options = optimoptions('ga','MaxTime',300,'Display','iter');

Change options as follows:

• Dot notation. For example,

options.MaxTime = 5e3;
• optimoptions. For example,

options = optimoptions(options,'MaxTime',5e3);

Ensure that you pass options in your solver call. For example,

[x,fval] = ga(@objfun,2,[],[],[],[],lb,ub,@nonlcon,options);

To see the options you can change, consult the solver function reference pages. For option details, see
the options reference sections.

See Also
patternsearch | particleswarm | ga | simulannealbnd | surrogateopt | paretosearch |
gamultiobj

More About
• “Genetic Algorithm Options” on page 17-23
• “Particle Swarm Options” on page 17-44
• “Pattern Search Options” on page 17-7
• “Simulated Annealing Options” on page 17-57
• “Surrogate Optimization Options” on page 17-50
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View Options
optimoptions “hides” some options, meaning it does not display their values. For example, it hides
the patternsearch MaxMeshSize option.

options = optimoptions('patternsearch','MaxMeshSize',1e2)

options = 

  patternsearch options:

   Set properties:
     No options set.

   Default properties:
            AccelerateMesh: 0
       ConstraintTolerance: 1.0000e-06
                   Display: 'final'
         FunctionTolerance: 1.0000e-06
           InitialMeshSize: 1
    MaxFunctionEvaluations: '2000*numberOfVariables'
             MaxIterations: '100*numberOfVariables'
                   MaxTime: Inf
     MeshContractionFactor: 0.5000
       MeshExpansionFactor: 2
             MeshTolerance: 1.0000e-06
                 OutputFcn: []
                   PlotFcn: []
                PollMethod: 'GPSPositiveBasis2N'
        PollOrderAlgorithm: 'consecutive'
                 ScaleMesh: 1
                 SearchFcn: []
             StepTolerance: 1.0000e-06
           UseCompletePoll: 0
         UseCompleteSearch: 0
               UseParallel: 0
             UseVectorized: 0

You can view the value of any option, including “hidden” options, by using dot notation. For example,

options.MaxMeshSize

ans =

   100

Solver reference pages list “hidden” options in italics.

There are two reason that some options are “hidden”:

• They are not useful. For example, the ga StallTest option allows you to choose a stall test that
does not work well. Therefore, this option is “hidden”.

• They are rarely used, or it is hard to know when to use them. For example, the patternsearch
MaxMeshSize option is hard to choose, and so is “hidden”.

For details, see “Options that optimoptions Hides” on page 17-64.
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See Also

More About
• “Set and Change Options” on page 2-9
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Problem-Based Global Optimization

• “Decide Between Problem-Based and Solver-Based Approach” on page 3-2
• “Global Optimization Toolbox Default Solvers and Problem Types” on page 3-4
• “Initial Points for Global Optimization Toolbox Solvers” on page 3-6
• “Integer Constraints in Nonlinear Problem-Based Optimization” on page 3-8
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Decide Between Problem-Based and Solver-Based Approach
Use a Global Optimization Toolbox solver to optimize a nonsmooth function, search for a global
solution, or solve a multiobjective problem. Use the problem-based approach for a simpler way to set
up and solve problems.

Problem-Based Characteristics
Advantages Limitations
Easier to set up and debug No equation problems
Easier to run different solvers on the same
problem

No custom data types

Obtain an appropriate solver automatically No checkpoint file for surrogateopt
Automatically speed the solution of problems
where the objective and nonlinear
constraints are calculated in the same time-
consuming function (typically simulations)

No vectorization
You must convert variables for options that
relate to the solver-based approach

Advantages:

• Easier to set up and debug. In the problem-based approach, you use symbolic-style variables to
create optimization expressions and constraints. See “Problem-Based Optimization Setup”. In the
solver-based approach, you must place all variables into a single vector, which can be awkward,
especially with variables of large or differing dimensions.

• Easier to run different solvers on the same problem. Some solvers have different calling
syntaxes. For example, the syntax for nonlinear constraints in surrogateopt is different from the
syntax in all other solvers. To run a problem using both surrogateopt and another solver in the
solver-based approach, you have to create different versions of the objective function. In contrast,
the problem-based approach takes care of translating syntaxes, so you need to change only the
solver name and possibly some options.

• Obtain an appropriate solver automatically. The solve function automatically chooses a
solver that can handle your objective and constraints. In the solver-based approach you must
choose an appropriate solver.

• Automatically speed the solution of problems where the objective and nonlinear
constraints are calculated in the same time-consuming function (typically simulations).
Frequently, a simulation or ODE solver calculates the objective and nonlinear constraints in the
same function. When you convert the time-consuming function to an optimization expression using
fcn2optimexpr, you can save solution time by setting the 'ReuseEvaluation' argument to
true. This setting causes the solver to avoid recalculating the time-consuming function when
evaluating the objective and nonlinear constraints. Achieving this time savings in the solver-based
approach can require extra programming, as shown in the example “Objective and Nonlinear
Constraints in the Same Function”.

Limitations:

• No equation problems. You cannot use a Global Optimization Toolbox solver to solve an equation
problem of type EquationProblem. However, you can solve a feasibility problem by specifying a
zero objective function and any constraints accepted by the solver. For an example, see “Solve
Feasibility Problem Using surrogateopt, Problem-Based” on page 12-6.

• No custom data types. To use a custom data type with ga or simulannealbnd, you must use
the solver-based approach. For examples, see “Custom Data Type Optimization Using the Genetic
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Algorithm” on page 8-105 and “Multiprocessor Scheduling Using Simulated Annealing with a
Custom Data Type” on page 13-26.

• No checkpoint file for surrogateopt. Use the solver-based approach for checkpoint files in
surrogateopt. For details, see “Work with Checkpoint Files” on page 11-56.

• No vectorization (see “Using Vectorization”). If your objective function and any nonlinear
constraint functions are written in a vectorized fashion, you must use the solver-based workflow to
gain the benefits of vectorization. If you set the UseVectorized option in the problem-based
approach, you get a warning, not improved performance.

• You must convert variables for options that relate to the solver-based approach. For
example, custom output functions use solver-based syntax. Use varindex to convert problem-
based variables to solver-based indices. For an example, see “Set Options in Problem-Based
Approach Using varindex” on page 9-17.

See Also
solve

Related Examples
• “Problem-Based Optimization Setup”
• “Compare Several Global Solvers, Problem-Based” on page 1-3
• “Direct Search”
• “Genetic Algorithm”
• “Surrogate Optimization”
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Global Optimization Toolbox Default Solvers and Problem
Types

This topic identifies the types of problems handled by Global Optimization Toolbox solvers, and the
default solver selected by solve or prob2struct for each type.

Problem Type Default Solver
Linear Programming (LP) linprog
Mixed-Integer Linear Programming (MILP) intlinprog
Quadratic Programming (QP) quadprog
Second-Order Cone Programming (SOCP) coneprog
Linear Least Squares lsqlin
Nonlinear Least Squares lsqnonlin
Nonlinear Programming (NLP) fminunc for problems with no constraints,

otherwise fmincon
Mixed-Integer Nonlinear Programming (MINLP) ga
Multiobjective gamultiobj

Note The call optimoptions(prob) creates options for the default solver of the problem type of
prob.

In this table, a check mark  means the solver is available for the problem type, and an x means the
solver is not available.

Problem
Type

LP MILP QP SOCP Linear
Least
Squares

Nonlinea
r Least
Squares

NLP MINLP

Solver
linprog x x x x x x x
intlinp
rog

x x x x x x

quadpro
g

x x x x

conepro
g

x x x x x x

lsqlin x x x x x x x
lsqnonn
eg

x x x x x x x

lsqnonl
in

x x x x x x

fminunc x x x
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Problem
Type

LP MILP QP SOCP Linear
Least
Squares

Nonlinea
r Least
Squares

NLP MINLP

fmincon x x
pattern
search

x x

ga

particl
eswarm

x x x

simulan
nealbnd

x x x

surroga
teopt
gamulti
obj
paretos
earch

x x

See Also
prob2struct | solve | optimoptions

Related Examples
• “Problem-Based Optimization Setup”
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Initial Points for Global Optimization Toolbox Solvers
Some Global Optimization Toolbox solvers require an initial point x0: patternsearch,
simulannealbnd, GlobalSearch, and MultiStart. When solving optimization problems using the
problem-based approach, you specify x0 in the second argument for solve and for prob2struct. To
specify an initial point, create a structure with the variable names as fields and variable values as
structure values. For example, for a scalar variable x and a 2-by-2 matrix y for the patternsearch
solver, enter the following code.

x0.x = 5;
x0.y = eye(2) + 0.1*randn(2);
[sol,fval] = solve(prob,x0,"Solver","patternsearch")

You can also specify an initial point for these solvers using optimvalues, as shown next.

Other Global Optimization Toolbox solvers do not require an initial point, but can accept an initial
point or set of initial points: ga, gamultiobj, paretosearch, and surrogateopt. To pass initial
points to these solvers, create the points using optimvalues.

Note When using the problem-based approach, you cannot pass an initial point or initial population
using options such as:

• InitialPopulationMatrix for ga
• InitialSwarmMatrix for particleswarm
• InitialPoints for surrogateopt

For example, take a 2-D variable x and a 2-by-2 matrix y for the ga solver.

x = optimvar('x',2,"LowerBound",-1,"UpperBound",1);
y = optimvar('y',2,2,"LowerBound",-1,"UpperBound",1);
prob = optimproblem("Objective",...
    cosh(dot(y*x,[2;-1])) - sinh(dot(y*x,[1;-2])));
prob.Constraints = y(1,2) == y(2,1);
% Set initial population: x0x for x, x0y for y
rng default
x0x = [1;1/2];
x0y = eye(2)/2 + 0.1*randn(2);
x0 = optimvalues(prob,'x',x0x,'y',x0y);
% Solve problem
[sol,fval] = solve(problem,Solver="ga")

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

sol =

    1.0000   -1.0000    0.3080   -1.0000   -0.9990    1.0000

fval =

  -50.4209

The solution satisfies the constraint y(1,2) == y(2,1) only to within the constraint tolerance
1e-3: sol(4) = -1.0000, but sol(5) = -0.9990.
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See Also
optimvalues | solve

Related Examples
• “Problem-Based Optimization Setup”
• “Specify Start Points for MultiStart, Problem-Based” on page 5-3
• “Specify Starting Points and Values for surrogateopt, Problem-Based” on page 12-24
• “Pareto Front for Multiobjective Optimization, Problem-Based” on page 15-5

 Initial Points for Global Optimization Toolbox Solvers
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Integer Constraints in Nonlinear Problem-Based Optimization
To solve a nonlinear optimization problem with integer constraints using the problem-based
approach, follow one of these processes:

• Use a Global Optimization Toolbox solver that handles integer constraints, ga or surrogateopt.
• Convert the problem to a structure using prob2struct, and then use an external solver.
• Sometimes, you can iteratively approximate a nonlinear integer problem using intlinprog. For

an example of this approach, see “Mixed-Integer Quadratic Programming Portfolio Optimization:
Problem-Based”.

The default solver for nonlinear problems with integer constraints is ga. You must have a Global
Optimization Toolbox license for the solve function to solve the problem using either ga or
surrogateopt.

When you use an external solver and call prob2struct, you might need to specify the Solver name-
value argument.

Note For a nonlinear problem with integer constraints, if you do not have a Global Optimization
Toolbox license, you must include the Solver argument.

Even if you have a Global Optimization Toolbox license, you still might need to specify the Solver
name-value argument. An external solver can expect the problem structure to be in a form that
corresponds to a particular solver. For example, for a problem with linear and integer constraints and
a quadratic objective function, an external solver might require the objective function to be expressed
as matrices H and f in the expression ½xTHx + fTx. To obtain these matrices, specify the 'quadprog'
solver by using the Solver name-value argument.

problem = prob2struct(prob,"Solver","quadprog");

If you do not specify the quadprog solver, the resulting problem structure can contain a function
handle for the objective function rather than matrices. In either case, the resulting problem structure
contains the integer variables in the intcon field.

Note For a nonlinear problem with integer constraints, when you specify a solver that does not
handle integer constraints, prob2struct issues a warning that the solver cannot solve the resulting
structure. If you then try to solve the problem by calling the solver on the problem structure, the
solver ignores the integer constraints. In this case, the solution is not the solution to the original
problem, but is instead the solution to the problem without integer constraints.

See Also
prob2struct | solve
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Using GlobalSearch and MultiStart

• “Problems That GlobalSearch and MultiStart Can Solve” on page 4-2
• “Workflow for GlobalSearch and MultiStart” on page 4-3
• “Create Problem Structure” on page 4-4
• “Create Solver Object” on page 4-7
• “Set Start Points for MultiStart” on page 4-10
• “Run the Solver” on page 4-13
• “Single Solution” on page 4-16
• “Multiple Solutions” on page 4-17
• “Iterative Display” on page 4-21
• “Global Output Structures” on page 4-23
• “Visualize the Basins of Attraction” on page 4-24
• “Output Functions for GlobalSearch and MultiStart” on page 4-27
• “Plot Functions for GlobalSearch and MultiStart” on page 4-30
• “How GlobalSearch and MultiStart Work” on page 4-34
• “Can You Certify That a Solution Is Global?” on page 4-41
• “Refine Start Points” on page 4-44
• “Change Options” on page 4-51
• “Reproduce Results” on page 4-54
• “Find Global or Multiple Local Minima” on page 4-57
• “Maximizing Monochromatic Polarized Light Interference Patterns Using GlobalSearch and

MultiStart” on page 4-63
• “Optimize Using Only Feasible Start Points” on page 4-75
• “MultiStart Using lsqcurvefit or lsqnonlin” on page 4-78
• “Parallel MultiStart” on page 4-82
• “Isolated Global Minimum” on page 4-85

4



Problems That GlobalSearch and MultiStart Can Solve
The GlobalSearch and MultiStart solvers apply to problems with smooth objective and constraint
functions. The solvers search for a global minimum, or for a set of local minima. For more information
on which solver to use, see “Table for Choosing a Solver” on page 1-30.

GlobalSearch and MultiStart work by starting a local solver, such as fmincon, from a variety of
start points. Generally the start points are random. However, for MultiStart you can provide a set
of start points. For more information, see “How GlobalSearch and MultiStart Work” on page 4-34.

To find out how to use these solvers, see “Workflow for GlobalSearch and MultiStart” on page 4-3.
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Workflow for GlobalSearch and MultiStart
To find a global or multiple local solutions for a smooth problem:

1 “Create Problem Structure” on page 4-4
2 “Create Solver Object” on page 4-7
3 (Optional, MultiStart only) “Set Start Points for MultiStart” on page 4-10
4 “Run the Solver” on page 4-13

The following figure illustrates these steps.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Create Problem Structure
In this section...
“About Problem Structures” on page 4-4
“Use the createOptimProblem Function” on page 4-4
“Example: Create a Problem Structure with createOptimProblem” on page 4-5

About Problem Structures
To use the GlobalSearch or MultiStart solvers, you must first create a problem structure. The
recommended way to create a problem structure is using the createOptimProblem function on
page 4-4. You can create a structure manually, but doing so is error-prone.

Use the createOptimProblem Function
Follow these steps to create a problem structure using the createOptimProblem function.

1 Define your objective function as a file or anonymous function. For details, see “Compute
Objective Functions” on page 2-2. If your solver is lsqcurvefit or lsqnonlin, ensure the
objective function returns a vector, not scalar.

2 If relevant, create your constraints, such as bounds and nonlinear constraint functions. For
details, see “Write Constraints” on page 2-6.

3 Create a start point. For example, to create a three-dimensional random start point xstart:

xstart = randn(3,1);
4 (Optional) Create options using optimoptions. For example,

options = optimoptions(@fmincon,'Algorithm','interior-point');
5 Enter

problem = createOptimProblem(solver,

where solver is the name of your local solver:

• For GlobalSearch: 'fmincon'
• For MultiStart the choices are:

• 'fmincon'
• 'fminunc'
• 'lsqcurvefit'
• 'lsqnonlin'

For help choosing, see “Optimization Decision Table”.
6 Set an initial point using the 'x0' parameter. If your initial point is xstart, and your solver is

fmincon, your entry is now

problem = createOptimProblem('fmincon','x0',xstart,
7 Include the function handle for your objective function in objective:
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problem = createOptimProblem('fmincon','x0',xstart, ...
    'objective',@objfun,

8 Set bounds and other constraints as applicable.

Constraint Name
lower bounds 'lb'
upper bounds 'ub'
matrix Aineq for linear inequalities Aineq x ≤ bineq 'Aineq'
vector bineq for linear inequalities Aineq x ≤ bineq 'bineq'
matrix Aeq for linear equalities Aeq x = beq 'Aeq'
vector beq for linear equalities Aeq x = beq 'beq'
nonlinear constraint function 'nonlcon'

9 If using the lsqcurvefit local solver, include vectors of input data and response data, named
'xdata' and 'ydata' respectively.

10 Best practice: validate the problem structure by running your solver on the structure. For
example, if your local solver is fmincon:

[x,fval,exitflag,output] = fmincon(problem);

Example: Create a Problem Structure with createOptimProblem
This example minimizes the function from “Run the Solver” on page 4-13, subject to the constraint
x1 + 2x2 ≥ 4. The objective is

sixmin = 4x2 – 2.1x4 + x6/3 + xy – 4y2 + 4y4. (4-1)

Use the interior-point algorithm of fmincon, and set the start point to [2;3].

1 Write a function handle for the objective function.

sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);

2 Write the linear constraint matrices. Change the constraint to “less than” form:

A = [-1,-2];
b = -4;

3 Create the local options to use the interior-point algorithm:

opts = optimoptions(@fmincon,'Algorithm','interior-point');
4 Create the problem structure with createOptimProblem:

problem = createOptimProblem('fmincon', ...
    'x0',[2;3],'objective',sixmin, ...
    'Aineq',A,'bineq',b,'options',opts)

5 The resulting structure:

problem = 

  struct with fields:

    objective: @(x)(4*x(1)^2-2.1*x(1)^4+x(1)^6/3+x(1)*x(2)-4*x(2)^2+4*x(2)^4)
           x0: [2x1 double]

 Create Problem Structure

4-5



        Aineq: [-1 -2]
        bineq: -4
          Aeq: []
          beq: []
           lb: []
           ub: []
      nonlcon: []
       solver: 'fmincon'
      options: [1x1 optim.options.Fmincon]

6 Best practice: validate the problem structure by running your solver on the structure:

[x,fval,exitflag,output] = fmincon(problem);

See Also

Related Examples
• “Workflow for GlobalSearch and MultiStart” on page 4-3
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Create Solver Object
In this section...
“What Is a Solver Object?” on page 4-7
“Properties (Global Options) of Solver Objects” on page 4-7
“Creating a Nondefault GlobalSearch Object” on page 4-8
“Creating a Nondefault MultiStart Object” on page 4-9

What Is a Solver Object?
A solver object contains your preferences for the global portion of the optimization.

You do not need to set any preferences. Create a GlobalSearch object named gs with default
settings as follows:

gs = GlobalSearch;

Similarly, create a MultiStart object named ms with default settings as follows:

ms = MultiStart;

Properties (Global Options) of Solver Objects
Global options are properties of a GlobalSearch or MultiStart object.

 Create Solver Object
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Properties for both GlobalSearch and MultiStart
Property Name Meaning
Display Detail level of iterative display. Set to 'off' for no display, 'final'

(default) for a report at the end of the run, or 'iter' for reports as the
solver progresses. For more information and examples, see “Iterative
Display” on page 4-21.

FunctionTolerance Solvers consider objective function values within FunctionTolerance
of each other to be identical (not distinct). Default: 1e-6. Solvers group
solutions when the solutions satisfy both FunctionTolerance and
XTolerance tolerances.

XTolerance Solvers consider solutions within XTolerance distance of each other to
be identical (not distinct). Default: 1e-6. Solvers group solutions when
the solutions satisfy both FunctionTolerance and XTolerance
tolerances.

MaxTime Solvers halt if the run exceeds MaxTime seconds, as measured by a clock
(not processor seconds). Default: Inf

StartPointsToRun Choose whether to run 'all' (default) start points, only those points
that satisfy 'bounds', or only those points that are feasible with respect
to bounds and inequality constraints with 'bounds-ineqs'. For an
example, see “Optimize Using Only Feasible Start Points” on page 4-75.

OutputFcn Functions to run after each local solver run. See “Output Functions for
GlobalSearch and MultiStart” on page 4-27. Default: []

PlotFcn Plot functions to run after each local solver run. See “Plot Functions for
GlobalSearch and MultiStart” on page 4-30. Default: []

Properties for GlobalSearch
Property Name Meaning
NumTrialPoints Number of trial points to examine. Default: 1000
BasinRadiusFactor See GlobalSearch Properties for detailed descriptions

of these properties.DistanceThresholdFactor
MaxWaitCycle
NumStageOnePoints
PenaltyThresholdFactor

Properties for MultiStart
Property Name Meaning
UseParallel When true, MultiStart attempts to distribute start points to multiple

processors for the local solver. Disable by setting to false (default). For
details, see “How to Use Parallel Processing in Global Optimization
Toolbox” on page 16-11. For an example, see “Parallel MultiStart” on
page 4-82.

Creating a Nondefault GlobalSearch Object
Suppose you want to solve a problem and:
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• Consider local solutions identical if they are within 0.01 of each other and the function values are
within the default FunctionTolerance tolerance.

• Spend no more than 2000 seconds on the computation.

To solve the problem, create a GlobalSearch object gs as follows:

gs = GlobalSearch('XTolerance',0.01,'MaxTime',2000);

Creating a Nondefault MultiStart Object
Suppose you want to solve a problem such that:

• You consider local solutions identical if they are within 0.01 of each other and the function values
are within the default FunctionTolerance tolerance.

• You spend no more than 2000 seconds on the computation.

To solve the problem, create a MultiStart object ms as follows:

ms = MultiStart('XTolerance',0.01,'MaxTime',2000);

See Also

Related Examples
• “Workflow for GlobalSearch and MultiStart” on page 4-3
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Set Start Points for MultiStart
In this section...
“Four Ways to Set Start Points” on page 4-10
“Positive Integer for Start Points” on page 4-10
“RandomStartPointSet Object for Start Points” on page 4-10
“CustomStartPointSet Object for Start Points” on page 4-11
“Cell Array of Objects for Start Points” on page 4-12

Four Ways to Set Start Points
There are four ways you tell MultiStart which start points to use for the local solver:

• Pass a positive integer on page 4-10 k. MultiStart generates k - 1 start points as if using a
RandomStartPointSet object and the problem structure. MultiStart also uses the x0 start
point from the problem structure, for a total of k start points.

• Pass a RandomStartPointSet object on page 4-10.
• Pass a CustomStartPointSet object on page 4-11.
• Pass a cell array on page 4-12 of RandomStartPointSet and CustomStartPointSet objects.

Pass a cell array if you have some specific points you want to run, but also want MultiStart to
use other random start points.

Note You can control whether MultiStart uses all start points, or only those points that satisfy
bounds or other inequality constraints. For more information, see “Filter Start Points (Optional)” on
page 4-39.

Positive Integer for Start Points
The syntax for running MultiStart for k start points is

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,k);

The positive integer k specifies the number of start points MultiStart uses. MultiStart generates
random start points using the dimension of the problem and bounds from the problem structure.
MultiStart generates k - 1 random start points, and also uses the x0 start point from the
problem structure.

RandomStartPointSet Object for Start Points
Create a RandomStartPointSet object as follows:

stpoints = RandomStartPointSet;

Run MultiStart starting from a RandomStartPointSet as follows:

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,stpoints);

By default a RandomStartPointSet object generates 10 start points. Control the number of start
points with the NumStartPoints property. For example, to generate 40 start points:
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stpoints = RandomStartPointSet('NumStartPoints',40);

You can set an ArtificialBound for a RandomStartPointSet. This ArtificialBound works in
conjunction with the bounds from the problem structure:

• If a component has no bounds, RandomStartPointSet uses a lower bound of -
ArtificialBound, and an upper bound of ArtificialBound.

• If a component has a lower bound lb but no upper bound, RandomStartPointSet uses an upper
bound of lb + 2*ArtificialBound.

• Similarly, if a component has an upper bound ub but no lower bound, RandomStartPointSet
uses a lower bound of ub - 2*ArtificialBound.

For example, to generate 100 start points with an ArtificialBound of 50:

stpoints = RandomStartPointSet('NumStartPoints',100, ...
    'ArtificialBound',50);

A RandomStartPointSet object generates start points with the same dimension as the x0 point in
the problem structure; see list.

CustomStartPointSet Object for Start Points
To use a specific set of starting points, package them in a CustomStartPointSet as follows:

1 Place the starting points in a matrix. Each row of the matrix represents one starting point.
MultiStart runs all the rows of the matrix, subject to filtering with the StartPointsToRun
property. For more information, see “MultiStart Algorithm” on page 4-38.

2 Create a CustomStartPointSet object from the matrix:

tpoints = CustomStartPointSet(ptmatrix);

For example, create a set of 40 five-dimensional points, with each component of a point equal to 10
plus an exponentially distributed variable with mean 25:

pts = -25*log(rand(40,5)) + 10;
tpoints = CustomStartPointSet(pts);

Run MultiStart starting from a CustomStartPointSet as follows:

[xmin,fmin,flag,outpt,allmins] = run(ms,problem,tpoints);

To get the original matrix of points from a CustomStartPointSet object, use list:

pts = list(tpoints); % Assumes tpoints is a CustomStartPointSet

A CustomStartPointSet has two properties: StartPointsDimension and NumStartPoints. You
can use these properties to query a CustomStartPointSet object. For example, the tpoints
object in the example has the following properties:

tpoints.StartPointsDimension
ans =
     5

tpoints.NumStartPoints
ans =
    40
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Cell Array of Objects for Start Points
To use a specific set of starting points along with some randomly generated points, pass a cell array
of RandomStartPointSet or CustomStartPointSet objects.

For example, to use both the 40 specific five-dimensional points of “CustomStartPointSet Object for
Start Points” on page 4-11 and 40 additional five-dimensional points from RandomStartPointSet:

pts = -25*log(rand(40,5)) + 10;
tpoints = CustomStartPointSet(pts);
rpts = RandomStartPointSet('NumStartPoints',40);
allpts = {tpoints,rpts};

Run MultiStart starting from the allpts cell array:

% Assume ms and problem exist
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,allpts);

See Also

Related Examples
• “Workflow for GlobalSearch and MultiStart” on page 4-3
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Run the Solver
In this section...
“Optimize by Calling run” on page 4-13
“Example of Run with GlobalSearch” on page 4-13
“Example of Run with MultiStart” on page 4-14

Optimize by Calling run
Running a solver is nearly identical for GlobalSearch and MultiStart. The only difference in
syntax is MultiStart takes an additional input describing the start points.

For example, suppose you want to find several local minima of the sixmin function

sixmin = 4x2 – 2.1x4 + x6/3 + xy – 4y2 + 4y4.

This function is also called the six-hump camel back function [3]. All the local minima lie in the region
–3 ≤ x,y ≤ 3.

Example of Run with GlobalSearch
To find several local minima of the sixmin function using GlobalSearch, enter:

% % Set the random stream to get exactly the same output
% rng(14,'twister')
gs = GlobalSearch;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
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    'options',opts);
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

The output of the run (which varies, based on the random seed):

xming,fming,flagg,outptg,manyminsg
xming =
    0.0898   -0.7127

fming =
   -1.0316

flagg =
     1

outptg =

  struct with fields:

                funcCount: 2115
         localSolverTotal: 3
       localSolverSuccess: 3
    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'GlobalSearch stopped because it analyzed all the trial po...'

manyminsg = 
  1x2 GlobalOptimSolution array with properties:

    X
    Fval
    Exitflag
    Output
    X0

Example of Run with MultiStart
To find several local minima of the sixmin function using 50 runs of fmincon with MultiStart,
enter:

% % Set the random stream to get exactly the same output
% rng(14,'twister')
ms = MultiStart;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
    'options',opts);
[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

The output of the run (which varies based on the random seed):

xminm,fminm,flagm,outptm,manyminsm

xminm =
    0.0898    -0.7127
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fminm =
   -1.0316

flagm =
     1

outptm =

  struct with fields:

                funcCount: 2034
         localSolverTotal: 50
       localSolverSuccess: 50
    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'MultiStart completed the runs from all start points.…'

manyminsm = 
  1x6 GlobalOptimSolution array with properties:

    X
    Fval
    Exitflag
    Output
    X0

In this case, MultiStart located all six local minima, while GlobalSearch located two. For pictures
of the MultiStart solutions, see “Visualize the Basins of Attraction” on page 4-24.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Single Solution
You obtain the single best solution found during the run by calling run with the syntax

[x,fval,exitflag,output] = run(...);

• x is the location of the local minimum with smallest objective function value.
• fval is the objective function value evaluated at x.
• exitflag is an exit flag for the global solver. Values:

Global Solver Exit Flags

2 At least one feasible local minimum found. Some runs of the local solver
did not converge.

1 At least one feasible local minimum found. All runs of the local solver
converged (had positive exit flag).

0 No local minimum found. Local solver called at least once, and at least
one local solver exceeded the MaxIterations or
MaxFunctionEvaluations tolerances.

-1 One or more local solver runs stopped by the local solver output or plot
function.

-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
-8 No solution found. All runs had local solver exit flag -2 or lower, not all

equal -2.
-10 Failures encountered in user-provided functions.

• output is a structure with details about the multiple runs of the local solver. For more
information, see “Global Output Structures” on page 4-23.

The list of outputs is for the case exitflag > 0. If exitflag <= 0, then x is the following:

• If some local solutions are feasible, x represents the location of the lowest objective function
value. “Feasible” means the constraint violations are smaller than
problem.options.ConstraintTolerance.

• If no solutions are feasible, x is the solution with lowest infeasibility.
• If no solutions exist, x, fval, and output are empty entries ([]).

See Also

Related Examples
• “Run the Solver” on page 4-13
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Multiple Solutions
In this section...
“About Multiple Solutions” on page 4-17
“Change the Definition of Distinct Solutions” on page 4-19

About Multiple Solutions
You obtain multiple solutions in an object by calling run with the syntax

[x,fval,exitflag,output,manymins] = run(...);

manymins is a vector of solution objects; see GlobalOptimSolution. The manymins vector is in
order of objective function value, from lowest (best) to highest (worst). Each solution object contains
the following properties (fields):

• X — a local minimum
• Fval — the value of the objective function at X
• Exitflag — the exit flag for the local solver (described in the local solver function reference

page: fmincon exitflag, fminunc exitflag, lsqcurvefit exitflag , or lsqnonlin
exitflag

• Output — an output structure for the local solver (described in the local solver function reference
page: fmincon output, fminunc output, lsqcurvefit output , or lsqnonlin output

• X0 — a cell array of start points that led to the solution point X

There are several ways to examine the vector of solution objects:

• In the MATLAB Workspace Browser. Double-click the solution object, and then double-click the
resulting display in the Variables editor.
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• Using dot notation. GlobalOptimSolution properties are capitalized. Use proper capitalization
to access the properties.

For example, to find the vector of function values, enter:

fcnvals = [manymins.Fval]

fcnvals =
   -1.0316   -0.2155         0

To get a cell array of all the start points that led to the lowest function value (the first element of
manymins), enter:

smallX0 = manymins(1).X0
• Plot some field values. For example, to see the range of resulting Fval, enter:

histogram([manymins.Fval],10)

This results in a histogram of the computed function values. (The figure shows a histogram from a
different example than the previous few figures.)
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Change the Definition of Distinct Solutions
You might find out, after obtaining multiple local solutions, that your tolerances were not appropriate.
You can have many more local solutions than you want, spaced too closely together. Or you can have
fewer solutions than you want, with GlobalSearch or MultiStart clumping together too many
solutions.

To deal with this situation, run the solver again with different tolerances. The XTolerance and
FunctionTolerance tolerances determine how the solvers group their outputs into the
GlobalOptimSolution vector. These tolerances are properties of the GlobalSearch or
MultiStart object.

For example, suppose you want to use the active-set algorithm in fmincon to solve the problem in
“Example of Run with MultiStart” on page 4-14. Further suppose that you want to have tolerances of
0.01 for both XTolerance and FunctionTolerance. The run method groups local solutions whose
objective function values are within FunctionTolerance of each other, and which are also less than
XTolerance apart from each other. To obtain the solution:

% % Set the random stream to get exactly the same output
% rng(14,'twister')
ms = MultiStart('FunctionTolerance',0.01,'XTolerance',0.01);
opts = optimoptions(@fmincon,'Algorithm','active-set');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
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    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
    'options',opts);
[xminm,fminm,flagm,outptm,someminsm] = run(ms,problem,50);

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a
positive local solver exit flag.

someminsm

someminsm = 

  1x5 GlobalOptimSolution

  Properties:
    X
    Fval
    Exitflag
    Output
    X0

In this case, MultiStart generated five distinct solutions. Here “distinct” means that the solutions
are more than 0.01 apart in either objective function value or location.

See Also

Related Examples
• “Run the Solver” on page 4-13
• “Visualize the Basins of Attraction” on page 4-24

4 Using GlobalSearch and MultiStart

4-20



Iterative Display
In this section...
“Types of Iterative Display” on page 4-21
“Examine Types of Iterative Display” on page 4-21

Types of Iterative Display
Iterative display gives you information about the progress of solvers during their runs.

There are two types of iterative display:

• Global solver display
• Local solver display

Both types appear at the command line, depending on global and local options.

Obtain local solver iterative display by setting the Display option in the problem.options field to
'iter' or 'iter-detailed' with optimoptions. For more information, see “Iterative Display”.

Obtain global solver iterative display by setting the Display property in the GlobalSearch or
MultiStart object to 'iter'.

Global solvers set the default Display option of the local solver to 'off', unless the problem
structure has a value for this option. Global solvers do not override any setting you make for local
options.

Note Setting the local solver Display option to anything other than 'off' can produce a great deal
of output. The default Display option created by optimoptions(@solver) is 'final'.

Examine Types of Iterative Display
Run the example described in “Run the Solver” on page 4-13 using GlobalSearch with
GlobalSearch iterative display:
% % Set the random stream to get exactly the same output
% rng(14,'twister')
gs = GlobalSearch('Display','iter');
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
    'options',opts);
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

 Num Pts                 Best       Current    Threshold        Local        Local                 
Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure
       0       34      -1.032                                  -1.032            1    Initial Point
     200     1275      -1.032                                 -0.2155            1    Stage 1 Local
     300     1377      -1.032         248.7      -0.2137                              Stage 2 Search
     400     1477      -1.032           278        1.134                              Stage 2 Search
     446     1561      -1.032           1.6        2.073      -0.2155            1    Stage 2 Local
     500     1615      -1.032         9.055       0.3214                              Stage 2 Search
     600     1715      -1.032       -0.7299      -0.7686                              Stage 2 Search
     700     1815      -1.032        0.3191      -0.7431                              Stage 2 Search
     800     1915      -1.032         296.4       0.4577                              Stage 2 Search
     900     2015      -1.032         10.68       0.5116                              Stage 2 Search
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    1000     2115      -1.032       -0.9207      -0.9254                              Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

Run the same example without GlobalSearch iterative display, but with fmincon iterative display:
gs.Display = 'final';
problem.options.Display = 'iter';
[xming,fming,flagg,outptg,manyminsg] = run(gs,problem);

                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3   -1.980435e-02    0.000e+00    1.996e+00
    1       9   -6.970985e-02    0.000e+00    3.140e+00    2.533e-01
    2      13   -8.662720e-02    0.000e+00    2.775e+00    1.229e-01
    3      18   -1.176972e-01    0.000e+00    1.629e+00    1.811e-01
    4      21   -2.132377e-01    0.000e+00    2.097e-01    8.636e-02
    5      24   -2.153982e-01    0.000e+00    7.701e-02    1.504e-02
    6      27   -2.154521e-01    0.000e+00    1.547e-02    1.734e-03
    7      30   -2.154637e-01    0.000e+00    1.222e-03    1.039e-03
    8      33   -2.154638e-01    0.000e+00    1.543e-04    8.413e-05
    9      36   -2.154638e-01    0.000e+00    1.543e-06    6.610e-06
   10      39   -2.154638e-01    0.000e+00    1.686e-07    7.751e-08

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the selected value of the function tolerance,
and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3   -1.980435e-02    0.000e+00    1.996e+00

... MANY ITERATIONS DELETED ...

    8      33   -1.031628e+00    0.000e+00    8.742e-07    2.287e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the selected value of the function tolerance,
and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

Setting GlobalSearch iterative display, as well as fmincon iterative display, yields both displays
intermingled.

For an example of iterative display in a parallel environment, see “Parallel MultiStart” on page 4-82.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Global Output Structures
run can produce two types of output structures:

• A global output structure. This structure contains information about the overall run from multiple
starting points. Details follow.

• Local solver output structures. The vector of GlobalOptimSolution objects contains one such
structure in each element of the vector. For a description of this structure, see “Output
Structures”, or the function reference pages for the local solvers: fmincon output, fminunc
output, lsqcurvefit output , or lsqnonlin output .

Global Output Structure

Field Meaning
funcCount Total number of calls to user-supplied functions (objective or nonlinear

constraint)
localSolverTotal Number of local solver runs started
localSolverSuccess Number of local solver runs that finished with a positive exit flag
localSolverIncomplete Number of local solver runs that finished with a 0 exit flag
localSolverNoSolution Number of local solver runs that finished with a negative exit flag
message GlobalSearch or MultiStart exit message

A positive exit flag from a local solver generally indicates a successful run. A negative exit flag
indicates a failure. A 0 exit flag indicates that the solver stopped by exceeding the iteration or
function evaluation limit. For more information, see “Exit Flags and Exit Messages” or “Tolerances
and Stopping Criteria”.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Visualize the Basins of Attraction
Which start points lead to which basin? For a steepest descent solver, nearby points generally lead to
the same basin; see “Basins of Attraction” on page 1-26. However, for Optimization Toolbox solvers,
basins are more complicated.

Plot the MultiStart start points from the example, “Example of Run with MultiStart” on page 4-14,
color-coded with the basin where they end.

% rng(14,'twister')
% Uncomment the previous line to get the same output
ms = MultiStart;
opts = optimoptions(@fmincon,'Algorithm','interior-point');
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
+ x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
'options',opts);
[xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);

possColors = 'kbgcrm';
hold on
for i = 1:size(manyminsm,2)
    
    % Color of this line
    cIdx = rem(i-1, length(possColors)) + 1;
    color = possColors(cIdx);

    % Plot start points
    u = manyminsm(i).X0; 
    x0ThisMin = reshape([u{:}], 2, length(u));
    plot(x0ThisMin(1, :), x0ThisMin(2, :), '.', ...
        'Color',color,'MarkerSize',25);

    % Plot the basin with color i
    plot(manyminsm(i).X(1), manyminsm(i).X(2), '*', ...
        'Color', color, 'MarkerSize',25); 
end % basin center marked with a *, start points with dots
hold off
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The figure shows the centers of the basins by colored * symbols. Start points with the same color as
the * symbol converge to the center of the * symbol.

Start points do not always converge to the closest basin. For example, the red points are closer to the
cyan basin center than to the red basin center. Also, many black and blue start points are closer to
the opposite basin centers.

The magenta and red basins are shallow, as you can see in the following contour plot.

 Visualize the Basins of Attraction

4-25



See Also

Related Examples
• “Multiple Solutions” on page 4-17
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Output Functions for GlobalSearch and MultiStart
In this section...
“What Are Output Functions?” on page 4-27
“GlobalSearch Output Function” on page 4-27
“No Parallel Output Functions” on page 4-28

What Are Output Functions?
Output functions allow you to examine intermediate results in an optimization. Additionally, they
allow you to halt a solver programmatically.

There are two types of output functions, like the two types of output structures on page 4-23:

• Global output functions run after each local solver run. They also run when the global solver starts
and ends.

• Local output functions run after each iteration of a local solver. See “Output Functions for
Optimization Toolbox”.

To use global output functions:

• Write output functions using the syntax described in “OutputFcn” on page 17-3.
• Set the OutputFcn property of your GlobalSearch or MultiStart solver to the function handle

of your output function. You can use multiple output functions by setting the OutputFcn property
to a cell array of function handles.

GlobalSearch Output Function
This output function stops GlobalSearch after it finds five distinct local minima with positive exit
flags, or after it finds a local minimum value less than 0.5. The output function uses a persistent local
variable, foundLocal, to store the local results. foundLocal enables the output function to
determine whether a local solution is distinct from others, to within a tolerance of 1e-4.

To store local results using nested functions instead of persistent variables, see “Example of a Nested
Output Function”.

1 Write the output function using the syntax described in “OutputFcn” on page 17-3.

function stop = StopAfterFive(optimValues, state)
persistent foundLocal
stop = false;
switch state
    case 'init'
        foundLocal = []; % initialized as empty
    case 'iter'
        newf = optimValues.localsolution.Fval;
        exitflag = optimValues.localsolution.Exitflag;
        % Now check if the exit flag is positive and
        % the new value differs from all others by at least 1e-4
        % If so, add the new value to the newf list
        if exitflag > 0 && all(abs(newf - foundLocal) > 1e-4)
            foundLocal = [foundLocal;newf];
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            % Now check if the latest value added to foundLocal
            % is less than 1/2
            % Also check if there are 5 local minima in foundLocal
            % If so, then stop
            if foundLocal(end) < 0.5 || length(foundLocal) >= 5
                stop = true;
            end
        end
end

2 Save StopAfterFive.m as a file in a folder on your MATLAB path.
3 Write the objective function and create an optimization problem structure as in “Find Global or

Multiple Local Minima” on page 4-57.

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;
g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
    .*r.^2./(r+1);
f = g.*h;
end

4 Save sawtoothxy.m as a file in a folder on your MATLAB path.
5 At the command line, create the problem structure:

problem = createOptimProblem('fmincon',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50],'options',...
    optimoptions(@fmincon,'Algorithm','sqp'));

6 Create a GlobalSearch object with @StopAfterFive as the output function, and set the
iterative display property to 'iter'.

gs = GlobalSearch('OutputFcn',@StopAfterFive,'Display','iter');
7 (Optional) To get the same answer as this example, set the default random number stream.

rng default
8 Run the problem.

[x,fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 
Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure
       0      200       555.5                                   555.5            0    Initial Point
     200     1463   1.547e-15                               1.547e-15            1    Stage 1 Local

GlobalSearch stopped by the output or plot function.

1 out of 2 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-07 *

    0.0414    0.1298

fval =

   1.5467e-15

The run stopped early because GlobalSearch found a point with a function value less than 0.5.

No Parallel Output Functions
While MultiStart can run in parallel, it does not support global output functions and plot functions
in parallel. Furthermore, while local output functions and plot functions run on workers when
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MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions
do not create a display when running on workers. You do not see any other effects of output and plot
functions until the worker passes its results to the client (the originator of the MultiStart parallel
jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
• “Plot Functions for GlobalSearch and MultiStart” on page 4-30
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Plot Functions for GlobalSearch and MultiStart
In this section...
“What Are Plot Functions?” on page 4-30
“MultiStart Plot Function” on page 4-30
“No Parallel Plot Functions” on page 4-33

What Are Plot Functions?
The PlotFcn field of options specifies one or more functions that an optimization function calls at
each iteration. Plot functions plot various measures of progress while the algorithm executes. Pass a
function handle or cell array of function handles. The structure of a plot function is the same as the
structure of an output function. For more information on this structure, see “OutputFcn” on page 17-
3.

Plot functions are specialized output functions (see “Output Functions for GlobalSearch and
MultiStart” on page 4-27). There are two predefined plot functions:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

Plot function windows have Pause and Stop buttons. By default, all plots appear in one window.

To use global plot functions:

• Write plot functions using the syntax described in “OutputFcn” on page 17-3.
• Set the PlotFcn property of your GlobalSearch or MultiStart object to the function handle of

your plot function. You can use multiple plot functions by setting the PlotFcn property to a cell
array of function handles.

Details of Built-In Plot Functions

The built-in plot functions have characteristics that can surprise you.

• @gsplotbestf can have plots that are not strictly decreasing. This is because early values can
result from local solver runs with negative exit flags (such as infeasible solutions). A subsequent
local solution with positive exit flag is better even if its function value is higher. Once a local solver
returns a value with a positive exit flag, the plot is monotone decreasing.

• @gsplotfunccount might not plot the total number of function evaluations. This is because
GlobalSearch can continue to perform function evaluations after it calls the plot function for the
last time. For more information, see “GlobalSearch Algorithm” on page 4-35.

MultiStart Plot Function
This example plots the number of local solver runs it takes to obtain a better local minimum for
MultiStart. The example also uses a built-in plot function to show the current best function value.

The example problem is the same as in “Find Global or Multiple Local Minima” on page 4-57, with
additional bounds.
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The example uses persistent variables to store previous best values. The plot function examines the
best function value after each local solver run, available in the bestfval field of the optimValues
structure. If the value is not lower than the previous best, the plot function adds 1 to the number of
consecutive calls with no improvement and draws a bar chart. If the value is lower than the previous
best, the plot function starts a new bar in the chart with value 1. Before plotting, the plot function
takes a logarithm of the number of consecutive calls. The logarithm helps keep the plot legible, since
some values can be much larger than others.

To store local results using nested functions instead of persistent variables, see “Example of a Nested
Output Function”.

Plot Function Example

This example minimizes the sawtoothxy helper function, which is listed at the end of this example
on page 4-0 . In general, save your objective function in a file on your MATLAB® path.

The NumberToNextBest custom plot function is attached to this example. In general, save your plot
function in a file on your MATLAB path. Here is a listing.

type NumberToNextBest

function stop = NumberToNextBest(optimValues, state)

persistent bestfv bestcounter

stop = false;
switch state
    case 'init'
        % Initialize variable to record best function value.
        bestfv = []; 
        
        % Initialize counter to record number of
        % local solver runs to find next best minimum.
        bestcounter = 1; 
        
        % Create the histogram.
        bar(log(bestcounter),'tag','NumberToNextBest');
        xlabel('Number of New Best Fval Found');
        ylabel('Log Number of Local Solver Runs');
        title('Number of Local Solver Runs to Find Lower Minimum')
    case 'iter'
        % Find the axes containing the histogram.
        NumToNext = ...
          findobj(get(gca,'Children'),'Tag','NumberToNextBest');
        
        % Update the counter that records number of local
        % solver runs to find next best minimum.
        if ~isequal(optimValues.bestfval, bestfv)
            bestfv = optimValues.bestfval;
            bestcounter = [bestcounter 1];
        else
            bestcounter(end) = bestcounter(end) + 1;
        end
        
        % Update the histogram.
        set(NumToNext,'Ydata',log(bestcounter))
end
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Create the problem structure and global solver object. Set lower bounds of [-3e3,-4e3], upper
bounds of [4e3,3e3] and set the global solver to use the NumberToNextBest custom plot function
and the gsplotbestf built-in plot function.

problem = createOptimProblem('fmincon',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50],'lb',[-3e3 -4e3],...
    'ub',[4e3,3e3],'options',...
    optimoptions(@fmincon,'Algorithm','sqp'));

ms = MultiStart('PlotFcn',{@NumberToNextBest,@gsplotbestf});

Run the global solver for 100 local solver runs.

rng(2); % For reproducibility
[x,fv] = run(ms,problem,100);

MultiStart completed some of the runs from the start points.

33 out of 100 local solver runs converged with a positive local solver exit flag.

Helper Functions

This code creates the sawtoothxy helper function.

function f = sawtoothxy(x,y)
[t,r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;
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g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
    .*r.^2./(r+1);
f = g.*h;
end

No Parallel Plot Functions
While MultiStart can run in parallel, it does not support global output functions and plot functions
in parallel. Furthermore, while local output functions and plot functions run on workers when
MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions
do not create a display when running on workers. You do not see any other effects of output and plot
functions until the worker passes its results to the client (the originator of the MultiStart parallel
jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
• “Output Functions for GlobalSearch and MultiStart” on page 4-27
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How GlobalSearch and MultiStart Work
In this section...
“Multiple Runs of a Local Solver” on page 4-34
“Differences Between the Solver Objects” on page 4-34
“GlobalSearch Algorithm” on page 4-35
“MultiStart Algorithm” on page 4-38
“Bibliography” on page 4-40

Multiple Runs of a Local Solver
GlobalSearch and MultiStart have similar approaches to finding global or multiple minima. Both
algorithms start a local solver (such as fmincon) from multiple start points. The algorithms use
multiple start points to sample multiple basins of attraction. For more information, see “Basins of
Attraction” on page 1-26.

Differences Between the Solver Objects
“GlobalSearch and MultiStart Algorithm Overview” on page 4-34 contains a sketch of the
GlobalSearch and MultiStart algorithms.

GlobalSearch and MultiStart Algorithm Overview

The main differences between GlobalSearch and MultiStart are:

• GlobalSearch uses a scatter-search mechanism for generating start points. MultiStart uses
uniformly distributed start points within bounds, or user-supplied start points.

• GlobalSearch analyzes start points and rejects those points that are unlikely to improve the best
local minimum found so far. MultiStart runs all start points (or, optionally, all start points that
are feasible with respect to bounds or inequality constraints).
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• MultiStart gives a choice of local solver: fmincon, fminunc, lsqcurvefit, or lsqnonlin.
The GlobalSearch algorithm uses fmincon.

• MultiStart can run in parallel, distributing start points to multiple processors for local solution.
To run MultiStart in parallel, see “How to Use Parallel Processing in Global Optimization
Toolbox” on page 16-11.

Deciding Which Solver to Use

The differences between these solver objects boil down to the following decision on which to use:

• Use GlobalSearch to find a single global minimum most efficiently on a single processor.
• Use MultiStart to:

• Find multiple local minima.
• Run in parallel.
• Use a solver other than fmincon.
• Search thoroughly for a global minimum.
• Explore your own start points.

GlobalSearch Algorithm
For a description of the algorithm, see Ugray et al. [1].

When you run a GlobalSearch object, the algorithm performs the following steps:

1. “Run fmincon from x0” on page 4-35
2. “Generate Trial Points” on page 4-35
3. “Obtain Stage 1 Start Point, Run” on page 4-36
4. “Initialize Basins, Counters, Threshold” on page 4-36
5. “Begin Main Loop” on page 4-36
6. “Examine Stage 2 Trial Point to See if fmincon Runs” on page 4-36
7. “When fmincon Runs” on page 4-37
8. “When fmincon Does Not Run” on page 4-37
9. “Create GlobalOptimSolution” on page 4-38

Run fmincon from x0

GlobalSearch runs fmincon from the start point you give in the problem structure. If this run
converges, GlobalSearch records the start point and end point for an initial estimate on the radius
of a basin of attraction. Furthermore, GlobalSearch records the final objective function value for
use in the score function (see “Obtain Stage 1 Start Point, Run” on page 4-36).

The score function is the sum of the objective function value at a point and a multiple of the sum of
the constraint violations. So a feasible point has score equal to its objective function value. The
multiple for constraint violations is initially 1000. GlobalSearch updates the multiple during the
run.

Generate Trial Points

GlobalSearch uses the scatter search algorithm to generate a set of NumTrialPoints trial points.
Trial points are potential start points. For a description of the scatter search algorithm, see Glover
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[2]. GlobalSearch generates trial points within any finite bounds you set (lb and ub). Unbounded
components have artificial bounds imposed: lb = -1e4 + 1, ub = 1e4 + 1. This range is not
symmetric about the origin so that the origin is not in the scatter search. Components with one-sided
bounds have artificial bounds imposed on the unbounded side, shifted by the finite bounds to keep
lb < ub.

Obtain Stage 1 Start Point, Run

GlobalSearch evaluates the score function of a set of NumStageOnePoints trial points. It then
takes the point with the best score and runs fmincon from that point. GlobalSearch removes the
set of NumStageOnePoints trial points from its list of points to examine.

Initialize Basins, Counters, Threshold

The localSolverThreshold is initially the smaller of the two objective function values at the
solution points. The solution points are the fmincon solutions starting from x0 and from the Stage 1
start point. If both of these solution points do not exist or are infeasible, localSolverThreshold is
initially the penalty function value of the Stage 1 start point.

The GlobalSearch heuristic assumption is that basins of attraction are spherical. The initial
estimate of basins of attraction for the solution point from x0 and the solution point from Stage 1 are
spheres centered at the solution points. The radius of each sphere is the distance from the initial
point to the solution point. These estimated basins can overlap.

There are two sets of counters associated with the algorithm. Each counter is the number of
consecutive trial points that:

• Lie within a basin of attraction. There is one counter for each basin.
• Have score function greater than localSolverThreshold. For a definition of the score, see

“Run fmincon from x0” on page 4-35.

All counters are initially 0.

Begin Main Loop

GlobalSearch repeatedly examines a remaining trial point from the list, and performs the following
steps. It continually monitors the time, and stops the search if elapsed time exceeds MaxTime
seconds.

Examine Stage 2 Trial Point to See if fmincon Runs

Call the trial point p. Run fmincon from p if the following conditions hold:

• p is not in any existing basin. The criterion for every basin i is:

|p - center(i)| > DistanceThresholdFactor * radius(i).

DistanceThresholdFactor is an option (default value 0.75).

radius is an estimated radius that updates in Update Basin Radius and Threshold on page 4-37
and React to Large Counter Values on page 4-38.

• score(p) < localSolverThreshold.
• (optional) p satisfies bound and/or inequality constraints. This test occurs if you set the

StartPointsToRun property of the GlobalSearch object to 'bounds' or 'bounds-ineqs'.
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When fmincon Runs

1 Reset Counters

Set the counters for basins and threshold to 0.
2 Update Solution Set

If fmincon runs starting from p, it can yield a positive exit flag, which indicates convergence. In
that case, GlobalSearch updates the vector of GlobalOptimSolution objects. Call the
solution point xp and the objective function value fp. There are two cases:

• For every other solution point xq with objective function value fq,

|xq - xp| > XTolerance * max(1,|xp|)

or

|fq - fp| > FunctionTolerance * max(1,|fp|).

In this case, GlobalSearch creates a new element in the vector of GlobalOptimSolution
objects. For details of the information contained in each object, see GlobalOptimSolution.

• For some other solution point xq with objective function value fq,

|xq - xp| <= XTolerance * max(1,|xp|)

and

|fq - fp| <= FunctionTolerance * max(1,|fp|).

In this case, GlobalSearch regards xp as equivalent to xq. The GlobalSearch algorithm
modifies the GlobalOptimSolution of xq by adding p to the cell array of X0 points.

There is one minor tweak that can happen to this update. If the exit flag for xq is greater than
1, and the exit flag for xp is 1, then xp replaces xq. This replacement can lead to some points
in the same basin being more than a distance of XTolerance from xp.

3 Update Basin Radius and Threshold

If the exit flag of the current fmincon run is positive:

a Set threshold to the score value at start point p.
b Set basin radius for xp equal to the maximum of the existing radius (if any) and the distance

between p and xp.
4 Report to Iterative Display

When the GlobalSearch Display property is 'iter', every point that fmincon runs creates
one line in the GlobalSearch iterative display.

When fmincon Does Not Run

1 Update Counters

Increment the counter for every basin containing p. Reset the counter of every other basin to 0.

Increment the threshold counter if score(p) >= localSolverThreshold. Otherwise, reset the
counter to 0.
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2 React to Large Counter Values

For each basin with counter equal to MaxWaitCycle, multiply the basin radius by 1 –
 BasinRadiusFactor. Reset the counter to 0. (Both MaxWaitCycle and BasinRadiusFactor
are settable properties of the GlobalSearch object.)

If the threshold counter equals MaxWaitCycle, increase the threshold:

new threshold = threshold + PenaltyThresholdFactor*(1 + abs(threshold)).

Reset the counter to 0.
3 Report to Iterative Display

Every 200th trial point creates one line in the GlobalSearch iterative display.

Create GlobalOptimSolution

After reaching MaxTime seconds or running out of trial points, GlobalSearch creates a vector of
GlobalOptimSolution objects. GlobalSearch orders the vector by objective function value, from
lowest (best) to highest (worst). This concludes the algorithm.

MultiStart Algorithm
When you run a MultiStart object, the algorithm performs the following steps:

• “Validate Inputs” on page 4-38
• “Generate Start Points” on page 4-38
• “Filter Start Points (Optional)” on page 4-39
• “Run Local Solver” on page 4-39
• “Check Stopping Conditions” on page 4-39
• “Create GlobalOptimSolution Object” on page 4-39

Validate Inputs

MultiStart checks input arguments for validity. Checks include running the local solver once on
problem inputs. Even when run in parallel, MultiStart performs these checks serially.

Generate Start Points

If you call MultiStart with the syntax

[x,fval] = run(ms,problem,k)

for an integer k, MultiStart generates k - 1 start points exactly as if you used a
RandomStartPointSet object. The algorithm also uses the x0 start point from the problem
structure, for a total of k start points.

A RandomStartPointSet object does not have any points stored inside the object. Instead,
MultiStart calls list, which generates random points within the bounds given by the problem
structure. If an unbounded component exists, list uses an artificial bound given by the
ArtificialBound property of the RandomStartPointSet object.

If you provide a CustomStartPointSet object, MultiStart does not generate start points, but
uses the points in the object.
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Filter Start Points (Optional)

If you set the StartPointsToRun property of the MultiStart object to 'bounds' or 'bounds-
ineqs', MultiStart does not run the local solver from infeasible start points. In this context,
“infeasible” means start points that do not satisfy bounds, or start points that do not satisfy both
bounds and inequality constraints.

The default setting of StartPointsToRun is 'all'. In this case, MultiStart does not discard
infeasible start points.

Run Local Solver

MultiStart runs the local solver specified in problem.solver, starting at the points that pass the
StartPointsToRun filter. If MultiStart is running in parallel, it sends start points to worker
processors one at a time, and the worker processors run the local solver.

The local solver checks whether MaxTime seconds have elapsed at each of its iterations. If so, it exits
that iteration without reporting a solution.

When the local solver stops, MultiStart stores the results and continues to the next step.

Report to Iterative Display

When the MultiStart Display property is 'iter', every point that the local solver runs creates
one line in the MultiStart iterative display.

Check Stopping Conditions

MultiStart stops when it runs out of start points. It also stops when it exceeds a total run time of
MaxTime seconds.

Create GlobalOptimSolution Object

After MultiStart reaches a stopping condition, the algorithm creates a vector of
GlobalOptimSolution objects as follows:

1 Sort the local solutions by objective function value (Fval) from lowest to highest. For the
lsqnonlin and lsqcurvefit local solvers, the objective function is the norm of the residual.

2 Loop over the local solutions j beginning with the lowest (best) Fval.
3 Find all the solutions k satisfying both:

|Fval(k) - Fval(j)| <= FunctionTolerance*max(1,|Fval(j)|)

|x(k) - x(j)| <= XTolerance*max(1,|x(j)|)
4 Record j, Fval(j), the local solver output structure for j, and a cell array of the start points

for j and all the k. Remove those points k from the list of local solutions. This point is one entry
in the vector of GlobalOptimSolution objects.

The resulting vector of GlobalOptimSolution objects is in order by Fval, from lowest (best) to
highest (worst).
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Report to Iterative Display

After examining all the local solutions, MultiStart gives a summary to the iterative display. This
summary includes the number of local solver runs that converged, the number that failed to
converge, and the number that had errors.
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See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Can You Certify That a Solution Is Global?
In this section...
“No Guarantees” on page 4-41
“Check if a Solution Is a Local Solution with patternsearch” on page 4-41
“Identify a Bounded Region That Contains a Global Solution” on page 4-42
“Use MultiStart with More Start Points” on page 4-42

No Guarantees
How can you tell if you have located the global minimum of your objective function? The short answer
is that you cannot; you have no guarantee that the result of a Global Optimization Toolbox solver is a
global optimum. While all Global Optimization Toolbox solvers repeatedly attempt to locate a global
solution, no solver employs an algorithm that can certify a solution as global.

However, you can use the strategies in this section for investigating solutions.

Check if a Solution Is a Local Solution with patternsearch
Before you can determine if a purported solution is a global minimum, first check that it is a local
minimum. To do so, run patternsearch on the problem.

To convert the problem to use patternsearch instead of fmincon or fminunc, enter

problem.solver = 'patternsearch';

Also, change the start point to the solution you just found, and clear the options:

problem.x0 = x;
problem.options = [];

For example, Check Nearby Points shows the following:

options = optimoptions(@fmincon,'Algorithm','active-set');
ffun = @(x)(x(1)-(x(1)-x(2))^2);
problem = createOptimProblem('fmincon', ...
    'objective',ffun,'x0',[1/2 1/3], ...
    'lb',[0 -1],'ub',[1 1],'options',options);
[x,fval,exitflag] = fmincon(problem)

x =
  1.0e-007 *
         0    0.1614

fval =
 -2.6059e-016

exitflag =
     1

However, checking this purported solution with patternsearch shows that there is a better
solution. Start patternsearch from the reported solution x:
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% set the candidate solution x as the start point
problem.x0 = x;
problem.solver = 'patternsearch';
problem.options = [];
[xp,fvalp,exitflagp] = patternsearch(problem)

Optimization terminated: mesh size less than options.MeshTolerance.

xp =

    1.0000   -1.0000

fvalp =

   -3.0000

exitflagp =

     1

Identify a Bounded Region That Contains a Global Solution
Suppose you have a smooth objective function in a bounded region. Given enough time and start
points, MultiStart eventually locates a global solution.

Therefore, if you can bound the region where a global solution can exist, you can obtain some degree
of assurance that MultiStart locates the global solution.

For example, consider the function

f = x6 + y6 + sin(x + y) x2 + y2 − cos x2

1 + y2 2 + x4 + x2y2 + y4 .

The initial summands x6 + y6 force the function to become large and positive for large values of |x| or
|y|. The components of the global minimum of the function must be within the bounds

–10 ≤ x,y ≤ 10,

since 106 is much larger than all the multiples of 104 that occur in the other summands of the
function.

You can identify smaller bounds for this problem; for example, the global minimum is between –2 and
2. It is more important to identify reasonable bounds than it is to identify the best bounds.

Use MultiStart with More Start Points
To check whether there is a better solution to your problem, run MultiStart with additional start
points. Use MultiStart instead of GlobalSearch for this task because GlobalSearch does not
run the local solver from all start points.

For example, see “Example: Searching for a Better Solution” on page 4-46.
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See Also

Related Examples
• “Refine Start Points” on page 4-44
• “What Is Global Optimization?” on page 1-25
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Refine Start Points
In this section...
“About Refining Start Points” on page 4-44
“Methods of Generating Start Points” on page 4-44
“Example: Searching for a Better Solution” on page 4-46

About Refining Start Points
If some components of your problem are unconstrained, GlobalSearch and MultiStart use
artificial bounds to generate random start points uniformly in each component. However, if your
problem has far-flung minima, you need widely dispersed start points to find these minima.

Use these methods to obtain widely dispersed start points:

• Give widely separated bounds in your problem structure.
• Use a RandomStartPointSet object with the MultiStart algorithm. Set a large value of the

ArtificialBound property in the RandomStartPointSet object.
• Use a CustomStartPointSet object with the MultiStart algorithm. Use widely dispersed start

points.

There are advantages and disadvantages of each method.

Method Advantages Disadvantages
Give bounds in problem Automatic point generation Makes a more complex Hessian

Can use with GlobalSearch Unclear how large to set the bounds
Easy to do Changes problem
Bounds can be asymmetric Only uniform points

Large ArtificialBound in
RandomStartPointSet

Automatic point generation MultiStart only
Does not change problem Only symmetric, uniform points
Easy to do Unclear how large to set

ArtificialBound
CustomStartPointSet Customizable MultiStart only

Does not change problem Requires programming for
generating points

Methods of Generating Start Points
• “Uniform Grid” on page 4-44
• “Perturbed Grid” on page 4-45
• “Widely Dispersed Points for Unconstrained Components” on page 4-45

Uniform Grid

To generate a uniform grid of start points:
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1 Generate multidimensional arrays with ndgrid. Give the lower bound, spacing, and upper bound
for each component.

For example, to generate a set of three-dimensional arrays with

• First component from –2 through 0, spacing 0.5
• Second component from 0 through 2, spacing 0.25
• Third component from –10 through 5, spacing 1

[X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
2 Place the arrays into a single matrix, with each row representing one start point. For example:

W = [X(:),Y(:),Z(:)];

In this example, W is a 720-by-3 matrix.
3 Put the matrix into a CustomStartPointSet object. For example:

custpts = CustomStartPointSet(W);

Call run with the CustomStartPointSet object as the third input. For example,

% Assume problem structure and ms MultiStart object exist
[x,fval,flag,outpt,manymins] = run(ms,problem,custpts);

Perturbed Grid

Integer start points can yield less robust solutions than slightly perturbed start points.

To obtain a perturbed set of start points:

1 Generate a matrix of start points as in steps 1–2 of “Uniform Grid” on page 4-44.
2 Perturb the start points by adding a random normal matrix with 0 mean and relatively small

variance.

For the example in “Uniform Grid” on page 4-44, after making the W matrix, add a perturbation:

[X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
W = [X(:),Y(:),Z(:)];
W = W + 0.01*randn(size(W));

3 Put the matrix into a CustomStartPointSet object. For example:

custpts = CustomStartPointSet(W);

Call run with the CustomStartPointSet object as the third input. For example,

% Assume problem structure and ms MultiStart object exist
[x,fval,flag,outpt,manymins] = run(ms,problem,custpts);

Widely Dispersed Points for Unconstrained Components

Some components of your problem can lack upper or lower bounds. For example:

• Although no explicit bounds exist, there are levels that the components cannot attain. For
example, if one component represents the weight of a single diamond, there is an implicit upper
bound of 1 kg (the Hope Diamond is under 10 g). In such a case, give the implicit bound as an
upper bound.
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• There truly is no upper bound. For example, the size of a computer file in bytes has no effective
upper bound. The largest size can be in gigabytes or terabytes today, but in 10 years, who knows?

For truly unbounded components, you can use the following methods of sampling. To generate
approximately 1/n points in each region (exp(n),exp(n+1)), use the following formula. If u is random
and uniformly distributed from 0 through 1, then r = 2u – 1 is uniformly distributed between –1 and
1. Take

y = sgn(r) exp 1/ r − e .

y is symmetric and random. For a variable bounded below by lb, take

y = lb + exp 1/u − e .

Similarly, for a variable bounded above by ub, take

y = ub− exp 1/u − e .

For example, suppose you have a three-dimensional problem with

• x(1) > 0
• x(2) < 100
• x(3) unconstrained

To make 150 start points satisfying these constraints:

u = rand(150,3);
r1 = 1./u(:,1);
r1 = exp(r1) - exp(1);
r2 = 1./u(:,2);
r2 = -exp(r2) + exp(1) + 100;
r3 = 1./(2*u(:,3)-1);
r3 = sign(r3).*(exp(abs(r3)) - exp(1));
custpts = CustomStartPointSet([r1,r2,r3]);

The following is a variant of this algorithm. Generate a number between 0 and infinity by the method
for lower bounds. Use this number as the radius of a point. Generate the other components of the
point by taking random numbers for each component and multiply by the radius. You can normalize
the random numbers, before multiplying by the radius, so their norm is 1. For a worked example of
this method, see “MultiStart Without Bounds, Widely Dispersed Start Points” on page 4-88.

Example: Searching for a Better Solution
MultiStart fails to find the global minimum in “Find Global or Multiple Local Minima” on page 4-
57. There are two simple ways to search for a better solution:

• Use more start points
• Give tighter bounds on the search space

Set up the problem structure and MultiStart object:

problem = createOptimProblem('fminunc',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50],'options',...
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    optimoptions(@fminunc,'Algorithm','quasi-newton'));
ms = MultiStart;

Use More Start Points

Run MultiStart on the problem for 200 start points instead of 50:

rng(14,'twister') % for reproducibility
[x,fval,exitflag,output,manymins] = run(ms,problem,200)

MultiStart completed some of the runs from the start points.

53 out of 200 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-06 *

   -0.2284   -0.5567

fval =

   2.1382e-12

exitflag =

     2

output = 

  struct with fields:

                funcCount: 32670
         localSolverTotal: 200
       localSolverSuccess: 53
    localSolverIncomplete: 147
    localSolverNoSolution: 0
                  message: 'MultiStart completed some of the runs from the start points.↵↵53 out of 200 local solver runs converged with a positive local solver exit flag.'

manymins = 
  1x53 GlobalOptimSolution

  Properties:
    X
    Fval
    Exitflag
    Output
    X0

This time MultiStart found the global minimum, and found 51 local minima.

To see the range of local solutions, enter histogram([manymins.Fval],10).
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Tighter Bound on the Start Points

Suppose you believe that the interesting local solutions have absolute values of all components less
than 100. The default value of the bound on start points is 1000. To use a different value of the bound,
generate a RandomStartPointSet with the ArtificialBound property set to 100:

startpts = RandomStartPointSet('ArtificialBound',100,...
    'NumStartPoints',50);
[x,fval,exitflag,output,manymins] = run(ms,problem,startpts)

MultiStart completed some of the runs from the start points.

29 out of 50 local solver runs converged with a positive local solver exit flag.

x =

   1.0e-08 *

    0.9725   -0.6198

fval =

   1.4955e-15

exitflag =
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     2

output = 

  struct with fields:

                funcCount: 7431
         localSolverTotal: 50
       localSolverSuccess: 29
    localSolverIncomplete: 21
    localSolverNoSolution: 0
                  message: 'MultiStart completed some of the runs from the start points.↵↵29 out of 50 local solver runs converged with a positive local solver exit flag.'

manymins = 
  1x25 GlobalOptimSolution

  Properties:
    X
    Fval
    Exitflag
    Output
    X0

MultiStart found the global minimum, and found 22 distinct local solutions. To see the range of
local solutions, enter histogram([manymins.Fval],10).

 Refine Start Points

4-49



Compared to the minima found in “Use More Start Points” on page 4-47, this run found better
(smaller) minima, and had a higher percentage of successful runs.

See Also

Related Examples
• “Global or Multiple Starting Point Search”
• “Isolated Global Minimum” on page 4-85
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Change Options
In this section...
“How to Determine Which Options to Change” on page 4-51
“Changing Local Solver Options” on page 4-51
“Changing Global Options” on page 4-52

How to Determine Which Options to Change
After you run a global solver, you might want to change some global or local options. To determine
which options to change, the guiding principle is:

• To affect the local solver, set local solver options.
• To affect the start points or solution set, change the problem structure, or set the global solver

object properties.

For example, to obtain:

• More local minima — Set global solver object properties.
• Faster local solver iterations — Set local solver options.
• Different tolerances for considering local solutions identical (to obtain more or fewer local

solutions) — Set global solver object properties.
• Different information displayed at the command line — Decide if you want iterative display from

the local solver (set local solver options) or global information (set global solver object properties).
• Different bounds, to examine different regions — Set the bounds in the problem structure.

Examples of Choosing Problem Options

• To start your local solver at points only satisfying inequality constraints, set the
StartPointsToRun property in the global solver object to 'bounds-ineqs'. This setting can
speed your solution, since local solvers do not have to attempt to find points satisfying these
constraints. However, the setting can result in many fewer local solver runs, since the global
solver can reject many start points. For an example, see “Optimize Using Only Feasible Start
Points” on page 4-75.

• To use the fmincon interior-point algorithm, set the local solver Algorithm option to
'interior-point'. For an example showing how to do this, see “Examples of Updating Problem
Options” on page 4-52.

• For your local solver to have different bounds, set the bounds in the problem structure. Examine
different regions by setting bounds.

• To see every solution that has positive local exit flag, set the XTolerance property in the global
solver object to 0. For an example showing how to do this, see “Changing Global Options” on page
4-52.

Changing Local Solver Options
There are several ways to change values in local options:

• Update the values using dot notation and optimoptions. The syntax is
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problem.options = optimoptions(problem.options,'Parameter',value,...);

You can also replace the local options entirely:

problem.options = optimoptions(@solvername,'Parameter',value,...);
• Use dot notation on one local option. The syntax is

problem.options.Parameter = newvalue;
• Recreate the entire problem structure. For details, see “Create Problem Structure” on page 4-4.

Examples of Updating Problem Options

1 Create a problem structure:

problem = createOptimProblem('fmincon','x0',[-1 2], ...
    'objective',@rosenboth);

2 Set the problem to use the sqp algorithm in fmincon:

problem.options.Algorithm = 'sqp';
3 Update the problem to use the gradient in the objective function, have a FunctionTolerance

value of 1e-8, and a XTolerance value of 1e-7:

problem.options = optimoptions(problem.options,'GradObj','on', ...
    'FunctionTolerance',1e-8,'XTolerance',1e-7);

Changing Global Options
There are several ways to change characteristics of a GlobalSearch or MultiStart object:

• Use dot notation. For example, suppose you have a default MultiStart object:

ms = MultiStart
ms = 

  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-06
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-06

To change ms to have its XTolerance value equal to 1e-3, update the XTolerance field:

ms.XTolerance = 1e-3
ms = 

  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-06
              MaxTime: Inf
            OutputFcn: []
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              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-03

• Reconstruct the object starting from the current settings. For example, to set the
FunctionTolerance field in ms to 1e-3, retaining the nondefault value for XTolerance:

ms = MultiStart(ms,'FunctionTolerance',1e-3)
ms = 

  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-03
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-03

• Convert a GlobalSearch object to a MultiStart object, or vice-versa. For example, with the ms
object from the previous example, create a GlobalSearch object with the same values of
XTolerance and FunctionTolerance:

gs = GlobalSearch(ms)
gs = 

  GlobalSearch with properties:

             NumTrialPoints: 1000
          BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
               MaxWaitCycle: 20
          NumStageOnePoints: 200
     PenaltyThresholdFactor: 0.2000
                    Display: 'final'
          FunctionTolerance: 1.0000e-03
                    MaxTime: Inf
                  OutputFcn: []
                    PlotFcn: []
           StartPointsToRun: 'all'
                 XTolerance: 1.0000e-03

See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Reproduce Results
In this section...
“Identical Answers with Pseudorandom Numbers” on page 4-54
“Steps to Take in Reproducing Results” on page 4-54
“Example: Reproducing a GlobalSearch or MultiStart Result” on page 4-54
“Parallel Processing and Random Number Streams” on page 4-55

Identical Answers with Pseudorandom Numbers
GlobalSearch and MultiStart use pseudorandom numbers in choosing start points. Use the same
pseudorandom number stream again to:

• Compare various algorithm settings.
• Have an example run repeatably.
• Extend a run, with known initial segment of a previous run.

Both GlobalSearch and MultiStart use the default random number stream.

Steps to Take in Reproducing Results
1 Before running your problem, store the current state of the default random number stream:

stream = rng;
2 Run your GlobalSearch or MultiStart problem.
3 Restore the state of the random number stream:

rng(stream)
4 If you run your problem again, you get the same result.

Example: Reproducing a GlobalSearch or MultiStart Result
This example shows how to obtain reproducible results for “Find Global or Multiple Local Minima” on
page 4-57. The example follows the procedure in “Steps to Take in Reproducing Results” on page 4-
54.

1 Store the current state of the default random number stream:

stream = rng;
2 Create the sawtoothxy function file:

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;
g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
    .*r.^2./(r+1);
f = g.*h;
end

3 Create the problem structure and GlobalSearch object:

problem = createOptimProblem('fmincon',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
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    'x0',[100,-50],'options',...
    optimoptions(@fmincon,'Algorithm','sqp'));
gs = GlobalSearch('Display','iter');

4 Run the problem:
[x,fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 
Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure
       0      465       422.9                                   422.9            2    Initial Point
     200     1730  1.547e-015                              1.547e-015            1    Stage 1 Local
     300     1830  1.547e-015     6.01e+004        1.074                             Stage 2 Search
     400     1930  1.547e-015     1.47e+005         4.16                             Stage 2 Search
     500     2030  1.547e-015     2.63e+004        11.84                             Stage 2 Search
     600     2130  1.547e-015    1.341e+004        30.95                             Stage 2 Search
     700     2230  1.547e-015    2.562e+004        65.25                             Stage 2 Search
     800     2330  1.547e-015    5.217e+004        163.8                             Stage 2 Search
     900     2430  1.547e-015    7.704e+004        409.2                             Stage 2 Search
     981     2587  1.547e-015         42.24        516.6        7.573            1    Stage 2 Local
    1000     2606  1.547e-015    3.299e+004        42.24                             Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

x =
  1.0e-007 *
    0.0414    0.1298

fval =
  1.5467e-015

You might obtain a different result when running this problem, since the random stream was in
an unknown state at the beginning of the run.

5 Restore the state of the random number stream:

rng(stream)
6 Run the problem again. You get the same output.

[x,fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 
Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure
       0      465       422.9                                   422.9            2    Initial Point
     200     1730  1.547e-015                              1.547e-015            1    Stage 1 Local

... Output deleted to save space ...

x =
  1.0e-007 *
    0.0414    0.1298

fval =
  1.5467e-015

Parallel Processing and Random Number Streams
You obtain reproducible results from MultiStart when you run the algorithm in parallel the same
way as you do for serial computation. Runs are reproducible because MultiStart generates
pseudorandom start points locally, and then distributes the start points to parallel processors.
Therefore, the parallel processors do not use random numbers.

To reproduce a parallel MultiStart run, use the procedure described in “Steps to Take in
Reproducing Results” on page 4-54. For a description of how to run MultiStart in parallel, see
“How to Use Parallel Processing in Global Optimization Toolbox” on page 16-11.
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See Also

Related Examples
• “Global or Multiple Starting Point Search”
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Find Global or Multiple Local Minima
This example illustrates how GlobalSearch finds a global minimum efficiently, and how
MultiStart finds many more local minima.

The objective function for this example has many local minima and a unique global minimum. In polar
coordinates, the function is

f (r, t) = g(r)h(t)

where

g(r) = sin(r)− sin(2r)
2 + sin(3r)

3 − sin(4r)
4 + 4 r2

r + 1

h(t) = 2 + cos(t) +
cos 2t − 1

2
2 .

Plot the functions g and h, and create a surface plot of the function f .

figure
subplot(1,2,1);
fplot(@(r)(sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) .* r.^2./(r+1), [0 20])
title(''); ylabel('g'); xlabel('r');
subplot(1,2,2);
fplot(@(t)2 + cos(t) + cos(2*t-1/2)/2, [0 2*pi])
title(''); ylabel('h'); xlabel('t');
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figure
fsurf(@(x,y) sawtoothxy(x,y), [-20 20])
% sawtoothxy is defined in the first step below
xlabel('x'); ylabel('y'); title('sawtoothxy(x,y)');
view(-18,52)

The global minimum is at r   =   0, with objective function 0. The function g(r) grows approximately
linearly in r, with a repeating sawtooth shape. The function h(t) has two local minima, one of which is
global.

The sawtoothxy.m file converts from Cartesian to polar coordinates, then computes the value in
polar coordinates.

type sawtoothxy

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;
g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
    .*r.^2./(r+1);
f = g.*h;
end

Single Global Minimum Via GlobalSearch

To search for the global minimum using GlobalSearch, first create a problem structure. Use the
'sqp' algorithm for fmincon,
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problem = createOptimProblem('fmincon',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50],'options',...
    optimoptions(@fmincon,'Algorithm','sqp','Display','off'));

The start point is [100,-50] instead of [0,0] so GlobalSearch does not start at the global
solution.

Validate the problem structure by running fmincon.

[x,fval] = fmincon(problem)

x = 1×2

   45.7038 -107.6610

fval = 555.6645

Create the GlobalSearch object, and set iterative display.

gs = GlobalSearch('Display','iter');

For reproducibility, set the random number generator seed.

rng(14,'twister')

Run the solver.

[x,fval] = run(gs,problem)

 Num Pts                 Best       Current    Threshold        Local        Local                 
Analyzed  F-count        f(x)       Penalty      Penalty         f(x)     exitflag        Procedure
       0      200       555.7                                   555.7            0    Initial Point
     200     1463   1.547e-15                               1.547e-15            1    Stage 1 Local
     300     1564   1.547e-15     5.858e+04        1.074                              Stage 2 Search
     400     1664   1.547e-15      1.84e+05         4.16                              Stage 2 Search
     500     1764   1.547e-15     2.683e+04        11.84                              Stage 2 Search
     600     1864   1.547e-15     1.122e+04        30.95                              Stage 2 Search
     700     1964   1.547e-15     1.353e+04        65.25                              Stage 2 Search
     800     2064   1.547e-15     6.249e+04        163.8                              Stage 2 Search
     900     2164   1.547e-15     4.119e+04        409.2                              Stage 2 Search
     950     2359   1.547e-15           477        589.7          387            2    Stage 2 Local
     952     2423   1.547e-15         368.4          477        250.7            2    Stage 2 Local
    1000     2471   1.547e-15     4.031e+04        530.9                              Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.

3 out of 4 local solver runs converged with a positive local solver exit flag.

x = 1×2
10-7 ×

    0.0414    0.1298

fval = 1.5467e-15

The solver finds three local minima, including the global minimum near [0,0].
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Multiple Local Minima Via MultiStart

To search for multiple minima using MultiStart, first create a problem structure. Because the
problem is unconstrained, use the fminunc solver. Set options not to show any display at the
command line.

problem = createOptimProblem('fminunc',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50],'options',...
    optimoptions(@fminunc,'Display','off'));

Validate the problem structure by running it.

[x,fval] = fminunc(problem)

x = 1×2

    8.4420 -110.2602

fval = 435.2573

Create a default MultiStart object.

ms = MultiStart;

Run the solver for 50 iterations, recording the local minima.

rng(1) % For reproducibility
[x,fval,eflag,output,manymins] = run(ms,problem,50)

MultiStart completed some of the runs from the start points.

10 out of 50 local solver runs converged with a positive local solver exit flag.

x = 1×2

  -73.8348 -197.7810

fval = 766.8260

eflag = 2

output = struct with fields:
                funcCount: 8583
         localSolverTotal: 50
       localSolverSuccess: 10
    localSolverIncomplete: 40
    localSolverNoSolution: 0
                  message: 'MultiStart completed some of the runs from the start points....'

manymins=1×10 object
  1x10 GlobalOptimSolution array with properties:

    X
    Fval
    Exitflag
    Output
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    X0

The solver does not find the global minimum near [0,0]. The solver finds 10 distinct local minima.

Plot the function values at the local minima:

histogram([manymins.Fval],10)

Plot the function values at the three best points:

bestf = [manymins.Fval];
histogram(bestf(1:3),10)
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MultiStart starts fminunc from start points with components uniformly distributed between –1000
and 1000. fminunc often gets stuck in one of the many local minima. fminunc exceeds its iteration
limit or function evaluation limit 40 times.

See Also
GlobalSearch | MultiStart | createOptimProblem

More About
• “Workflow for GlobalSearch and MultiStart” on page 4-3
• “Visualize the Basins of Attraction” on page 4-24

4 Using GlobalSearch and MultiStart

4-62



Maximizing Monochromatic Polarized Light Interference
Patterns Using GlobalSearch and MultiStart

This example shows how to use the functions GlobalSearch and MultiStart.

Introduction

This example shows how Global Optimization Toolbox functions, particularly GlobalSearch and
MultiStart, can help locate the maximum of an electromagnetic interference pattern. For simplicity
of modeling, the pattern arises from monochromatic polarized light spreading out from point sources.

The electric field due to source i measured in the direction of polarization at point x and time t is

where  is the phase at time zero for source ,  is the speed of light,  is the frequency of the light,
 is the amplitude of source , and  is the distance from source  to .

For a fixed point  the intensity of the light is the time average of the square of the net electric field.
The net electric field is sum of the electric fields due to all sources. The time average depends only on
the sizes and relative phases of the electric fields at . To calculate the net electric field, add up the
individual contributions using the phasor method. For phasors, each source contributes a vector. The
length of the vector is the amplitude divided by distance from the source, and the angle of the vector,

 is the phase at the point.

For this example, we define three point sources with the same frequency ( ) and amplitude ( ), but
varied initial phase ( ). We arrange these sources on a fixed plane.

% Frequency is proportional to the number of peaks
relFreqConst = 2*pi*2.5;
amp = 2.2;
phase = -[0; 0.54; 2.07];

numSources = 3;
height = 3;

% All point sources are aligned at [x_i,y_i,z]
xcoords = [2.4112
           0.2064
           1.6787];
ycoords = [0.3957
           0.3927
           0.9877];
zcoords = height*ones(numSources,1);

origins = [xcoords ycoords zcoords];

Visualize the Interference Pattern

Now let's visualize a slice of the interference pattern on the plane z = 0.

As you can see from the plot below, there are many peaks and valleys indicating constructive and
destructive interference.
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% Pass additional parameters via an anonymous function:
waveIntensity_x = @(x) waveIntensity(x,amp,phase, ...
    relFreqConst,numSources,origins);
% Generate the grid
[X,Y] = meshgrid(-4:0.035:4,-4:0.035:4);
% Compute the intensity over the grid
Z = arrayfun(@(x,y) waveIntensity_x([x y]),X,Y);
% Plot the surface and the contours
figure
surf(X,Y,Z,'EdgeColor','none')
xlabel('x')
ylabel('y')
zlabel('intensity')

Posing the Optimization Problem

We are interested in the location where this wave intensity reaches its highest peak.

The wave intensity ( ) falls off as we move away from the source proportional to . Therefore,
let's restrict the space of viable solutions by adding constraints to the problem.

If we limit the exposure of the sources with an aperture, then we can expect the maximum to lie in
the intersection of the projection of the apertures onto our observation plane. We model the effect of
an aperture by restricting the search to a circular region centered at each source.

We also restrict the solution space by adding bounds to the problem. Although these bounds may be
redundant (given the nonlinear constraints), they are useful since they restrict the range in which
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start points are generated (see “How GlobalSearch and MultiStart Work” on page 4-34 for more
information).

Now our problem has become:

subject to

where  and  are the coordinates and aperture radius of the  point source, respectively.
Each source is given an aperture with radius 3. The given bounds encompass the feasible region.

The objective ( ) and nonlinear constraint functions are defined in separate MATLAB® files,
waveIntensity.m and apertureConstraint.m, respectively, which are listed at the end of this
example.

Visualization with Constraints

Now let's visualize the contours of our interference pattern with the nonlinear constraint boundaries
superimposed. The feasible region is the interior of the intersection of the three circles (yellow,
green, and blue). The bounds on the variables are indicated by the dashed-line box.

% Visualize the contours of our interference surface
domain = [-3 5.5 -4 5];
figure;
ezcontour(@(X,Y) arrayfun(@(x,y) waveIntensity_x([x y]),X,Y),domain,150);
hold on

% Plot constraints
g1 = @(x,y)  (x-xcoords(1)).^2 + (y-ycoords(1)).^2 - 9;
g2 = @(x,y)  (x-xcoords(2)).^2 + (y-ycoords(2)).^2 - 9;
g3 = @(x,y)  (x-xcoords(3)).^2 + (y-ycoords(3)).^2 - 9;
h1 = ezplot(g1,domain);
h1.Color = [0.8 0.7 0.1]; % yellow
h1.LineWidth = 1.5;
h2 = ezplot(g2,domain);
h2.Color = [0.3 0.7 0.5]; % green
h2.LineWidth = 1.5;
h3 = ezplot(g3,domain);
h3.Color = [0.4 0.4 0.6]; % blue
h3.LineWidth = 1.5;

% Plot bounds
lb = [-0.5 -2];
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ub = [3.5 3];
line([lb(1) lb(1)],[lb(2) ub(2)],'LineStyle','--')
line([ub(1) ub(1)],[lb(2) ub(2)],'LineStyle','--')
line([lb(1) ub(1)],[lb(2) lb(2)],'LineStyle','--')
line([lb(1) ub(1)],[ub(2) ub(2)],'LineStyle','--')
title('Pattern Contours with Constraint Boundaries')

Setting Up and Solving the Problem with a Local Solver

Given the nonlinear constraints, we need a constrained nonlinear solver, namely, fmincon.

Let's set up a problem structure describing our optimization problem. We want to maximize the
intensity function, so we negate the values returned form waveIntensity. Let's choose an arbitrary
start point that happens to be near the feasible region.

For this small problem, we'll use fmincon's SQP algorithm.

% Pass additional parameters via an anonymous function:
apertureConstraint_x = @(x) apertureConstraint(x,xcoords,ycoords);

% Set up fmincon's options
x0 = [3 -1];
opts = optimoptions('fmincon','Algorithm','sqp');
problem = createOptimProblem('fmincon','objective', ...
    @(x) -waveIntensity_x(x),'x0',x0,'lb',lb,'ub',ub, ...
    'nonlcon',apertureConstraint_x,'options',opts);
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% Call fmincon
[xlocal,fvallocal] = fmincon(problem)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xlocal =

   -0.5000    0.4945

fvallocal =

   -1.4438

Now, let's see how we did by showing the result of fmincon in our contour plot. Notice that fmincon
did not reach the global maximum, which is also annotated on the plot. Note that we'll only plot the
bound that was active at the solution.

[~,maxIdx] = max(Z(:));
xmax = [X(maxIdx),Y(maxIdx)]
figure
contour(X,Y,Z)
hold on

% Show bounds
line([lb(1) lb(1)],[lb(2) ub(2)],'LineStyle','--')

% Create textarrow showing the location of xlocal
annotation('textarrow',[0.25 0.21],[0.86 0.60],'TextEdgeColor',[0 0 0],...
    'TextBackgroundColor',[1 1 1],'FontSize',11,'String',{'Single Run Result'});

% Create textarrow showing the location of xglobal
annotation('textarrow',[0.44 0.50],[0.63 0.58],'TextEdgeColor',[0 0 0],...
    'TextBackgroundColor',[1 1 1],'FontSize',12,'String',{'Global Max'});

axis([-1 3.75 -3 3])

xmax =

    1.2500    0.4450
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Using GlobalSearch and MultiStart

Given an arbitrary initial guess, fmincon gets stuck at a nearby local maximum. Global Optimization
Toolbox solvers, particularly GlobalSearch and MultiStart, give us a better chance at finding the
global maximum since they will try fmincon from multiple generated initial points (or our own
custom points, if we choose).

Our problem has already been set up in the problem structure, so now we construct our solver
objects and run them. The first output from run is the location of the best result found.

% Construct a GlobalSearch object
gs = GlobalSearch;
% Construct a MultiStart object based on our GlobalSearch attributes
ms = MultiStart;

rng(4,'twister') % for reproducibility

% Run GlobalSearch
tic;
[xgs,~,~,~,solsgs] = run(gs,problem);
toc
xgs

% Run MultiStart with 15 randomly generated points
tic;
[xms,~,~,~,solsms] = run(ms,problem,15);
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toc
xms

GlobalSearch stopped because it analyzed all the trial points.

All 14 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.229525 seconds.

xgs =

    1.2592    0.4284

MultiStart completed the runs from all start points.

All 15 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.109984 seconds.

xms =

    1.2592    0.4284

Examining Results

Let's examine the results that both solvers have returned. An important thing to note is that the
results will vary based on the random start points created for each solver. Another run through this
example may give different results. The coordinates of the best results xgs and xms printed to the
command line. We'll show unique results returned by GlobalSearch and MultiStart and highlight
the best results from each solver, in terms of proximity to the global solution.

The fifth output of each solver is a vector containing distinct minima (or maxima, in this case) found.
We'll plot the (x,y) pairs of the results, solsgs and solsms, against our contour plot we used before.

% Plot GlobalSearch results using the '*' marker
xGS = cell2mat({solsgs(:).X}');
scatter(xGS(:,1),xGS(:,2),'*','MarkerEdgeColor',[0 0 1],'LineWidth',1.25)

% Plot MultiStart results using a circle marker
xMS = cell2mat({solsms(:).X}');
scatter(xMS(:,1),xMS(:,2),'o','MarkerEdgeColor',[0 0 0],'LineWidth',1.25)
legend('Intensity','Bound','GlobalSearch','MultiStart','Location','best')

title('GlobalSearch and MultiStart Results')
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Relaxing the Bounds

With the tight bounds on the problem, both GlobalSearch and MultiStart were able to locate the
global maximum in this run.

Finding tight bounds can be difficult to do in practice, when not much is known about the objective
function or constraints. In general though, we may be able to guess a reasonable region in which we
would like to restrict the set of start points. For illustration purposes, let's relax our bounds to define
a larger area in which to generate start points and re-try the solvers.

% Relax the bounds to spread out the start points
problem.lb = -5*ones(2,1);
problem.ub = 5*ones(2,1);

% Run GlobalSearch
tic;
[xgs,~,~,~,solsgs] = run(gs,problem);
toc
xgs

% Run MultiStart with 15 randomly generated points
tic;
[xms,~,~,~,solsms] = run(ms,problem,15);
toc
xms

GlobalSearch stopped because it analyzed all the trial points.
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All 4 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.173760 seconds.

xgs =

    0.6571   -0.2096

MultiStart completed the runs from all start points.

All 15 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.134150 seconds.

xms =

    2.4947   -0.1439

% Show the contours
figure
contour(X,Y,Z)
hold on

% Create textarrow showing the location of xglobal
annotation('textarrow',[0.44 0.50],[0.63 0.58],'TextEdgeColor',[0 0 0],...
    'TextBackgroundColor',[1 1 1],'FontSize',12,'String',{'Global Max'});
axis([-1 3.75 -3 3])

% Plot GlobalSearch results using the '*' marker
xGS = cell2mat({solsgs(:).X}');
scatter(xGS(:,1),xGS(:,2),'*','MarkerEdgeColor',[0 0 1],'LineWidth',1.25)

% Plot MultiStart results using a circle marker
xMS = cell2mat({solsms(:).X}');
scatter(xMS(:,1),xMS(:,2),'o','MarkerEdgeColor',[0 0 0],'LineWidth',1.25)

% Highlight the best results from each:
% GlobalSearch result in red, MultiStart result in blue
plot(xgs(1),xgs(2),'sb','MarkerSize',12,'MarkerFaceColor',[1 0 0])
plot(xms(1),xms(2),'sb','MarkerSize',12,'MarkerFaceColor',[0 0 1])
legend('Intensity','GlobalSearch','MultiStart','Best GS','Best MS','Location','best')

title('GlobalSearch and MultiStart Results with Relaxed Bounds')
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The best result from GlobalSearch is shown by the red square and the best result from
MultiStart is shown by the blue square.

Tuning GlobalSearch Parameters

Notice that in this run, given the larger area defined by the bounds, neither solver was able to
identify the point of maximum intensity. We could try to overcome this in a couple of ways. First, we
examine GlobalSearch.

Notice that GlobalSearch only ran fmincon a few times. To increase the chance of finding the
global maximum, we would like to run more points. To restrict the start point set to the candidates
most likely to find the global maximum, we'll instruct each solver to ignore start points that do not
satisfy constraints by setting the StartPointsToRun property to bounds-ineqs. Additionally, we
will set the MaxWaitCycle and BasinRadiusFactor properties so that GlobalSearch will be able
to identify the narrow peaks quickly. Reducing MaxWaitCycle causes GlobalSearch to decrease
the basin of attraction radius by the BasinRadiusFactor more often than with the default setting.

% Increase the total candidate points, but filter out the infeasible ones
gs = GlobalSearch(gs,'StartPointsToRun','bounds-ineqs', ...
    'MaxWaitCycle',3,'BasinRadiusFactor',0.3);
% Run GlobalSearch
tic;
xgs = run(gs,problem);
toc
xgs
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GlobalSearch stopped because it analyzed all the trial points.

All 10 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.242955 seconds.

xgs =

    1.2592    0.4284

Utilizing MultiStart's Parallel Capabilities

A brute force way to improve our chances of finding the global maximum is to simply try more start
points. Again, this may not be practical in all situations. In our case, we've only tried a small set so far
and the run time was not terribly long. So, it's reasonable to try more start points. To speed the
computation we'll run MultiStart in parallel if Parallel Computing Toolbox™ is available.

% Set the UseParallel property of MultiStart
ms = MultiStart(ms,'UseParallel',true);

try
    demoOpenedPool = false;
    % Create a parallel pool if one does not already exist
    % (requires Parallel Computing Toolbox)
    if max(size(gcp)) == 0 % if no pool
        parpool
        demoOpenedPool = true;
    end
catch ME
    warning(message('globaloptim:globaloptimdemos:opticalInterferenceDemo:noPCT'));
end

% Run the solver
tic;
xms = run(ms,problem,100);
toc
xms

if demoOpenedPool
    % Make sure to delete the pool if one was created in this example
    delete(gcp) % delete the pool
end

MultiStart completed the runs from all start points.

All 100 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.956671 seconds.

xms =

    1.2592    0.4284

Objective and Nonlinear Constraints

Here we list the functions that define the optimization problem:
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function p = waveIntensity(x,amp,phase,relFreqConst,numSources,origins)
% WaveIntensity Intensity function for opticalInterferenceDemo.

%   Copyright 2009 The MathWorks, Inc.  

d = distanceFromSource(x,numSources,origins);
ampVec = [sum(amp./d .* cos(phase - d*relFreqConst));
    sum(amp./d .* sin(phase - d*relFreqConst))];

% Intensity is ||AmpVec||^2
p = ampVec'*ampVec;

function [c,ceq] = apertureConstraint(x,xcoords,ycoords)
% apertureConstraint Aperture constraint function for opticalInterferenceDemo.

%   Copyright 2009 The MathWorks, Inc.  

ceq = []; 
c = (x(1) - xcoords).^2 + (x(2) - ycoords).^2 - 9;

function d = distanceFromSource(v,numSources,origins)
% distanceFromSource Distance function for opticalInterferenceDemo.

%   Copyright 2009 The MathWorks, Inc.  

d = zeros(numSources,1);
for k = 1:numSources
    d(k) = norm(origins(k,:) - [v 0]);
end

See Also
GlobalSearch | MultiStart

More About
• “Example: Searching for a Better Solution” on page 4-46
• “Isolated Global Minimum” on page 4-85
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Optimize Using Only Feasible Start Points
You can set the StartPointsToRun option so that MultiStart and GlobalSearch use only start
points that satisfy inequality constraints. This option can speed your optimization, since the local
solver does not have to search for a feasible region. However, the option can cause the solvers to miss
some basins of attraction.

There are three settings for the StartPointsToRun option:

• all — Accepts all start points
• bounds — Rejects start points that do not satisfy bounds
• bounds-ineqs — Rejects start points that do not satisfy bounds or inequality constraints

For example, suppose your objective function is

function y = tiltcircle(x)
vx = x(:)-[4;4]; % ensure vx is in column form
y = vx'*[1;1] + sqrt(16 - vx'*vx); % complex if norm(x-[4;4])>4

tiltcircle returns complex values for norm(x - [4 4]) > 4.

Write a constraint function that is positive on the set where norm(x - [4 4]) > 4

function [c ceq] = myconstraint(x)
ceq = [];
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cx = x(:) - [4;4]; % ensure x is a column vector
c = cx'*cx - 16; % negative where tiltcircle(x) is real

Set GlobalSearch to use only start points satisfying inequality constraints:

gs = GlobalSearch('StartPointsToRun','bounds-ineqs');

To complete the example, create a problem structure and run the solver:

opts = optimoptions(@fmincon,'Algorithm','interior-point');
problem = createOptimProblem('fmincon',...
    'x0',[4 4],'objective',@tiltcircle,...
    'nonlcon',@myconstraint,'lb',[-10 -10],...
    'ub',[10 10],'options',opts);
rng(7,'twister'); % for reproducibility
[x,fval,exitflag,output,solutionset] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 5 local solver runs converged with a positive local solver exit flag.

x =

    1.1716    1.1716

fval =

   -5.6530

exitflag =

     1

output =

  struct with fields:

                funcCount: 3242
         localSolverTotal: 5
       localSolverSuccess: 5
    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'GlobalSearch stopped because it analyzed all the trial po...'

solutionset = 

  1x4 GlobalOptimSolution array with properties:

    X
    Fval
    Exitflag
    Output
    X0
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tiltcircle With Local Minima

The tiltcircle function has just one local minimum. Yet GlobalSearch (fmincon) stops at
several points. Does this mean fmincon makes an error?

The reason that fmincon stops at several boundary points is subtle. The tiltcircle function has
an infinite gradient on the boundary, as you can see from a one-dimensional calculation:

d
dx 16− x2 = −x

16− x2 = ±∞ at  x = 4.

So there is a huge gradient normal to the boundary. This gradient overwhelms the small additional tilt
from the linear term. As far as fmincon can tell, boundary points are stationary points for the
constrained problem.

This behavior can arise whenever you have a function that has a square root.

See Also

More About
• “Find Global or Multiple Local Minima” on page 4-57
• “Isolated Global Minimum” on page 4-85
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MultiStart Using lsqcurvefit or lsqnonlin
This example shows how to fit a function to data using lsqcurvefit together with MultiStart.
The end of the example shows the same solution using lsqnonlin.

Many fitting problems have multiple local solutions. MultiStart can help find the global solution,
meaning the best fit. This example first uses lsqcurvefit because of its convenient syntax.

The model is

y = a + bx1sin(cx2 + d),

where the input data is x = (x1, x2), and the parameters a, b, c, and d are the unknown model
coefficients.

Step 1. Create the objective function.

Write an anonymous function that takes a data matrix xdata with N rows and two columns, and
returns a response vector with N rows. The function also takes a coefficient matrix p, corresponding
to the coefficient vector (a, b, c, d).

fitfcn = @(p,xdata)p(1) + p(2)*xdata(:,1).*sin(p(3)*xdata(:,2)+p(4));

Step 2. Create the training data.

Create 200 data points and responses. Use the values a = − 3, b = 1/4, c = 1/2, d = 1. Include
random noise in the response.

rng default % For reproducibility
N = 200; % Number of data points
preal = [-3,1/4,1/2,1]; % Real coefficients

xdata = 5*rand(N,2); % Data points
ydata = fitfcn(preal,xdata) + 0.1*randn(N,1); % Response data with noise

Step 3. Set bounds and initial point.

Set bounds for lsqcurvefit. There is no reason for d to exceed π in absolute value, because the
sine function takes values in its full range over any interval of width 2π. Assume that the coefficient c
must be smaller than 20 in absolute value, because allowing a high frequency can cause unstable
responses or inaccurate convergence.

lb = [-Inf,-Inf,-20,-pi];
ub = [Inf,Inf,20,pi];

Set the initial point arbitrarily to (5,5,5,0).

p0 = 5*ones(1,4); % Arbitrary initial point
p0(4) = 0; % Ensure the initial point satisfies the bounds

Step 4. Find the best local fit.

Fit the parameters to the data, starting at p0.

[xfitted,errorfitted] = lsqcurvefit(fitfcn,p0,xdata,ydata,lb,ub)

Local minimum possible.
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lsqcurvefit stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

xfitted = 1×4

   -2.6149   -0.0238    6.0191   -1.6998

errorfitted = 28.2524

lsqcurvefit finds a local solution that is not particularly close to the model parameter values (–
3,1/4,1/2,1).

Step 5. Set up the problem for MultiStart.

Create a problem structure so MultiStart can solve the same problem.

problem = createOptimProblem('lsqcurvefit','x0',p0,'objective',fitfcn,...
    'lb',lb,'ub',ub,'xdata',xdata,'ydata',ydata);

Step 6. Find a global solution.

Solve the fitting problem using MultiStart with 50 iterations. Plot the smallest error as the number
of MultiStart iterations.

ms = MultiStart('PlotFcns',@gsplotbestf);
[xmulti,errormulti] = run(ms,problem,50)
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MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

xmulti = 1×4

   -2.9852   -0.2472   -0.4968   -1.0438

errormulti = 1.6464

MultiStart finds a global solution near the parameter values (–3,–1/4,–1/2,–1). (This is equivalent to
a solution near preal = (–3,1/4,1/2,1), because changing the sign of all the coefficients except the
first gives the same numerical values of fitfcn.) The norm of the residual error decreases from
about 28 to about 1.6, a decrease of more than a factor of 10.

Formulate Problem for lsqnonlin

For an alternative approach, use lsqnonlin as the fitting function. In this case, use the difference
between predicted values and actual data values as the objective function.

fitfcn2 = @(p)fitfcn(p,xdata)-ydata;
[xlsqnonlin,errorlsqnonlin] = lsqnonlin(fitfcn2,p0,lb,ub)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

xlsqnonlin = 1×4

   -2.6149   -0.0238    6.0191   -1.6998

errorlsqnonlin = 28.2524

Starting from the same initial point p0, lsqnonlin finds the same relatively poor solution as
lsqcurvefit.

Run MultiStart using lsqnonlin as the local solver.

problem2 = createOptimProblem('lsqnonlin','x0',p0,'objective',fitfcn2,...
    'lb',lb,'ub',ub');
[xmultinonlin,errormultinonlin] = run(ms,problem2,50)
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MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

xmultinonlin = 1×4

   -2.9852   -0.2472   -0.4968   -1.0438

errormultinonlin = 1.6464

Again, MultiStart finds a much better solution than the local solver alone.

See Also

More About
• “Visualize the Basins of Attraction” on page 4-24
• “Find Global or Multiple Local Minima” on page 4-57
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Parallel MultiStart
In this section...
“Steps for Parallel MultiStart” on page 4-82
“Speedup with Parallel Computing” on page 4-83

Steps for Parallel MultiStart
If you have a multicore processor or access to a processor network, you can use Parallel Computing
Toolbox™ functions with MultiStart. This example shows how to find multiple minima in parallel
for a problem, using a processor with two cores. The problem is the same as in “Find Global or
Multiple Local Minima” on page 4-57.

1 Write a function file to compute the objective:

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;
g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
    .*r.^2./(r+1);
f = g.*h;
end

2 Create the problem structure:

problem = createOptimProblem('fminunc',...
    'objective',@(x)sawtoothxy(x(1),x(2)),...
    'x0',[100,-50],'options',...
    optimoptions(@fminunc,'Algorithm','quasi-newton'));

3 Validate the problem structure by running it:

[x,fval] = fminunc(problem)

x =
    8.4420 -110.2602

fval =
  435.2573

4 Create a MultiStart object, and set the object to use parallel processing and iterative display:

ms = MultiStart('UseParallel',true,'Display','iter');
5 Set up parallel processing:

parpool

Starting parpool using the 'local' profile ... connected to 4 workers.

ans = 

 Pool with properties: 

            Connected: true
           NumWorkers: 4
              Cluster: local
        AttachedFiles: {}
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          IdleTimeout: 30 minute(s) (30 minutes remaining)
          SpmdEnabled: true

6 Run the problem on 50 start points:

[x,fval,exitflag,output,manymins] = run(ms,problem,50);
Running the local solvers in parallel.

 Run       Local       Local      Local    Local   First-order
Index     exitflag      f(x)     # iter   F-count   optimality
   17         2         3953         4        21        0.1626
   16         0         1331        45       201         65.02
   34         0         7271        54       201         520.9
   33         2         8249         4        18         2.968
     ... Many iterations omitted ... 
   47         2         2740         5        21        0.0422
   35         0         8501        48       201         424.8
   50         0         1225        40       201         21.89

MultiStart completed some of the runs from the start points.

17 out of 50 local solver runs converged with a positive 
local solver exit flag.

Notice that the run indexes look random. Parallel MultiStart runs its start points in an
unpredictable order.

Notice that MultiStart confirms parallel processing in the first line of output, which states:
“Running the local solvers in parallel.”

7 When finished, shut down the parallel environment:

delete(gcp)
Parallel pool using the 'local' profile is shutting down.

For an example of how to obtain better solutions to this problem, see “Example: Searching for a
Better Solution” on page 4-46. You can use parallel processing along with the techniques described in
that example.

Speedup with Parallel Computing
The results of MultiStart runs are stochastic. The timing of runs is stochastic, too. Nevertheless,
some clear trends are apparent in the following table. The data for the table came from one run at
each number of start points, on a machine with two cores.

Start Points Parallel Seconds Serial Seconds
50 3.6 3.4
100 4.9 5.7
200 8.3 10
500 16 23
1000 31 46

Parallel computing can be slower than serial when you use only a few start points. As the number of
start points increases, parallel computing becomes increasingly more efficient than serial.
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There are many factors that affect speedup (or slowdown) with parallel processing. For more
information, see “Improving Performance with Parallel Computing”.

See Also

More About
• “Find Global or Multiple Local Minima” on page 4-57
• “Isolated Global Minimum” on page 4-85
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Isolated Global Minimum
In this section...
“Difficult-To-Locate Global Minimum” on page 4-85
“Default Settings Cannot Find the Global Minimum — Add Bounds” on page 4-86
“GlobalSearch with Bounds and More Start Points” on page 4-87
“MultiStart with Bounds and Many Start Points” on page 4-87
“MultiStart Without Bounds, Widely Dispersed Start Points” on page 4-88
“MultiStart with a Regular Grid of Start Points” on page 4-88
“MultiStart with Regular Grid and Promising Start Points” on page 4-89

Difficult-To-Locate Global Minimum
Finding a start point in the basin of attraction of the global minimum can be difficult when the basin
is small or when you are unsure of the location of the minimum. To solve this type of problem you
can:

• Add sensible bounds
• Take a huge number of random start points
• Make a methodical grid of start points
• For an unconstrained problem, take widely dispersed random start points

This example shows these methods and some variants.

The function –sech(x) is nearly 0 for all |x| > 5, and –sech(0) = –1. The example is a two-dimensional
version of the sech function, with one minimum at [1,1], the other at [1e5,-1e5]:

f(x,y) = –10sech(|x – (1,1)|) – 20sech(.0003(|x – (1e5,–1e5)|) – 1.

f has a global minimum of –21 at (1e5,–1e5), and a local minimum of –11 at (1,1).
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The minimum at (1e5,–1e5) shows as a narrow spike. The minimum at (1,1) does not show since it is
too narrow.

The following sections show various methods of searching for the global minimum. Some of the
methods are not successful on this problem. Nevertheless, you might find each method useful for
different problems.

Default Settings Cannot Find the Global Minimum — Add Bounds
GlobalSearch and MultiStart cannot find the global minimum using default global options, since
the default start point components are in the range (–9999,10001) for GlobalSearch and (–
1000,1000) for MultiStart.

With additional bounds of –1e6 and 1e6 in problem, GlobalSearch usually does not find the global
minimum:

x1 = [1;1];x2 = [1e5;-1e5];
f = @(x)-10*sech(norm(x(:)-x1)) -20*sech((norm(x(:)-x2))*3e-4) -1;
opts = optimoptions(@fmincon,'Algorithm','active-set');
problem = createOptimProblem('fmincon','x0',[0,0],'objective',f,...
    'lb',[-1e6;-1e6],'ub',[1e6;1e6],'options',opts);
gs = GlobalSearch;
rng(14,'twister') % for reproducibility
[xfinal,fval] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.
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All 32 local solver runs converged with a positive 
local solver exit flag.

xfinal =
    1.0000    1.0000

fval =
  -11.0000

GlobalSearch with Bounds and More Start Points
To find the global minimum, you can search more points. This example uses 1e5 start points, and a
MaxTime of 300 s:

gs.NumTrialPoints = 1e5;
gs.MaxTime = 300;
[xg,fvalg] = run(gs,problem)

GlobalSearch stopped because maximum time is exceeded.

GlobalSearch called the local solver 2186 times before exceeding 
the clock time limit (MaxTime = 300 seconds).
1943 local solver runs converged with a positive 
local solver exit flag.

xg =
   1.0e+04 *
   10.0000  -10.0000

fvalg =
  -21.0000

In this case, GlobalSearch found the global minimum.

MultiStart with Bounds and Many Start Points
Alternatively, you can search using MultiStart with many start points. This example uses 1e5 start
points, and a MaxTime of 300 s:

ms = MultiStart(gs);
[xm,fvalm] = run(ms,problem,1e5)

MultiStart stopped because maximum time was exceeded.

MultiStart called the local solver 17266 times before exceeding
the clock time limit (MaxTime = 300 seconds).
17266 local solver runs converged with a positive 
local solver exit flag.

xm =
    1.0000    1.0000

fvalm =
  -11.0000

In this case, MultiStart failed to find the global minimum.
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MultiStart Without Bounds, Widely Dispersed Start Points
You can also use MultiStart to search an unbounded region to find the global minimum. Again, you
need many start points to have a good chance of finding the global minimum.

The first five lines of code generate 10,000 widely dispersed random start points using the method
described in “Widely Dispersed Points for Unconstrained Components” on page 4-45. newprob is a
problem structure using the fminunc local solver and no bounds:

rng(0,'twister') % for reproducibility
u = rand(1e4,1);
u = 1./u;
u = exp(u) - exp(1);
s = rand(1e4,1)*2*pi;
stpts = [u.*cos(s),u.*sin(s)];
startpts = CustomStartPointSet(stpts);

opts = optimoptions(@fminunc,'Algorithm','quasi-newton');
newprob = createOptimProblem('fminunc','x0',[0;0],'objective',f,...
    'options',opts);
[xcust,fcust] = run(ms,newprob,startpts)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive
local solver exit flag.

xcust =
   1.0e+05 *

    1.0000
   -1.0000

fcust =
  -21.0000

In this case, MultiStart found the global minimum.

MultiStart with a Regular Grid of Start Points
You can also use a grid of start points instead of random start points. To learn how to construct a
regular grid for more dimensions, or one that has small perturbations, see “Uniform Grid” on page 4-
44 or “Perturbed Grid” on page 4-45.

xx = -1e6:1e4:1e6;
[xxx,yyy] = meshgrid(xx,xx);
z = [xxx(:),yyy(:)];
bigstart = CustomStartPointSet(z);
[xgrid,fgrid] = run(ms,newprob,bigstart)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive 
local solver exit flag.

xgrid =
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  1.0e+004 *

   10.0000
  -10.0000

fgrid =
  -21.0000

In this case, MultiStart found the global minimum.

MultiStart with Regular Grid and Promising Start Points
Making a regular grid of start points, especially in high dimensions, can use an inordinate amount of
memory or time. You can filter the start points to run only those with small objective function value.

To perform this filtering most efficiently, write your objective function in a vectorized fashion. For
information, see “Write a Vectorized Function” on page 2-3 or “Vectorize the Objective and Constraint
Functions” on page 6-79. The following function handle computes a vector of objectives based on an
input matrix whose rows represent start points:

x1 = [1;1];x2 = [1e5;-1e5];
g = @(x) -10*sech(sqrt((x(:,1)-x1(1)).^2 + (x(:,2)-x1(2)).^2)) ...
     -20*sech(sqrt((x(:,1)-x2(1)).^2 + (x(:,2)-x2(2)).^2))-1;

Suppose you want to run the local solver only for points where the value is less than –2. Start with a
denser grid than in “MultiStart with a Regular Grid of Start Points” on page 4-88, then filter out all
the points with high function value:

xx = -1e6:1e3:1e6;
[xxx,yyy] = meshgrid(xx,xx);
z = [xxx(:),yyy(:)];
idx = g(z) < -2; % index of promising start points
zz = z(idx,:);
smallstartset = CustomStartPointSet(zz);
opts = optimoptions(@fminunc,'Algorithm','quasi-newton','Display','off');
newprobg = createOptimProblem('fminunc','x0',[0,0],...
    'objective',g,'options',opts); 
    % row vector x0 since g expects rows
[xfew,ffew] = run(ms,newprobg,smallstartset)

MultiStart completed the runs from all start points.

All 2 local solver runs converged with a positive 
local solver exit flag.

xfew =
      100000     -100000

ffew =
   -21

In this case, MultiStart found the global minimum. There are only two start points in
smallstartset, one of which is the global minimum.
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See Also

More About
• “Parallel MultiStart” on page 4-82
• “Visualize the Basins of Attraction” on page 4-24
• “Refine Start Points” on page 4-44
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Problem-Based Multiple Start

• “Minimize Nonlinear Function Using Multiple-Start Solver, Problem-Based” on page 5-2
• “Specify Start Points for MultiStart, Problem-Based” on page 5-3
• “MultiStart with lsqnonlin, Problem-Based” on page 5-6
• “Find Multiple Local Solutions Using MultiStart or GlobalSearch, Problem-Based” on page 5-9
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Minimize Nonlinear Function Using Multiple-Start Solver,
Problem-Based

Find a local minimum of the peaks function on the range −5 ≤ x, y ≤ 5 starting from the point [–
1,2].

x = optimvar("x",LowerBound=-5,UpperBound=5);
y = optimvar("y",LowerBound=-5,UpperBound=5);
x0.x = -1;
x0.y = 2;
prob = optimproblem(Objective=peaks(x,y));
opts = optimoptions("fmincon",Display="none");
[sol,fval] = solve(prob,x0,Options=opts)

sol = struct with fields:
    x: -3.3867
    y: 3.6341

fval = 1.1224e-07

Try to find a better solution by using the GlobalSearch solver. This solver runs fmincon multiple
times, which potentially yields a better solution.

ms = GlobalSearch;
[sol2,fval2] = solve(prob,x0,ms)

Solving problem using GlobalSearch.

GlobalSearch stopped because it analyzed all the trial points.

All 15 local solver runs converged with a positive local solver exit flag.

sol2 = struct with fields:
    x: 0.2283
    y: -1.6255

fval2 = -6.5511

GlobalSearch finds a solution with a better (lower) objective function value. The exit message
shows that fmincon, the local solver, runs 15 times. The returned solution has an objective function
value of about –6.5511, which is lower than the value at the first solution, 1.1224e–07.

See Also
GlobalSearch | MultiStart | run | solve

Related Examples
• “Global or Multiple Starting Point Search”
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Specify Start Points for MultiStart, Problem-Based
When solving a problem using MultiStart in the problem-based approach, you can specify the start
points using one or both of these techniques:

• Create a vector of OptimizationValues objects using the optimvalues function. Pass this
vector as the x0 argument to solve.

• Set the MinNumStartPoints name-value argument when you call solve. If
MinNumStartPoints exceeds the number of points in x0, then solve creates extra points at
random within the problem bounds.

Vector of Initial Points

For this example, create the initial points vector as a grid for the variable x consisting of integer
values from –10 through 10, and for the variable y consisting of half-integer values from –5/2
through 5/2. The optimvalues function requires a problem, so create an optimization problem with
the objective function peaks(x,y).

You must specify the points for optimvalues so that the dimension (index) of the number of points is
last. For example, to give multiple values of a scalar t with n points, specify

[t(1) t(2) . . . t(n)] (This is 1-by-n, and n is the last index.)

To give multiple values of a vector variable w of length 2, specify

w(1, 1) w(1, 2) w(1, 3) ⋯ w(1, n)
w(2, 1) w(2, 2) w(2, 3) ⋯ w(2, n)

 (This is 2-by-n, and n is the last index.)

This rule holds even for row vectors. In other words, you specify multiple row vectors as if each were
a column vector.

To give multiple values of a matrix A that is 2-by-3, specify

A 1, 1, 1 A 1, 2, 1 A 1, 3, 1
A 2, 1, 1 A 2, 2, 1 A 2, 3, 1

A 1, 1, 2 A 1, 2, 2 A 1, 3, 2
A 2, 1, 2 A 2, 2, 2 A 2, 3, 2

⋯ A 1, 1, n A 1, 2, n A 1, 3, n
A 2, 1, n A 2, 2, n A 2, 3, n

(This is 2-

by-3-by-n, and n is the last index.)

In the present example, ensure that you specify the multiple values of the scalar variables x and y as
row vectors, as in the scalar t example.

x = optimvar("x",LowerBound=-10,UpperBound=10);
y = optimvar("y",LowerBound=-5/2,UpperBound=5/2);
prob = optimproblem(Objective=peaks(x,y));
xval = -10:10;
yval = (-5:5)/2;
[x0x,x0y] = meshgrid(xval,yval);
% Convert x0x and x0y to row vectors for optimvalues
x0 = optimvalues(prob,x=x0x(:)',y=x0y(:)');

Solve the minimization problem starting from all the points in x0.

ms = MultiStart;
[sol,fval,eflag,output] = solve(prob,x0,ms)

Solving problem using MultiStart.
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MultiStart completed the runs from all start points.

All 231 local solver runs converged with a positive local solver exit flag.

sol = struct with fields:
    x: 0.2283
    y: -1.6255

fval = -6.5511

eflag = 
    LocalMinimumFoundAllConverged

output = struct with fields:
                funcCount: 2230
         localSolverTotal: 231
       localSolverSuccess: 231
    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'MultiStart completed the runs from all start points....'
                    local: [1x1 struct]
      objectiveDerivative: "reverse-AD"
     constraintDerivative: "auto"
             globalSolver: 'MultiStart'
                   solver: 'fmincon'

Random Start Points

Solve the problem again, this time using MultiStart from 25 random initial points. Set the initial
point for solve to [–1,2].

init.x = -1;
init.y = 2;
rng default % For reproducibility
[sol2,fval2,eflag2,output2] = solve(prob,init,ms,MinNumStartPoints=25)

Solving problem using MultiStart.

MultiStart completed the runs from all start points.

All 25 local solver runs converged with a positive local solver exit flag.

sol2 = struct with fields:
    x: 0.2283
    y: -1.6255

fval2 = -6.5511

eflag2 = 
    LocalMinimumFoundAllConverged

output2 = struct with fields:
                funcCount: 161
         localSolverTotal: 25
       localSolverSuccess: 25
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    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'MultiStart completed the runs from all start points....'
                    local: [1x1 struct]
      objectiveDerivative: "reverse-AD"
     constraintDerivative: "auto"
             globalSolver: 'MultiStart'
                   solver: 'fmincon'

This time, MultiStart runs from 25 pseudorandom initial points. The solution is the same as before.

See Also
MultiStart | solve | optimvalues

Related Examples
• “Global or Multiple Starting Point Search”
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MultiStart with lsqnonlin, Problem-Based
This example shows how to fit a function to data using lsqnonlin together with MultiStart in the
problem-based approach.

Many fitting problems have multiple local solutions. MultiStart can help find the global solution,
meaning the best fit.

The model is

y = a + bx1sin(cx2 + d),

where the input data is x = (x1, x2), and the parameters a, b, c, and d are the unknown model
coefficients.

Create Problem Data

Most problems involve data from measurements. For this problem, create artificial data including
noise. Create 200 data points and responses. Specify the values a = − 3, b = 1/4, c = 1/2, and d = 1.

rng default % For reproducibility
fitfcn = @(p,xdata)p(1) + p(2)*xdata(:,1).*sin(p(3)*xdata(:,2)+p(4));
N = 200; % Number of data points
preal = [-3,1/4,1/2,1]; % Real coefficients
xdata = 5*rand(N,2); % Data points
ydata = fitfcn(preal,xdata) + 0.1*randn(N,1); % Response data with noise

Create Optimization Variables and Problem

The optimization variables are the model coefficients. Set bounds for the variables as you create
them. The variable d does not need to exceed π in absolute value, because the sine function takes
values in its full range over any interval of width 2π. Assume that the coefficient c must be smaller
than 20 in absolute value, because allowing a high frequency can cause unstable responses or
inaccurate convergence.

a = optimvar("a");
b = optimvar("b");
c = optimvar("c",LowerBound=-20,UpperBound=20);
d = optimvar("d",LowerBound=-pi,UpperBound=pi);
prob = optimproblem;

Create Objective Function

Create the objective function as the sum of squared differences between the model response and the
data.

resp = a + b*xdata(:,1).*sin(c*xdata(:,2) + d);
prob.Objective = sum((resp - ydata).^2);

Create Initial Point and Solve Problem

The initial point is a structure with values for the coefficients. Arbitrarily set the initial point to
[5,5,5,0].

x0.a = 5;
x0.b = 5;
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x0.c = 5;
x0.d = 0;
[sol,fval] = solve(prob,x0)

Solving problem using lsqnonlin.

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the value of the function tolerance.

sol = struct with fields:
    a: -2.6149
    b: -0.0238
    c: 6.0191
    d: -1.6998

fval = 28.2524

lsqnonlin finds a local solution that is not particularly close to the model parameter values (–
3,1/4,1/2,1).

Search for Improved Solution Using MultiStart

To search for a better solution, create a MultiStart object. Plot the best function value as the solver
iterates.

ms = MultiStart(PlotFcns=@gsplotbestf);

Call solve again, this time using ms. Specify 50 start points for MultiStart.

rng default % For reproducibility
[sol2,fval2] = solve(prob,x0,ms,MinNumStartPoints=50)

Solving problem using MultiStart.

 MultiStart with lsqnonlin, Problem-Based
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MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

sol2 = struct with fields:
    a: -2.9852
    b: -0.2472
    c: -0.4968
    d: -1.0438

fval2 = 1.6464

MultiStart finds a global solution near the parameter values (–3,–1/4,–1/2,–1). This solution is
equivalent to a solution near the true parameter values (–3,1/4,1/2,1), because changing the sign of
all coefficients except the first gives the same numerical values of the error. The norm of the residual
error decreases from about 28 to about 1.6, a decrease of more than a factor of 10.

See Also
MultiStart | solve | lsqnonlin

Related Examples
• “Write Objective Function for Problem-Based Least Squares”
• “Global or Multiple Starting Point Search”
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Find Multiple Local Solutions Using MultiStart or GlobalSearch,
Problem-Based

In solutions to problems that use the MultiStart or GlobalSearch function with the problem-
based approach, the output structure contains a field named local that has information about the
local solutions. For example, find the local solutions to the rastriginsfcn function in two variables
by using MultiStart.

x = optimvar("x",LowerBound=-50,UpperBound=50);
y = optimvar("y",LowerBound=-50,UpperBound=50);
fun = rastriginsfcn([x,y]);
prob = optimproblem(Objective=fun);
ms = MultiStart;
x0.x = -30;
x0.y = 20;
rng default % For reproducibility
[sol,fval,exitflag,output] = solve(prob,x0,ms,MinNumStartPoints=50);

Solving problem using MultiStart.

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

disp(sol)

    x: 6.8842e-10
    y: 1.0077e-09

disp(fval)

     0

How many local solutions does MultiStart find?

multisols = output.local.sol;
N = numel(multisols)

N = 46

Plot the values.

plot3(multisols.x,multisols.y,multisols.Objective,'bo')
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MultiStart starts from 50 initial points, but finds only 46 solutions. MultiStart reports that all
runs converged. Therefore, some solutions have multiple initial points leading to those solutions. Find
the x0 values that list multiple initial points.

myx0 = output.local.x0;
sx = zeros(size(myx0));
for i = 1:length(sx)
    sx(i) = numel(myx0{i});
end
mults = find(sx >= 2)

mults = 1×4

    14    17    25    36

Determine whether fmincon, starting from two initial points in mults(1), ends at the same solution.

pts = myx0(mults(1));
r = pts{1}.x;
t01.x = r(1);
s = pts{1}.y;
t01.y = s(1);
disp(t01)

    x: -30
    y: 20
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opts = optimoptions("fmincon",Display="none");
sol1 = solve(prob,t01,Options=opts)

sol1 = struct with fields:
    x: -1.9899
    y: -2.9849

t02.x = r(2);
t02.y = s(2);
disp(t02)

    x: 34.9129
    y: -24.5718

sol2 = solve(prob,t02,Options=opts)

sol2 = struct with fields:
    x: -1.9899
    y: -2.9849

Even though the starting points t01 and t02 are far apart, the solutions sol1 and sol2 are identical
to display precision.

See Also
MultiStart | solve | GlobalSearch

Related Examples
• “Global or Multiple Starting Point Search”
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Using Direct Search

• “What Is Direct Search?” on page 6-2
• “Optimize Using the GPS Algorithm” on page 6-3
• “Coding and Minimizing an Objective Function Using Pattern Search” on page 6-9
• “Constrained Minimization Using Pattern Search, Solver-Based” on page 6-13
• “Effects of Pattern Search Options” on page 6-17
• “Pattern Search Terminology” on page 6-23
• “How Pattern Search Polling Works” on page 6-26
• “Searching and Polling” on page 6-34
• “Setting Solver Tolerances” on page 6-38
• “Search and Poll” on page 6-39
• “Nonlinear Constraint Solver Algorithm” on page 6-43
• “Custom Plot Function” on page 6-45
• “Pattern Search Climbs Mount Washington” on page 6-48
• “Set Options” on page 6-53
• “Polling Types” on page 6-55
• “Set Mesh Options” on page 6-62
• “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67
• “Use Cache” on page 6-76
• “Vectorize the Objective and Constraint Functions” on page 6-79
• “Optimize an ODE in Parallel” on page 6-83
• “Optimization of Stochastic Objective Function” on page 6-91
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What Is Direct Search?
Direct search is a method for solving optimization problems that does not require any information
about the gradient of the objective function. Unlike more traditional optimization methods that use
information about the gradient or higher derivatives to search for an optimal point, a direct search
algorithm searches a set of points around the current point, looking for one where the value of the
objective function is lower than the value at the current point. You can use direct search to solve
problems for which the objective function is not differentiable, or is not even continuous.

Global Optimization Toolbox functions include three direct search algorithms called the generalized
pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive
search (MADS) algorithm. All are pattern search algorithms that compute a sequence of points that
approach an optimal point. At each step, the algorithm searches a set of points, called a mesh, around
the current point—the point computed at the previous step of the algorithm. The mesh is formed by
adding the current point to a scalar multiple of a set of vectors called a pattern. If the pattern search
algorithm finds a point in the mesh that improves the objective function at the current point, the new
point becomes the current point at the next step of the algorithm.

The GPS algorithm uses fixed direction vectors. The GSS algorithm is identical to the GPS algorithm,
except when there are linear constraints, and when the current point is near a linear constraint
boundary. The MADS algorithm uses a random selection of vectors to define the mesh. For details,
see “Patterns” on page 6-23.

See Also

More About
• “Optimize Using the GPS Algorithm” on page 6-3
• “Pattern Search Terminology” on page 6-23
• “How Pattern Search Polling Works” on page 6-26
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Optimize Using the GPS Algorithm
In this section...
“Objective Function” on page 6-3
“Find the Minimum of the Function” on page 6-4

This example shows how to solve an optimization problem using the GPS algorithm, which is the
default for the patternsearch solver. The example uses the Optimize Live Editor task to complete
the optimization using a visual approach.

Objective Function
This example uses the objective function ps_example, which is included with Global Optimization
Toolbox software. View the code for the function by entering the following command.

type ps_example

This figure shows a plot of the function.

Code for creating the figure

fsurf(@(x,y)reshape(ps_example([x(:),y(:)]),size(x)),...
    [-6 2 -4 4],'LineStyle','none','MeshDensity',300)
colormap 'jet'
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view(-26,43)
xlabel('x(1)')
ylabel('x(2)')
title('ps\_example(x)')

Find the Minimum of the Function
To find the minimum of ps_example using the Optimize Live Editor task, complete the following
steps.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select Task
> Optimize.
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3 Click the Solver-based task.

4 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

 Optimize Using the GPS Algorithm
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5 In the new section above the task, enter the following code to define the initial point and
objective function.

x0 = [2.1 1.7];
fun = @ps_example;

6 To place these variables into the workspace, run the section by pressing Ctrl + Enter.
7 In the Specify problem type section of the task, click the Objective > Nonsmooth button.
8 Ensure that the selected solver is patternsearch.
9 In the Select problem data section of the task, select Objective function > Function handle

and then choose fun.
10 Select Initial point (x0) > x0.
11 In the Display progress section of the task, select the Best value and Mesh size plots.

12 To run the solver, click the options button ⁝ at the top right of the task window, and select Run
Section. The plots appear in a separate figure window and in the task output area.
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The upper plot shows the objective function value of the best point at each iteration. Typically, the
objective function values improve rapidly at the early iterations and then level off as they approach
the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases after each successful
iteration and decreases after each unsuccessful iteration. For details, see “How Pattern Search
Polling Works” on page 6-26.

The optimization stopped because the mesh size became smaller than the mesh size tolerance value,
defined by the MeshTolerance option. The minimum function value is approximately –2.

To see the solution and objective function value, look at the top of the task.

The Optimize task puts the variables solution and objectiveValue in the workspace. View these
values by placing a new section below the task, and include this code.

disp(solution)
disp(objectiveValue)

Run the section by pressing Ctrl+Enter.

disp(solution)
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   -4.7124   -0.0000

disp(objectiveValue)

   -2.0000

See Also
patternsearch | Optimize

More About
• “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67
• “How Pattern Search Polling Works” on page 6-26
• “Add Interactive Tasks to a Live Script”
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Coding and Minimizing an Objective Function Using Pattern
Search

This example shows how to create and minimize an objective function using pattern search.

Objective Function

For this problem, the objective function to minimize is a simple function of a 2-D variable x.

simple_objective(x) = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 +
4*x(2)^2)*x(2)^2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

Code the Objective Function

Create a MATLAB® file named simple_objective.m containing the following code:

type simple_objective

function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver

%   Copyright 2004 The MathWorks, Inc.  

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;

Solvers such as patternsearch accept a single input x, where x has as many elements as the
number of variables in the problem. The objective function computes the scalar value of the objective
function and returns it in its single output argument y.

Minimize Using patternsearch

Specify the objective function as a function handle.

ObjectiveFunction = @simple_objective;

Specify an initial point for the solver.

x0 = [0.5 0.5];   % Starting point

Call the solver, requesting the optimal point x and the function value at the optimal point fval.

[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x = 1×2

   -0.0898    0.7127

fval = -1.0316
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Minimize Using Additional Arguments

Sometimes your objective function has extra arguments that act as constants during the optimization.
For example, in simple_objective, you might want to specify the constants 4, 2.1, and 4 as
variable parameters to create a family of objective functions.

Rewrite simple_objective to take three additional parameters (p1, p2, and p3) that act as
constants during the optimization (they are not varied as part of the minimization). To implement the
objective function calculation, the MATLAB file parameterized_objective.m contains the
following code:

type parameterized_objective

function y = parameterized_objective(x,p1,p2,p3)
%PARAMETERIZED_OBJECTIVE Objective function for PATTERNSEARCH solver

%   Copyright 2004 The MathWorks, Inc.
  
x1 = x(1);
x2 = x(2);
y = (p1-p2.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-p3+p3.*x2.^2).*x2.^2;

patternsearch calls the objective function with just one argument x, but the parameterized
objective function has four arguments: x, p1, p2, and p3. Use an anonymous function to capture the
values of the additional arguments p1, p2, and p3. Create a function handle ObjectiveFunction to
an anonymous function that takes one input x, but calls parameterized_objective with x, p1, p2,
and p3. When you create the function handle ObjectiveFunction, the variables p1, p2, and p3
have values that are stored in the anonymous function. For details, see “Passing Extra Parameters”.

p1 = 4; p2 = 2.1; p3 = 4;    % Define constant values
ObjectiveFunction = @(x) parameterized_objective(x,p1,p2,p3);
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x = 1×2

   -0.0898    0.7127

fval = -1.0316

Vectorize the Objective Function

By default, patternsearch passes in one point at a time to the objective function. Sometimes, you
can speed the solver by vectorizing the objective function to take a set of points and return a set of
function values.

For the solver to evaluate a set of five points in one call to the objective function, for example, the
solver calls the objective on a matrix of size 5-by-2 (where 2 is the number of variables). For details,
see “Vectorize the Objective and Constraint Functions” on page 6-79.

To vectorize parameterized_objective, use the following code:

type vectorized_objective

function y = vectorized_objective(x,p1,p2,p3)
%VECTORIZED_OBJECTIVE Objective function for PATTERNSEARCH solver
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%   Copyright 2004-2018 The MathWorks, Inc.

x1 = x(:,1); % First column of x
x2 = x(:,2);
y = (p1 - p2.*x1.^2 + x1.^4./3).*x1.^2 + x1.*x2 + (-p3 + p3.*x2.^2).*x2.^2;

This vectorized version of the objective function takes a matrix x with an arbitrary number of points
(the rows of x) and returns a column vector y whose length is the number of rows of x.

To take advantage of the vectorized objective function, set the UseVectorized option to true and
the UseCompletePoll option to true. patternsearch requires both of these options to compute
in a vectorized manner.

options = optimoptions(@patternsearch,'UseVectorized',true,'UseCompletePoll',true);

Specify the objective function and call patternsearch, including the options argument. Use
tic/toc to evaluate the solution time.

ObjectiveFunction = @(x) vectorized_objective(x,4,2.1,4);
tic
[x,fval] = patternsearch(ObjectiveFunction,x0,[],[],[],[],[],[],[],options)

Optimization terminated: mesh size less than options.MeshTolerance.

x = 1×2

   -0.0898    0.7127

fval = -1.0316

toc

Elapsed time is 0.027503 seconds.

Evaluate the nonvectorized solution time for comparison.

tic
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x = 1×2

   -0.0898    0.7127

fval = -1.0316

toc

Elapsed time is 0.027502 seconds.

In this case, the vectorization does not have a significant impact on the solution time.
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See Also

More About
• “Passing Extra Parameters”
• “Vectorize the Objective and Constraint Functions” on page 6-79
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Constrained Minimization Using Pattern Search, Solver-Based
This example shows how to minimize an objective function, subject to nonlinear inequality constraints
and bounds, using pattern search. For a problem-based version of this example, see “Constrained
Minimization Using Pattern Search, Problem-Based” on page 7-4.

Constrained Minimization Problem

For this problem, the objective function to minimize is a simple function of a 2-D variable x.

simple_objective(x) = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 +
4*x(2)^2)*x(2)^2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

Additionally, the problem has nonlinear constraints and bounds.

   x(1)*x(2) + x(1) - x(2) + 1.5 <= 0  (nonlinear constraint)
   10 - x(1)*x(2) <= 0                 (nonlinear constraint)
   0 <= x(1) <= 1                      (bound)
   0 <= x(2) <= 13                     (bound)

Code the Objective Function

Create a MATLAB® file named simple_objective.m containing the following code:

type simple_objective

function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver

%   Copyright 2004 The MathWorks, Inc.  

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;

Solvers such as patternsearch accept a single input x, where x has as many elements as the
number of variables in the problem. The objective function computes the scalar value of the objective
function and returns it in its single output argument y.

Coding the Constraint Function

Create a MATLAB file named simple_constraint.m containing the following code:

type simple_constraint

function [c, ceq] = simple_constraint(x)
%SIMPLE_CONSTRAINT Nonlinear inequality constraints.

%   Copyright 2005-2007 The MathWorks, Inc.

c = [1.5 + x(1)*x(2) + x(1) - x(2); 
     -x(1)*x(2) + 10];

% No nonlinear equality constraints:
ceq = [];
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The constraint function computes the values of all the inequality and equality constraints and returns
the vectors c and ceq, respectively. The value of c represents nonlinear inequality constraints that
the solver attempts to make less than or equal to zero. The value of ceq represents nonlinear equality
constraints that the solver attempts to make equal to zero. This example has no nonlinear equality
constraints, so ceq = []. For details, see “Nonlinear Constraints”.

Minimize Using patternsearch

Specify the objective function as a function handle.

ObjectiveFunction = @simple_objective;

Specify the problem bounds.

lb = [0 0];   % Lower bounds
ub = [1 13];  % Upper bounds

Specify the nonlinear constraint function as a function handle.

ConstraintFunction = @simple_constraint;

Specify an initial point for the solver.

x0 = [0.5 0.5];   % Starting point

Call the solver, requesting the optimal point x and the function value at the optimal point fval.

[x,fval] = patternsearch(ObjectiveFunction,x0,[],[],[],[],lb,ub, ...
    ConstraintFunction)

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

x = 1×2

    0.8122   12.3122

fval = 9.1324e+04

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
psplotbestf plots the best objective function value at every iteration, and the plot function
psplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter'.

options = optimoptions(@patternsearch,'PlotFcn',{@psplotbestf,@psplotmaxconstr}, ...
                                      'Display','iter');

Run the solver, including the options argument.

[x,fval] = patternsearch(ObjectiveFunction,x0,[],[],[],[],lb,ub, ...
    ConstraintFunction,options)

                                      Max
  Iter   Func-count       f(x)      Constraint   MeshSize      Method
    0         1     0.373958         9.75       0.9086    
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    1        18       113581    1.617e-10        0.001   Increase penalty
    2       148        92267            0        1e-05   Increase penalty
    3       374      91333.2            0        1e-07   Increase penalty
    4       639        91324            0        1e-09   Increase penalty
Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

x = 1×2

    0.8122   12.3122

fval = 9.1324e+04

Nonlinear constraints cause patternsearch to solve many subproblems at each iteration. As shown
in both the plots and the iterative display, the solution process has few iterations. However, the
Func-count column in the iterative display shows many function evaluations per iteration. Both the
plots and the iterative display show that the initial point is infeasible, and that the objective function
is low at the initial point. During the solution process, the objective function value initially increases,
then decreases to its final value.
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Effects of Pattern Search Options
This example shows the effects of some options for pattern search. The options include plotting,
stopping criteria, and other algorithmic controls for speeding a solution.

Set Up a Problem for Pattern Search

The problem to minimize is a quadratic function of six variables subject to linear equality and
inequality constraints. The objective function, lincontest7, is included with Global Optimization
Toolbox.

type lincontest7

function y = lincontest7(x);
%LINCONTEST7 objective function.
%   y = LINCONTEST7(X) evaluates y for the input X. Make sure that x is a column 
%   vector, whereas objective function gets a row vector.

%   Copyright 2003-2004 The MathWorks, Inc.

x = x';
%Define a quadratic problem in terms of H and f (From web unknown source)
H = [36 17 19 12 8 15; 17 33 18 11 7 14; 19 18 43 13 8 16;
12 11 13 18 6 11; 8 7 8 6 9 8; 15 14 16 11 8 29];
 f = [ 20 15 21 18 29 24 ]';
 
 y = 0.5*x'*H*x + f'*x;

Specify the function handle @lincontest7 as the objective function.

objectiveFcn = @lincontest7;

The objective function accepts a row vector of length six. Specify an initial point for the optimization.

x0 = [2 1 0 9 1 0];

Create linear constraint matrices representing the constraints Aineq*x <= Bineq and Aeq*x =
Beq. For details, see “Linear Constraints”.

Aineq = [-8 7 3 -4 9 0 ];
Bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
Beq = [84 62 65 1];

Run the patternsearch solver, and note the number of iterations and function evaluations required
to reach the solution.

[X1,Fval,Exitflag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,Aeq,Beq);

Optimization terminated: mesh size less than options.MeshTolerance.

fprintf('The number of iterations is: %d\n', Output.iterations);

The number of iterations is: 164

fprintf('The number of function evaluations is: %d\n', Output.funccount);
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The number of function evaluations is: 893

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.18

Add Visualization

Monitor the optimization process by specifying options that select two plot functions. The plot
function psplotbestf plots the best objective function value at every iteration, and the plot function
psplotfuncount plots the number of times the objective function is evaluated at each iteration. Set
these two plot functions in a cell array.

opts = optimoptions(@patternsearch,'PlotFcn',{@psplotbestf,@psplotfuncount});

Run the patternsearch solver, including the opts argument. Because the problem has no upper or
lower bound constraints and no nonlinear constraints, pass empty arrays ([]) for the seventh, eighth,
and ninth arguments.

[X1,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq, ...
    Aeq,Beq,[],[],[],opts);

Optimization terminated: mesh size less than options.MeshTolerance.

Mesh Options

Pattern search involves evaluating the objective function at points in a mesh. The size of the mesh can
influence the speed of the solution. You can control the size of the mesh using options.
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Initial Mesh Size

The mesh at each iteration is the span of a set of search directions that are added to the current
point, scaled by the current mesh size. The solver starts with an initial mesh size of 1 by default. To
start the initial mesh size at 1/2, set the InitialMeshSize option.

opts = optimoptions(opts,'InitialMeshSize',1/2);

Mesh Scaling

You can scale the mesh to improve the minimization of a poorly scaled optimization problem. Scaling
rotates the pattern by some degree and scales along the search directions. The ScaleMesh option is
on (true) by default, but you can turn it off if the problem is well scaled. In general, if the problem is
poorly scaled, setting this option to true can reduce the number of function evaluations. For this
problem, set ScaleMesh to false, because lincontest7 is a well-scaled objective function.

opts = optimoptions(opts,'ScaleMesh',false);

Mesh Accelerator

Direct search methods require many function evaluations compared to derivative-based optimization
methods. The pattern search algorithm can quickly find the neighborhood of an optimum point, but
can be slow in detecting the minimum itself. The patternsearch solver can reduce the number of
function evaluations by using an accelerator. When the accelerator is on (opts.AccelerateMesh =
true), the solver contracts the mesh size rapidly after reaching a minimum mesh size. This option is
recommended only for smooth problems; in other types of problems, you can lose some accuracy. The
AccelerateMesh option is off (false) by default. For this problem, set AccelerateMesh to true
because the objective function is smooth.

opts = optimoptions(opts,'AccelerateMesh',true);

Run the patternsearch solver.

[X2,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq, ...
    Aeq,Beq,[],[],[],opts);

Optimization terminated: mesh size less than options.MeshTolerance.
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fprintf('The number of iterations is: %d\n', Output.iterations);

The number of iterations is: 149

fprintf('The number of function evaluations is: %d\n', Output.funccount);

The number of function evaluations is: 820

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.18

The mesh option settings reduce the number of iterations and the number of function evaluations,
and with no apparent loss of accuracy.

Stopping Criteria and Tolerances

MeshTolerance is a tolerance on the mesh size. If the mesh size is less than MeshTolerance, the
solver stops. StepTolerance is the minimum tolerance on the change in the current point to the
next point. FunctionTolerance is the minimum tolerance on the change in the function value from
the current point to the next point.

Set the MeshTolerance to 1e-7, which is ten times smaller than the default value. This setting can
increase the number of function evaluations and iterations, and can lead to a more accurate solution.

opts.MeshTolerance = 1e-7;
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Search Methods in Pattern Search

The pattern search algorithm can use an additional search method at every iteration, based on the
value of the SearchFcn option. When you specify a search method using SearchFcn,
patternsearch performs the specified search first, before the mesh search. If the search method is
successful, patternsearch skips the mesh search, commonly called the poll function, for that
iteration. If the search method is unsuccessful in improving the current point, patternsearch
performs the mesh search.

You can specify different search methods for SearchFcn, including searchga and
searchneldermead, which are optimization algorithms. Use these two search methods only for the
first iteration, which is the default setting. Using either of these methods at every iteration might not
improve the results and can be computationally expensive. However, you can use the searchlhs
method, which generates Latin hypercube points, at every iteration or possibly every 10 iterations.

Other choices for search methods include poll methods such as positive basis N+1 or positive basis
2N. A recommended strategy is to use positive basis N+1 (which requires at most N+1 points to
create a pattern) as a search method and positive basis 2N (which requires 2N points to create a
pattern) as a poll method.

Update the options structure to use positivebasisnp1 as the search method. Because positive
basis 2N is the default for the PollFcn option, do not set that option.

opts.SearchFcn = @positivebasisnp1;

Run the patternsearch solver.

[X5,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,Aeq,Beq, ...
    [],[],[],opts);

Optimization terminated: change in X less than options.StepTolerance.
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fprintf('The number of iterations is: %d\n', Output.iterations);

The number of iterations is: 44

fprintf('The number of function evaluations is: %d\n', Output.funccount);

The number of function evaluations is: 562

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.18

The total number of iterations and function evaluations decreases, even though the mesh tolerance is
smaller than its previous value and is the stopping criterion that halts the solver.

See Also

More About
• “Set Mesh Options” on page 6-62
• “Pattern Search Options” on page 17-7
• “Custom Plot Function” on page 6-45
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Pattern Search Terminology
In this section...
“Patterns” on page 6-23
“Meshes” on page 6-23
“Polling” on page 6-24
“Expanding and Contracting” on page 6-24

Patterns
A pattern is a set of vectors {vi} that the pattern search algorithm uses to determine which points to
search at each iteration. The set {vi} is defined by the number of independent variables in the
objective function, N, and the positive basis set. Two commonly used positive basis sets in pattern
search algorithms are the maximal basis, with 2N vectors, and the minimal basis, with N+1 vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction vectors. For example, if
there are three independent variables in the optimization problem, the default for a 2N positive basis
consists of the following pattern vectors:

v1 = [1 0 0] v2 = [0 1 0] v3 = [0 0 1]
v4 = [−1 0 0] v5 = [0 −1 0] v6 = [0 0 −1]

An N+1 positive basis consists of the following default pattern vectors.

v1 = [1 0 0] v2 = [0 1 0] v3 = [0 0 1]
v4 = [−1 −1 −1]

With GSS, the pattern is identical to the GPS pattern, except when there are linear constraints and
the current point is near a constraint boundary. For a description of the way in which GSS forms a
pattern with linear constraints, see Kolda, Lewis, and Torczon [1]. The GSS algorithm is more
efficient than the GPS algorithm when you have linear constraints. For an example showing the
efficiency gain, see “Compare the Efficiency of Poll Options” on page 6-57.

With MADS, the collection of vectors that form the pattern are randomly selected by the algorithm.
Depending on the poll method choice, the number of vectors selected will be 2N or N+1. As in GPS,
2N vectors consist of N vectors and their N negatives, while N+1 vectors consist of N vectors and
one that is the negative of the sum of the others.

References
[1] Kolda, Tamara G., Robert Michael Lewis, and Virginia Torczon. “A generating set direct search

augmented Lagrangian algorithm for optimization with a combination of general and linear
constraints.” Technical Report SAND2006-5315, Sandia National Laboratories, August 2006.

Meshes
At each step, patternsearch searches a set of points, called a mesh, for a point that improves the
objective function. patternsearch forms the mesh by
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1 Generating a set of vectors {di} by multiplying each pattern vector vi by a scalar Δm. Δm is called
the mesh size.

2 Adding the di  to the current point—the point with the best objective function value found at the
previous step.

For example, using the GPS algorithm. suppose that:

• The current point is [1.6 3.4].
• The pattern consists of the vectors

v1 = 1 0
v2 = 0 1
v3 = −1 0
v4 = 0 −1

• The current mesh size Δm is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current point to obtain the
following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4] 
[1.6 3.4] + 4*[0 1] = [1.6 7.4] 
[1.6 3.4] + 4*[-1 0] = [-2.4 3.4] 
[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Polling
At each step, the algorithm polls the points in the current mesh by computing their objective function
values. When the Complete poll option has the (default) setting Off, the algorithm stops polling the
mesh points as soon as it finds a point whose objective function value is less than that of the current
point. If this occurs, the poll is called successful and the point it finds becomes the current point at
the next iteration.

The algorithm only computes the mesh points and their objective function values up to the point at
which it stops the poll. If the algorithm fails to find a point that improves the objective function, the
poll is called unsuccessful and the current point stays the same at the next iteration.

When the Complete poll option has the setting On, the algorithm computes the objective function
values at all mesh points. The algorithm then compares the mesh point with the smallest objective
function value to the current point. If that mesh point has a smaller value than the current point, the
poll is successful.

Expanding and Contracting
After polling, the algorithm changes the value of the mesh size Δm. The default is to multiply Δm by 2
after a successful poll, and by 0.5 after an unsuccessful poll.
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See Also

More About
• “How Pattern Search Polling Works” on page 6-26
• “Searching and Polling” on page 6-34
• “Effects of Pattern Search Options” on page 6-17
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How Pattern Search Polling Works

In this section...
“Context” on page 6-26
“Successful Polls” on page 6-26
“An Unsuccessful Poll” on page 6-28
“Successful and Unsuccessful Polls in MADS” on page 6-29
“Displaying the Results at Each Iteration” on page 6-30
“More Iterations” on page 6-30
“Poll Method” on page 6-31
“Complete Poll” on page 6-32
“Stopping Conditions for the Pattern Search” on page 6-32
“Robustness of Pattern Search” on page 6-33

Context
patternsearch finds a sequence of points, x0, x1, x2, ... , that approach an optimal point. The value
of the objective function either decreases or remains the same from each point in the sequence to the
next. This section explains how pattern search works for the function described in “Optimize Using
the GPS Algorithm” on page 6-3.

To simplify the explanation, this section describes how the generalized pattern search (GPS) works
using the default maximal positive basis of 2N, with the ScaleMesh option set to false.

This section does not show how the patternsearch algorithm works with bounds or linear
constraints. For bounds and linear constraints, patternsearch modifies poll points to be feasible at
every iteration, meaning to satisfy all bounds and linear constraints.

This section does not encompass nonlinear constraints. To understand how patternsearch works
with nonlinear constraints, see “Nonlinear Constraint Solver Algorithm” on page 6-43.

Successful Polls
The pattern search begins at the initial point x0 that you provide. In this example, x0 = [2.1 1.7].

Iteration 1

At the first iteration, the mesh size is 1 and the GPS algorithm adds the pattern vectors to the initial
point x0 = [2.1 1.7] to compute the following mesh points:

[1 0] + x0 = [3.1 1.7]
[0 1] + x0 = [2.1 2.7]
[-1 0] + x0 = [1.1 1.7]
[0 -1] + x0 = [2.1 0.7]

The algorithm computes the objective function at the mesh points in the order shown above. The
following figure shows the value of ps_example at the initial point and mesh points.
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The algorithm polls the mesh points by computing their objective function values until it finds one
whose value is smaller than 4.6347, the value at x0. In this case, the first such point it finds is
[1.1 1.7], at which the value of the objective function is 4.5146, so the poll at iteration 1 is
successful. The algorithm sets the next point in the sequence equal to

x1 = [1.1 1.7]

Note By default, the GPS pattern search algorithm stops the current iteration as soon as it finds a
mesh point whose fitness value is smaller than that of the current point. Consequently, the algorithm
might not poll all the mesh points. You can make the algorithm poll all the mesh points by setting the
UseCompletePoll option to true.

Iteration 2

After a successful poll, the algorithm multiplies the current mesh size by 2, the default value of the
MeshExpansionFactor options. Because the initial mesh size is 1, at the second iteration the mesh
size is 2. The mesh at iteration 2 contains the following points:

2*[1 0] + x1 = [3.1 1.7]
2*[0 1] + x1 = [1.1 3.7]
2*[-1 0] + x1 = [-0.9 1.7]
2*[0 -1] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with the corresponding values
of ps_example.
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The algorithm polls the mesh points until it finds one whose value is smaller than 4.5146, the value at
x1. The first such point it finds is [-0.9 1.7], at which the value of the objective function is 3.25,
so the poll at iteration 2 is again successful. The algorithm sets the second point in the sequence
equal to

x2 = [-0.9 1.7]

Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get a mesh size
of 4 at the third iteration.

An Unsuccessful Poll
By the fourth iteration, the current point is

x3 = [-4.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]
8*[0 1] + x3 = [-4.9 9.7]
8*[-1 0] + x3 = [-12.9 1.7]
8*[0 -1] + x3 = [-4.9 -1.3]

The following figure shows the mesh points and their objective function values.
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At this iteration, none of the mesh points has a smaller objective function value than the value at x3,
so the poll is unsuccessful. In this case, the algorithm does not change the current point at the next
iteration. That is,

x4 = x3;

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the default value of the
MeshContractionFactor option, so that the mesh size at the next iteration is 4. The algorithm then
polls with a smaller mesh size.

Successful and Unsuccessful Polls in MADS
Setting the PollMethod option to 'MADSPositiveBasis2N' or 'MADSPositiveBasisNp1'
causes patternsearch to use both a different poll type and to react to polling differently than the
other polling algorithms.

A MADS poll uses newly generated pseudorandom mesh vectors at each iteration. The vectors are
randomly shuffled components from the columns of a random lower-triangular matrix. The
components of the matrix have integer sizes up to 1/ mesh size. In the poll, the mesh vectors are
multiplied by the mesh size, so the poll points can be up to mesh size from the current point.

Unsuccessful polls contract the mesh by a factor of 4, ignoring the MeshContractionFactor
option. Similarly, successful polls expand the mesh by a factor of 4, ignoring the
MeshExpansionFactor option. The maximum mesh size is 1, despite any setting of the
MaxMeshSize option.

In addition, when there is a successful poll, patternsearch starts at the successful point and polls
again. This extra poll uses the same mesh vectors, expanded by a factor of 4 while staying below size
1. The extra poll looks again along the same directions that were just successful.
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Displaying the Results at Each Iteration
You can display the results of the pattern search at each iteration by setting the Display option to
'iter'. This enables you to evaluate the progress of the pattern search and to make changes to
options if necessary.

With this setting, the pattern search displays information about each iteration at the command line.
The first four iterations are

Iter     f-count          f(x)      MeshSize     Method
    0        1        4.63474             1      
    1        4        4.51464             2     Successful Poll
    2        7           3.25             4     Successful Poll
    3       10      -0.264905             8     Successful Poll
    4       14      -0.264905             4     Refine Mesh

The entry Successful Poll below Method indicates that the current iteration was successful. For
example, the poll at iteration 2 is successful. As a result, the objective function value of the point
computed at iteration 2, displayed below f(x), is less than the value at iteration 1.

At iteration 4, the entry Refine Mesh tells you that the poll is unsuccessful. As a result, the function
value at iteration 4 remains unchanged from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll and halves it after
each unsuccessful poll.

More Iterations
The pattern search performs 60 iterations before stopping. The following plot shows the points in the
sequence computed in the first 13 iterations of the pattern search.
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The numbers below the points indicate the first iteration at which the algorithm finds the point. The
plot only shows iteration numbers corresponding to successful polls, because the best point doesn't
change after an unsuccessful poll. For example, the best point at iterations 4 and 5 is the same as at
iteration 3.

Poll Method
At each iteration, the pattern search polls the points in the current mesh—that is, it computes the
objective function at the mesh points to see if there is one whose function value is less than the
function value at the current point. “How Pattern Search Polling Works” on page 6-26 provides an
example of polling. You can specify the pattern that defines the mesh by the PollMethod option. The
default pattern, 'GPSPositiveBasis2N', consists of the following 2N directions, where N is the
number of independent variables for the objective function.

[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 0 0...0]
[0 –1 0...0]
[0 0 0...–1].

For example, if the objective function has three independent variables, the GPS Positive basis
2N, consists of the following six vectors.

[1 0 0]
[0 1 0]
[0 0 1]
[–1 0 0]
[0 –1 0]
[0 0 –1].

Alternatively, you can set the PollMethod option to 'GPSPositiveBasisNp1', the pattern
consisting of the following N + 1 directions.

[1 0 0...0]
[0 1 0...0]
...
[0 0 0...1]
[–1 –1 –1...–1].

For example, if objective function has three independent variables, the 'GPSPositiveBasisNp1'
consists of the following four vectors.

[1 0 0]
[0 1 0]
[0 0 1]
[–1 –1 –1].

A pattern search will sometimes run faster using 'GPSPositiveBasisNp1' rather than the
'GPSPositiveBasis2N' as the PollMethod, because the algorithm searches fewer points at each
iteration. Although not being addressed in this example, the same is true when using the
'MADSPositiveBasisNp1' over the 'MADSPositiveBasis2N', and similarly for GSS. For
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example, if you run a pattern search on the linearly constrained example in “Constrained
Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67, the algorithm
performs 1588 function evaluations with 'GPSPositiveBasis2N', the default PollMethod, but
only 877 function evaluations using 'GPSPositiveBasisNp1'. For more detail, see “Compare the
Efficiency of Poll Options” on page 6-57.

However, if the objective function has many local minima, using 'GPSPositiveBasis2N' as the
PollMethod might avoid finding a local minimum that is not the global minimum, because the search
explores more points around the current point at each iteration.

Complete Poll
By default, if the pattern search finds a mesh point that improves the value of the objective function,
it stops the poll and sets that point as the current point for the next iteration. When this occurs, some
mesh points might not get polled. Some of these unpolled points might have an objective function
value that is even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes preferable to make the pattern
search poll all the mesh points at each iteration and choose the one with the best objective function
value. This enables the pattern search to explore more points at each iteration and thereby
potentially avoid a local minimum that is not the global minimum. Have the pattern search poll the
entire mesh setting the UseCompletePoll option to true.

Stopping Conditions for the Pattern Search
The algorithm stops when any of the following conditions occurs:

• The mesh size is less than the MeshTolerance option.
• The number of iterations performed by the algorithm reaches the value of the MaxIterations

option.
• The total number of objective function evaluations performed by the algorithm reaches the value

of the MaxFunctionEvaluations option.
• The time, in seconds, the algorithm runs until it reaches the value of the MaxTime option.
• After a successful poll, the distance between the point found in the previous two iterations and the

mesh size are both less than the StepTolerance option.
• After a successful poll, the change in the objective function in the previous two iterations is less

than the FunctionTolerance option and the mesh size is less than the StepTolerance option.

The ConstraintTolerance option is not used as stopping criterion. It determines the feasibility
with respect to nonlinear constraints.

The MADS algorithm uses an additional parameter called the poll parameter, Δp, in the mesh size
stopping criterion:

Δp =
N Δm for positive basis N + 1 poll

Δm for positive basis 2N poll,

where Δm is the mesh size. The MADS stopping criterion is:

Δp ≤ MeshTolerance.
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Robustness of Pattern Search
The pattern search algorithm is robust in relation to objective function failures. This means
patternsearch tolerates function evaluations resulting in NaN, Inf, or complex values. When the
objective function at the initial point x0 is a real, finite value, patternsearch treats poll point
failures as if the objective function values are large, and ignores them.

For example, if all points in a poll evaluate to NaN, patternsearch considers the poll unsuccessful,
shrinks the mesh, and reevaluates. If even one point in a poll evaluates to a smaller value than any
seen yet, patternsearch considers the poll successful, and expands the mesh.

See Also

More About
• “Optimize Using the GPS Algorithm” on page 6-3
• “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67
• “Vectorize the Objective and Constraint Functions” on page 6-79
• “Search and Poll” on page 6-39
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Searching and Polling
In this section...
“Definition of Search” on page 6-34
“How to Use a Search Method” on page 6-35
“Search Types” on page 6-36
“When to Use Search” on page 6-37

Definition of Search
In patternsearch, a search is an algorithm that runs before a poll. The search attempts to locate a
better point than the current point. (Better means one with lower objective function value.) If the
search finds a better point, the better point becomes the current point, and no polling is done at that
iteration. If the search does not find a better point, patternsearch performs a poll.

By default, patternsearch does not use search. To search, see “How to Use a Search Method” on
page 6-35.

The figure “patternsearch With a Search Method” on page 6-35 contains a flow chart of direct
search including using a search method.
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patternsearch With a Search Method

Iteration limit applies to all built-in search methods except those that are poll methods. If you select
an iteration limit for the search method, the search is enabled until the iteration limit is reached.
Afterward, patternsearch stops searching and only polls.

How to Use a Search Method
To use search in patternsearch:

• In the Optimize Live Editor task, select a search function in Specify solver options >
Algorithm settings > Search function.
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• At the command line, create options with a search method using optimoptions. For example, to
use Latin hypercube search:

opts = optimoptions('patternsearch','SearchFcn',@searchlhs);

For more information, including a list of all built-in search methods, consult the patternsearch
function reference page, and the “Search Options” on page 17-12 section of the options
reference.

You can write your own search method. Use the syntax described in “Structure of the Search
Function” on page 17-14. To use your search method in a pattern search, give its function handle as
the Custom Function (SearchFcn) option.

Search Types
• Poll methods — You can use any poll method as a search algorithm. patternsearch conducts one

poll step as a search. For this type of search to be beneficial, your search type should be different
from your poll type. (patternsearch does not search if the selected search method is the same
as the poll type.) Therefore, use a MADS search with a GSS or GPS poll, or use a GSS or GPS
search with a MADS poll.

• fminsearch, also called Nelder-Mead — fminsearch is for unconstrained problems only.
fminsearch runs to its natural stopping criteria; it does not take just one step. Therefore, use
fminsearch for just one iteration. This is the default setting. To change settings, see “Search
Options” on page 17-12.

• ga — ga runs to its natural stopping criteria; it does not take just one step. Therefore, use ga for
just one iteration. This is the default setting. To change settings, see “Search Options” on page 17-
12.

• Latin hypercube search — Described in “Search Options” on page 17-12. By default, searches
15n points, where n is the number of variables, and only searches during the first iteration. To
change settings, see “Search Options” on page 17-12.
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When to Use Search
There are two main reasons to use a search method:

• To speed an optimization (see “Search Methods for Increased Speed” on page 6-37)
• To obtain a better local solution, or to obtain a global solution on page 1-25 (see “Search Methods

for Better Solutions” on page 6-37)

Search Methods for Increased Speed

Generally, you do not know beforehand whether a search method speeds an optimization or not. So
try a search method when:

• You are performing repeated optimizations on similar problems, or on the same problem with
different parameters.

• You can experiment with different search methods to find a lower solution time.

Search does not always speed an optimization. For one example where it does, see “Search and Poll”
on page 6-39.

Search Methods for Better Solutions

Since search methods run before poll methods, using search can be equivalent to choosing a different
starting point for your optimization. This comment holds for the Nelder-Mead, ga, and Latin
hypercube search methods, all of which, by default, run once at the beginning of an optimization. ga
and Latin hypercube searches are stochastic, and can search through several basins of attraction on
page 1-26.

See Also

More About
• “Search and Poll” on page 6-39
• “Polling Types” on page 6-55
• “Setting Solver Tolerances” on page 6-38
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Setting Solver Tolerances
Tolerance refers to how small a parameter, such a mesh size, can become before the search is halted
or changed in some way. You can specify the value of the following tolerances using optimoptions
or the Optimize Live Editor task.

• MeshTolerance — When the current mesh size is less than the value of MeshTolerance, the
algorithm halts.

• StepTolerance — After a successful poll, if the distance from the previous best point to the
current best point is less than the value of StepTolerance, the algorithm halts.

• FunctionTolerance — After a successful poll, if the difference between the function value at the
previous best point and function value at the current best point is less than the value of
FunctionTolerance, the algorithm halts.

• ConstraintTolerance (not a stopping condition) — The algorithm treats a point to be feasible if
nonlinear constraint violation is less than ConstraintTolerance.

See Also

More About
• “Set Options” on page 6-53
• “How Pattern Search Polling Works” on page 6-26
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Search and Poll
In addition to polling the mesh points, the pattern search algorithm can perform an optional step at
every iteration, called search. At each iteration, the search step applies another optimization method
to the current point. If this search does not improve the current point, the poll step is performed.

Search Using a Poll Method

The following example illustrates the use of a search method on the problem described in
“Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67. In this
case, the search method is the GSS Positive Basis 2N poll. For comparison, first run the problem
without a search method.

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
options = optimoptions('patternsearch',...
    'PlotFcn',{@psplotbestf,@psplotfuncount});
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);

Optimization terminated: mesh size less than options.MeshTolerance.

To use the GSS Positive Basis 2N poll as a search method, change the SearchFcn option.
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rng default % For reproducibility
options.SearchFcn = @GSSPositiveBasis2N;
[x2,fval2,exitflag2,output2] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);

Optimization terminated: mesh size less than options.MeshTolerance.

Both optimizations reached the same objective function value. Using the search method reduces the
number of function evaluations and the number of iterations.

table([output.funccount;output2.funccount],[output.iterations;output2.iterations],...
    'VariableNames',["Function Evaluations" "Iterations"],...
    'RowNames',["Without Search" "With Search"])

ans=2×2 table
                      Function Evaluations    Iterations
                      ____________________    __________

    Without Search            758                 84    
    With Search               667                 93    

Search Using a Different Solver

patternsearch takes a long time to minimize Rosenbrock's function. The function is

f (x) = 100 x2− x1
2 2 + (1− x1)2 .
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Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear Problem, Solver-
Based”. The minimum of Rosenbrock's function is 0, attained at the point [1,1]. Because
patternsearch is not efficient at minimizing this function, use a different search method to help.

Create the objective function.

dejong2fcn = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

The default maximum number of iterations for patternsearch with two variables is 200, and the
default maximum number of function evaluations is 4000. Increase these values to
MaxFunctionEvaluations = 5000 and MaxIterations = 2000.

opts = optimoptions('patternsearch','MaxFunctionEvaluations',5000,'MaxIterations',2000);

Run patternsearch starting from [-1.9 2].

[x,feval,eflag,output] = patternsearch(dejong2fcn,...
    [-1.9,2],[],[],[],[],[],[],[],opts);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.

disp(feval)

    0.8560

disp(output.funccount)

        5000

The optimization did not complete even after 5000 function evaluations, and so the result is not very
close to the optimal value of 0.

Set the options to use fminsearch as the search method, using the default number of function
evaluations and iterations.

opts = optimoptions('patternsearch',opts,'SearchFcn',@searchneldermead);

Rerun the optimization.

[x2,feval2,eflag2,output2] = patternsearch(dejong2fcn,...
    [-1.9,2],[],[],[],[],[],[],[],opts);

Optimization terminated: mesh size less than options.MeshTolerance.

disp(feval2)

   4.0686e-10

disp(output2.funccount)

   291
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The objective function value at the solution is much better (lower) when using this search method,
and the number of function evaluations is much lower. fminsearch is more efficient at getting close
to the minimum of Rosenbrock's function.

See Also

More About
• “Polling Types” on page 6-55
• “Vectorize the Objective and Constraint Functions” on page 6-79
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Nonlinear Constraint Solver Algorithm
The pattern search algorithm uses the Augmented Lagrangian Pattern Search (ALPS) algorithm to
solve nonlinear constraint problems. The optimization problem solved by the ALPS algorithm is

min
x

f (x)

such that

ci(x) ≤ 0, i = 1…m
ceqi(x) = 0, i = m + 1…mt

A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub,

where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality constraints,
m is the number of nonlinear inequality constraints, and mt is the total number of nonlinear
constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem with nonlinear constraints,
linear constraints, and bounds. In this approach, bounds and linear constraints are handled
separately from nonlinear constraints. A subproblem is formulated by combining the objective
function and nonlinear constraint function using the Lagrangian and the penalty parameters. A
sequence of such optimization problems are approximately minimized using a pattern search
algorithm such that the linear constraints and bounds are satisfied.

Each subproblem solution represents one iteration. The number of function evaluations per iteration
is therefore much higher when using nonlinear constraints than otherwise.

A subproblem formulation is defined as

Θ(x, λ, s, ρ) = f (x)− ∑
i = 1

m
λisilog(si− ci(x)) + ∑

i = m + 1

mt
λiceqi(x) + ρ

2 ∑
i = m + 1

mt
ceqi(x)2,

where

• The components λi of the vector λ are nonnegative and are known as Lagrange multiplier
estimates

• The elements si of the vector s are nonnegative shifts
• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The pattern search minimizes a sequence of subproblems, each of which is an approximation of the
original problem. Each subproblem has a fixed value of λ, s, and ρ. When the subproblem is
minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are
updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This
results in a new subproblem formulation and minimization problem. These steps are repeated until
the stopping criteria are met.

Each subproblem solution represents one iteration. The number of function evaluations per iteration
is therefore much higher when using nonlinear constraints than otherwise.
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For a complete description of the algorithm, see the following references:
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See Also

More About
• “Constrained Minimization Using Pattern Search, Solver-Based” on page 6-13
• “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67
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Custom Plot Function
In this section...
“About Custom Plot Functions” on page 6-45
“Creating the Custom Plot Function” on page 6-45
“Set Up the Problem” on page 6-46
“Run the Optimization with Custom Plot Function” on page 6-46
“How the Plot Function Works” on page 6-47

About Custom Plot Functions
To use a plot function other than those included with the software, you can write your own custom
plot function that is called at each iteration of the pattern search to create the plot. This example
shows how to create a plot function that displays the logarithmic change in the best objective
function value from the previous iteration to the current iteration. More plot function details are
available in “Plot Options” on page 17-23.

Creating the Custom Plot Function
To create the plot function for this example, copy and paste the following code into a new function file
in the MATLAB Editor:
function stop = psplotchange(optimvalues, flag)
% PSPLOTCHANGE Plots the change in the best objective function 
% value from the previous iteration.
  
% Best objective function value in the previous iteration
persistent last_best
 
stop = false;
if(strcmp(flag,'init')) 
        set(gca,'Yscale','log'); %Set up the plot
        hold on;
        xlabel('Iteration'); 
        ylabel('Log Change in Values');
        title(['Change in Best Function Value']);
end
 
% Best objective function value in the current iteration
best = min(optimvalues.fval);  
 
 % Set last_best to best
if optimvalues.iteration == 0
last_best = best;
        
else
        %Change in objective function value
             change = last_best - best; 
        plot(optimvalues.iteration, change, '.r');
end

Save the file as psplotchange.m in a folder on the MATLAB path. The code is explained in “How the
Plot Function Works” on page 6-47.
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Set Up the Problem
The problem is the same as “Constrained Minimization Using patternsearch and Optimize Live Editor
Task” on page 6-67. To set up the problem:

1 Enter the following at the MATLAB command line:

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];

2 Because this is a linearly constrained problem, set the PollMethod option to
'GSSPositiveBasis2N'. Include both the @psplotbestf built-in plot function and the custom
plot function @psplotchange in the options.

options = optimoptions('patternsearch',...
    'PlotFcn',{@psplotbestf,@psplotchange},...
    'PollMethod','GSSPositiveBasis2N');

Run the Optimization with Custom Plot Function
Run the example by calling patternsearch starting from x0.

[x,fval] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);
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Because the scale of the y-axis in the lower custom plot is logarithmic, the plot shows only changes
that are greater than 0.

How the Plot Function Works
The plot function uses information contained in the following structures.

• optimvalues — Current state of the solver, a structure
• flag — Current status of the algorithm, a character vector

The most important statements of the custom plot function, psplotchange.m, are summarized in
the following table.

Custom Plot Function Statements

Statement Description
persistent last_best Creates the persistent variable last_best, the

best objective function value in the previous
generation. Persistent variables are preserved
over multiple calls to the plot function.

set(gca,'Yscale','log') Sets up the plot before the algorithm starts.
best = min(optimvalues.fval) Sets best equal to the minimum objective

function value. The field optimvalues.fval
contains the objective function value in the
current iteration. The variable best is the
minimum objective function value. For a complete
description of the fields of the structure
optimvalues, see “Structure of the Plot
Functions” on page 17-8.

change = last_best - best Sets the variable change to the best objective
function value at the previous iteration minus the
best objective function value in the current
iteration.

plot(optimvalues.iteration, change,
'.r')

Plots the variable change at the current objective
function value, for the current iteration contained
inoptimvalues.iteration.

See Also

More About
• “Plot Options” on page 17-23
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Pattern Search Climbs Mount Washington
This example shows visually how pattern search optimizes a function. The function is the height of
the terrain near Mount Washington, as a function of the x-y location. In order to find the top of Mount
Washington, we minimize the objective function that is the negative of the height. (The Mount
Washington in this example is the highest peak in the northeastern United States.)

The US Geological Survey provides data on the height of the terrain as a function of the x-y location
on a grid. In order to be able to evaluate the height at an arbitrary point, the objective function
interpolates the height from nearby grid points.

It would be faster, of course, to simply find the maximum value of the height as specified on the grid,
using the max function. The point of this example is to show how the pattern search algorithm
operates; it works on functions defined over continuous regions, not just grid points. Also, if it is
computationally expensive to evaluate the objective function, then performing this evaluation on a
complete grid, as required by the max function, will be much less efficient than using the pattern
search algorithm, which samples a small subset of grid points.

How Pattern Search Works

Pattern search finds a local minimum of an objective function by the following method, called polling.
In this description, words describing pattern search quantities are in bold. The search starts at an
initial point, which is taken as the current point in the first step:

1. Generate a pattern of points, typically plus and minus the coordinate directions, times a mesh
size, and center this pattern on the current point.

2. Evaluate the objective function at every point in the pattern.

3. If the minimum objective in the pattern is lower than the value at the current point, then the poll
is successful, and the following happens:

3a. The minimum point found becomes the current point.

3b. The mesh size is doubled.

3c. The algorithm proceeds to Step 1.

4. If the poll is not successful, then the following happens:

4a. The mesh size is halved.

4b. If the mesh size is below a threshold, the iterations stop.

4c. Otherwise, the current point is retained, and the algorithm proceeds at Step 1.

This simple algorithm, with some minor modifications, provides a robust and straightforward method
for optimization. It requires no gradients of the objective function. It lends itself to constraints, too,
but this example and description deal only with unconstrained problems.

Preparing the Pattern Search

To prepare the pattern search, load the data in mtWashington.mat, which contains the USGS data
on a 472-by-345 grid. The elevation, Z, is given in feet. The vectors x and y contain the base values of
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the grid spacing in the east and north directions respectively. The data file also contains the starting
point for the search, X0.

load mtWashington

There are three MATLAB® files that perform the calculation of the objective function, and the
plotting routines. They are:

1. terrainfun, which evaluates the negative of height at any x-y position. terrainfun uses the
MATLAB function interp2 to perform two-dimensional linear interpolation. It takes the Z data and
enables evaluation of the negative of the height at all x-y points.

2. psoutputwashington, which draws a 3-d rendering of Mt. Washington. In addition, as the run
progresses, it draws spheres around each point that is better (higher) than previously-visited points.

3. psplotwashington, which draws a contour map of Mt. Washington, and monitors a slider that
controls the speed of the run. It shows where the pattern search algorithm looks for optima by
drawing + signs at those points. It also draws spheres around each point that is better than
previously-visited points.

In the example, patternsearch uses terrainfun as its objective function, psoutputwashington
as an output function, and psplotwashington as a plot function. We prepare the functions to be
passed to patternsearch in anonymous function syntax:

mtWashObjectiveFcn = @(xx) terrainfun(xx, x, y, Z);
mtWashOutputFcn    = @(xx,arg1,arg2) psoutputwashington(xx,arg1,arg2, x, y, Z);
mtWashPlotFcn      = @(xx,arg1) psplotwashington(xx,arg1, x, y, Z);

Pattern Search Options Settings

Next, we create options for pattern search. This set of options has the algorithm halt when the mesh
size shrinks below 1, keeps the mesh unscaled (the same size in each direction), sets the initial mesh
size to 10, and sets the output function and plot function:

options = optimoptions(@patternsearch,'MeshTolerance',1,'ScaleMesh',false, ...
    'InitialMeshSize',10,'UseCompletePoll',true,'PlotFcn',mtWashPlotFcn, ...
    'OutputFcn',mtWashOutputFcn,'UseVectorized',true);

Observing the Progress of Pattern Search

When you run this example you see two windows. One shows the points the pattern search algorithm
chooses on a two-dimensional contour map of Mount Washington. This window has a slider that
controls the delay between iterations of the algorithm (when it returns to Step 1 in the description of
how pattern search works). Set the slider to a low position to speed the run, or to a high position to
slow the run.

The other window shows a three-dimensional plot of Mount Washington, along with the steps the
pattern search algorithm makes. You can rotate this plot while the run progresses to get different
views.

[xfinal ffinal] = patternsearch(mtWashObjectiveFcn,X0,[],[],[],[],[], ...
    [],[],options)

Optimization terminated: mesh size less than options.MeshTolerance.
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xfinal = 1×2

      316130     4904295

ffinal = -6280

The final point, xfinal, shows where the pattern search algorithm finished; this is the x-y location of
the top of Mount Washington. The final objective function, ffinal, is the negative of the height of
Mount Washington, 6280 feet. (This should be 6288 feet according to the Mount Washington
Observatory).

Examine the files terrainfun.m, psoutputwashington.m, and psplotwashington.m to see how
the interpolation and graphics work.

There are many options available for the pattern search algorithm. For example, the algorithm can
take the first point it finds that is an improvement, rather than polling all the points in the pattern. It
can poll the points in various orders. And it can use different patterns for the poll, both deterministic
and random. Consult the Global Optimization Toolbox User's Guide for details.

See Also

More About
• “How Pattern Search Polling Works” on page 6-26
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• “Custom Plot Function” on page 6-45
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Set Options
You can specify any available patternsearch options by passing options as an input argument to
patternsearch using the syntax

[x,fval] = patternsearch(@fitnessfun,nvars, ... 
            A,b,Aeq,beq,lb,ub,nonlcon,options)

Pass in empty brackets [] for any constraints that do not appear in the problem.

Create options using the optimoptions function.

options = optimoptions(@patternsearch)

options = 

  patternsearch options:

   Set properties:
     No options set.

   Default properties:
            AccelerateMesh: 0
       ConstraintTolerance: 1.0000e-06
                   Display: 'final'
         FunctionTolerance: 1.0000e-06
           InitialMeshSize: 1
    MaxFunctionEvaluations: '2000*numberOfVariables'
             MaxIterations: '100*numberOfVariables'
                   MaxTime: Inf
     MeshContractionFactor: 0.5000
       MeshExpansionFactor: 2
             MeshTolerance: 1.0000e-06
                 OutputFcn: []
                   PlotFcn: []
                PollMethod: 'GPSPositiveBasis2N'
        PollOrderAlgorithm: 'consecutive'
                 ScaleMesh: 1
                 SearchFcn: []
             StepTolerance: 1.0000e-06
           UseCompletePoll: 0
         UseCompleteSearch: 0
               UseParallel: 0
             UseVectorized: 0

The patternsearch function uses these default values if you do not pass in options as an input
argument.

The value of each option is stored in a field of options, such as options.MeshExpansionFactor.
You can display any of these values by entering options followed by the name of the field. For
example, to display the mesh expansion factor for the pattern search, enter

options.MeshExpansionFactor

ans =
    2
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To create options with a field value that is different from the default, use optimoptions. For
example, to change the mesh expansion factor to 3 instead of its default value 2, enter

options = optimoptions('patternsearch','MeshExpansionFactor',3);

This creates options with all values set to defaults except for MeshExpansionFactor, which is set
to 3.

If you now call patternsearch with the argument options, the pattern search uses a mesh
expansion factor of 3.

If you subsequently decide to change another field in options, such as setting PlotFcn to
@psplotmeshsize, which plots the mesh size at each iteration, call optimoptions with the syntax

options = optimoptions(options,'PlotFcn',@psplotmeshsize)

This preserves the current values of all fields of options except for PlotFcn, which is changed to
@plotmeshsize. Note that if you omit the options input argument, optimoptions resets
MeshExpansionFactor to its default value, which is 2.

You can also set both MeshExpansionFactor and PlotFcn with the single command

options = optimoptions('patternsearch','MeshExpansionFactor',3,'PlotFcn',@psplotmeshsize)

See Also
patternsearch | optimoptions

More About
• “Pattern Search Options” on page 17-7
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Polling Types

In this section...
“Using a Complete Poll in a Generalized Pattern Search” on page 6-55
“Compare the Efficiency of Poll Options” on page 6-57

Using a Complete Poll in a Generalized Pattern Search
As an example, consider the following function.

f x1, x2 =
x1

2 + x2
2− 25 for x1

2 + x2
2 ≤ 25

x1
2 + x2− 9 2− 16 for x1

2 + x2− 9 2 ≤ 16
0 otherwise.

The following figure shows a plot of the function.

The global minimum of the function occurs at (0, 0), where its value is -25. However, the function also
has a local minimum at (0, 9), where its value is -16.

To create a file that computes the function, copy and paste the following code into a new file in the
MATLAB Editor.
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function z = poll_example(x)
if x(1)^2 + x(2)^2 <= 25
    z = x(1)^2 + x(2)^2 - 25;
elseif x(1)^2 + (x(2) - 9)^2 <= 16
    z = x(1)^2 + (x(2) - 9)^2 - 16;
else z = 0;
end

Save the file as poll_example.m in a folder on the MATLAB path.

To run a pattern search on the function, enter the following.

options = optimoptions('patternsearch','Display','iter');
[x,fval] = patternsearch(@poll_example,[0,5],...
    [],[],[],[],[],[],[],options)

MATLAB returns a table of iterations and the solution.

x =

     0     9

fval =

   -16

The algorithm begins by a=evaluating the function at the initial point, f(0, 5) = 0. The poll evaluates
the following during its first iterations.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective function value is less than at
the initial point, it stops polling the current mesh and sets the current point at the next iteration to (0,
6). Consequently, the search moves toward the local minimum at (0, 9) at the first iteration. You see
this by looking at the first two lines of the command line display.

Iter     f-count     f(x)      MeshSize     Method
    0        1         0             1      
    1        3        -7             2     Successful Poll

Note that the pattern search performs only two evaluations of the objective function at the first
iteration, increasing the total function count from 1 to 3.

Next, set UseCompletePoll to true and rerun the optimization.

options.UseCompletePoll = true;
[x,fval] = patternsearch(@poll_example,[0,5],...
    [],[],[],[],[],[],[],options);

This time, the pattern search finds the global minimum at (0, 0). The difference between this run and
the previous one is that with UseCompletePoll set to true, at the first iteration the pattern search
polls all four mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

6 Using Direct Search

6-56



f((0, 5) + (0, 1)) = f(0, 6) = -6

f((0, 5) + (-1, 0)) = f(-1, 5) = 0

f((0, 5) + (0, -1)) = f(0, 4) = -9

Because the last mesh point has the lowest objective function value, the pattern search selects it as
the current point at the next iteration. The first two lines of the command-line display show this.

Iter     f-count     f(x)      MeshSize     Method
    0        1         0             1      
    1        5        -9             2     Successful Poll

In this case, the objective function is evaluated four times at the first iteration. As a result, the
pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when Complete poll is set to Off
with the sequence when Complete poll is On.

Compare the Efficiency of Poll Options
This example shows how several poll options interact in terms of iterations and total function
evaluations. The main results are:

• GSS is more efficient than GPS or MADS for linearly constrained problems.
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• Whether setting UseCompletePoll to true increases efficiency or decreases efficiency is
unclear, although it affects the number of iterations.

• Similarly, whether having a 2N poll is more or less efficient than having an Np1 poll is also unclear.
The most efficient poll is GSS Positive Basis Np1 with Complete poll set to on. The least
efficient is MADS Positive Basis Np1 with Complete poll set to on.

Note The efficiency of an algorithm depends on the problem. GSS is efficient for linearly constrained
problems. However, predicting the efficiency implications of the other poll options is difficult, as is
knowing which poll type works best with other constraints.

Problem setup

The problem is the same as in “Solve Using patternsearch in Optimize Live Editor Task” on page 6-
68. This linearly constrained problem uses the lincontest7 file that comes with the toolbox:

1 Enter the following into your MATLAB workspace.

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];

2 Set the initial options and objective function.

options = optimoptions('patternsearch',...
    'PollMethod','GPSPositiveBasis2N',...
    'PollOrderAlgorithm','consecutive',...
    'UseCompletePoll',false);
fun = @lincontest7;

3 Run the optimization, naming the output structure outputgps2noff.

[x,fval,exitflag,outputgps2noff] = patternsearch(fun,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);

4 Set options to use a complete poll.

options.UseCompletePoll = true;
5 Run the optimization, naming the output structure outputgps2non.

[x,fval,exitflag,outputgps2non] = patternsearch(fun,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);

6 Continue in a like manner to create output structures for the other poll methods with
UseCompletePoll set true and false: outputgss2noff, outputgss2non,
outputgssnp1off, outputgssnp1on, outputmads2noff, outputmads2non,
outputmadsnp1off, and outputmadsnp1on.

Examine the Results

You have the results of 12 optimization runs. The following table shows the efficiency of the runs,
measured in total function counts and in iterations. Your MADS results could differ, since MADS is a
stochastic algorithm.

Algorithm Function Count Iterations
GPS2N, complete poll off 1462 136
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Algorithm Function Count Iterations
GPS2N, complete poll on 1396 96
GPSNp1, complete poll off 864 118
GPSNp1, complete poll on 1007 104
GSS2N, complete poll off 758 84
GSS2N, complete poll on 889 74
GSSNp1, complete poll off 533 94
GSSNp1, complete poll on 491 70
MADS2N, complete poll off 922 162
MADS2N, complete poll on 2285 273
MADSNp1, complete poll off 1155 201
MADSNp1, complete poll on 1651 201

To obtain, say, the first row in the table, enter gps2noff.output.funccount and
gps2noff.output.iterations. You can also examine options in the Variables editor by double-
clicking the options in the Workspace Browser, and then double-clicking the output structure.
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Alternatively, you can access the data from the output structures.

[outputgps2noff.funccount,outputgps2noff.iterations]

ans =

        1462         136

The main results gleaned from the table are:

• Setting UseCompletePoll to true generally lowers the number of iterations for GPS and GSS,
but the change in number of function evaluations is unpredictable.

• Setting UseCompletePoll to true does not necessarily change the number of iterations for
MADS, but substantially increases the number of function evaluations.

• The most efficient algorithm/options settings, with efficiency meaning lowest function count:

1 'GSSPositiveBasisNp1' with UseCompletePoll set to true (function count 491)
2 'GSSPositiveBasisNp1' with UseCompletePoll set to false (function count 533)
3 'GSSPositiveBasis2N' with UseCompletePoll set to false (function count 758)
4 'GSSPositiveBasis2N' with UseCompletePoll set to true (function count 889)

The other poll methods had function counts exceeding 900.
• For this problem, the most efficient poll is 'GSSPositiveBasisNp1' with UseCompletePoll

set to true, although the UseCompletePoll setting makes only a small difference. The least
efficient poll is 'MADSPositiveBasis2N' with UseCompletePoll set to true. In this case, the
UseCompletePoll setting makes a substantial difference.

See Also

More About
• “How Pattern Search Polling Works” on page 6-26
• “Searching and Polling” on page 6-34

6 Using Direct Search

6-60



• “Search and Poll” on page 6-39
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Set Mesh Options
In this section...
“Mesh Expansion and Contraction” on page 6-62
“Mesh Accelerator” on page 6-65

Mesh Expansion and Contraction
The MeshExpansionFactor and MeshContractionFactor options control how much the mesh
size is expanded or contracted at each iteration. With the default MeshExpansionFactor value of 2,
the pattern search multiplies the mesh size by 2 after each successful poll. With the default
MeshContractionFactor value of 0.5, the pattern search multiplies the mesh size by 0.5 after
each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the pattern search by setting
@psplotmeshsize as the PlotFcn option. To also display the values of the mesh size and objective
function at the command line, set the Display option to 'iter'.

For example, set up the problem described in “Constrained Minimization Using patternsearch and
Optimize Live Editor Task” on page 6-67 as follows:

1 Enter the following at the command line:

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];

2 Create options to use the GSSPositiveBasis2N poll method, give iterative display, and plot the
mesh size.

options = optimoptions('patternsearch',...
    'PollMethod','GSSPositiveBasis2N',...
    'PlotFcn',@psplotmeshsize,...
    'Display','iter');

3 Run the optimization.

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);
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4

To see the changes in mesh size more clearly, change the y-axis to logarithmic scaling as follows:

1 Select Axes Properties from the Edit menu in the plot window.
2 In the Properties Editor, select the Rulers tab.
3 Set YScale to Log.

Updating these settings in the MATLAB Property Editor shows the plot in the following figure.
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The first 5 iterations result in successful polls, so the mesh sizes increase steadily during this time.
You can see that the first unsuccessful poll occurs at iteration 6 by looking at the command-line
display.

Iter     f-count          f(x)      MeshSize     Method
    0        1        2273.76             1      
    1        2        2251.69             2     Successful Poll
    2        3        2209.86             4     Successful Poll
    3        4        2135.43             8     Successful Poll
    4        5        2023.48            16     Successful Poll
    5        6        1947.23            32     Successful Poll
    6       15        1947.23            16     Refine Mesh

Note that at iteration 5, which is successful, the mesh size doubles for the next iteration. But at
iteration 6, which is unsuccessful, the mesh size is multiplied 0.5.

To see how MeshExpansionFactor and MeshContractionFactor affect the pattern search, set
MeshExpansionFactor to 3.0 and set MeshContractionFactor to 2/3.

options = optimoptions(options,'MeshExpansionFactor',3.0,...
    'MeshContractionFactor',2/3);
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],options);

The final objective function value is approximately the same as with the previous settings, but the
solver takes longer to reach that point.
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When you change the scaling of the y-axis to logarithmic, the mesh size plot appears as shown in the
following figure.

Note that the mesh size increases faster with MeshExpansionFactor set to 3.0, as compared with
the default value of 2.0, and decreases more slowly with MeshContractionFactor set to 2/3, as
compared with the default value of 0.5.

Mesh Accelerator
The mesh accelerator can make a pattern search converge faster to an optimal point by reducing the
number of iterations required to reach the mesh tolerance. When the mesh size is below a certain
value, the pattern search contracts the mesh size by a factor smaller than the
MeshContractionFactor factor. Mesh accelerator applies only to the GPS and GSS algorithms.

Note For best results, use the mesh accelerator for problems in which the objective function is not
too steep near the optimal point, or you might lose some accuracy. For differentiable problems, this
means that the absolute value of the derivative is not too large near the solution.

To use the mesh accelerator, set the AccelerateMesh option to true.

For example, set up the problem described in “Constrained Minimization Using patternsearch and
Optimize Live Editor Task” on page 6-67 as follows:
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1 Enter the following at the command line:

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];

2 Create options, including the mesh accelerator.

options = optimoptions('patternsearch',...
    'PollMethod','GSSPositiveBasis2N',...
    'Display','iter','AccelerateMesh',true);

3 Run the optimization.

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,... 
   Aineq,bineq,Aeq,beq,[],[],[],options);

patternsearch completes in 78 iterations, compared to 84 iterations when the mesh accelerator is
not on. You can see the effect of the mesh accelerator in the iterative display. Run the example with
and without mesh acceleration. The mesh sizes are the same until iteration 70, but differ at iteration
71. The MATLAB Command Window displays the following lines for iterations 70 and 71 without the
accelerator.

Iter     f-count        f(x)       MeshSize      Method
   70      618        1919.54     6.104e-05     Refine Mesh
   71      630        1919.54     3.052e-05     Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of MeshContractionFactor.

For comparison, the Command Window displays the following lines for the same iteration numbers
with the accelerator.

Iter     f-count        f(x)       MeshSize      Method
   70      618        1919.54     6.104e-05     Refine Mesh
   71      630        1919.54     1.526e-05     Refine Mesh

In this case the mesh size is multiplied by 0.25.

See Also

More About
• “Effects of Pattern Search Options” on page 6-17
• “Pattern Search Options” on page 17-7
• “How Pattern Search Polling Works” on page 6-26
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Constrained Minimization Using patternsearch and Optimize
Live Editor Task

In this section...
“Problem Description” on page 6-67
“Solve Using patternsearch in Optimize Live Editor Task” on page 6-68
“Solve Using patternsearch at the Command Line” on page 6-74

This example shows how to solve a constrained minimization problem using both the Optimize Live
Editor task, which offers a visual approach, and the command line.

Problem Description
The problem involves using linear and nonlinear constraints when minimizing a nonlinear function
with patternsearch. The objective function is

F(x) = 1
2xTHx + f Tx,

where

H = [36 17 19 12  8 15; 
     17 33 18 11  7 14; 
     19 18 43 13  8 16;
     12 11 13 18  6 11; 
      8  7  8  6  9  8; 
     15 14 16 11  8 29];

f = [ 20 15 21 18 29 24 ]';
 
F = @(x)0.5*x'*H*x + f'*x;

This objective function is also included with your software in the file lincontest7.m.

The linear constraints are

A ⋅ x ≤ b,
Aeq ⋅ x = beq,

where

A = [-8 7 3 -4 9 0];
b = 7;
Aeq = [7 1 8 3 3 3;
      5 0 -5 1 -5 8;
     -2 -6 7 1 1 9;
      1 -1 2 -2 3 -3];
beq = [84 62 65 1]';

Enter the preceding code sections to get the problem variables into your workspace before
proceeding.
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Solve Using patternsearch in Optimize Live Editor Task
1 Create a new live script by clicking the New Live Script button in the File section on the Home

tab.

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.
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3 Specify Problem Type

In the Specify problem type section of the task, click the Objective > Nonlinear button.
4 Click the Constraints > Linear inequality and Linear equality buttons.
5 Select Solver > patternsearch - Pattern search.
6 Select Problem Data

Enter the problem variables in the Select problem data section of the task. To specify the
objective function, select Objective function > Function handle and choose F.

7 Set the inequality constraints to A and b. Set the equality constraints to Aeq and beq.
8 To set the initial point, you first need to create a new section above the task. To do so, click the

Section Break button on the Insert tab. In the new section above the task, enter the following
code for the initial point.

x0 = [2 1 0 9 1 0]';
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9 Run the section to place x0 into the workspace. To run the section, place the cursor in the
section and press Ctrl+Enter or click the blue striped bar to the left of the line number.

10 In the Select problem data section of the task, set x0 as the initial point.
11 Specify Solver Options

Because this problem is linearly constrained, specify an additional solver option. Expand the
Specify solver options section of the task, and then click the Add button. Set the Poll settings
> Poll method to GSSPositiveBasis2N. For more information about the efficiency of the GSS
poll methods for linearly constrained problems, see “Compare the Efficiency of Poll Options” on
page 6-57.

12 Set Display Options

In the Display progress section of the task, select the Best value and Mesh size plot functions.

Your setup looks like this:

13 Run Solver and Examine Results

To run the solver, click the options button ⁝ at the top right of the task window, and select Run
Section.
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The plots appear in a separate figure window and in the task output area.

14 To obtain the solution point and objective function value at the solution, look at the top of the
task.
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The Optimize Live Editor task returns the solution in a variable named solution and returns
the objective function value in a variable named objectiveValue. View these values by
entering the following code in the section below the task and then running the section, or by
entering the code at the MATLAB command line.

disp(solution)

    8.5165
   -6.1094
    4.0989
    1.2877
   -4.2348
    2.1812

disp(objectiveValue)

   1.9195e+03
15 Include Nonlinear Constraints

Add the following nonlinear constraints to the problem.

−1.5 + x1x2 + x1− x2 ≤ 0
−x1x2− 10 ≤ 0.

To include these constraints, first click the Constraints > Nonlinear button.

16 In the Select problem data section, under Constraints, select Nonlinear > Local function
and then click the New button. The function appears in a new section below the task. Edit the
resulting code to contain the following lines.

function [c, ceq] = double_ineq(x)
c = [-1.5 + x(1)*x(2) + x(1) - x(2);
    -x(1)*x(2) - 10];
ceq = [];
end

17 In the Nonlinear constraints section, select double_ineq.
18 The nonlinear constraint algorithm causes patternsearch to take many function evaluations. In

the Specify solver options section, click the plus sign to the right of the current options to
display additional options. Then increase the maximum function evaluation limit to 5e4.
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19 Run the task again to rerun the optimization.

20 View the solution and objective function value.

disp(solution)

    7.2083
   -1.3873
    4.9579
   -3.1393
   -3.1843
    4.7457

disp(objectiveValue)

   2.4018e+03

The objective function value is higher than the value in the problem without nonlinear constraints.
The previous solution is not feasible with respect to the nonlinear constraints.

The plots show many fewer iterations than before because the nonlinear constraint algorithm
changes the patternsearch algorithm to include another outer loop to solve a modified problem.
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The outer loop reduces the modification to the problem at each major iteration. In this case, the
algorithm makes only four outer iterations. For algorithm details, see “Nonlinear Constraint Solver
Algorithm” on page 6-43.

Solve Using patternsearch at the Command Line
To solve the original problem (only linear constraints) at the command line, execute the following
code.

x0 = [2 1 0 9 1 0]';
options = optimoptions('patternsearch',...
    'PollMethod','GSSPositiveBasis2N',...
    'PlotFcn',{'psplotbestf','psplotmeshsize'});
lb = [];
ub = [];
nonlcon = [];
[x,fval] = patternsearch(F,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Optimization terminated: mesh size less than options.MeshTolerance.

x =

    8.5165
   -6.1094
    4.0989
    1.2877
   -4.2348
    2.1812

fval =

   1.9195e+03

patternsearch generates the first pair of plots shown in the Optimize Live Editor task example.

To include the nonlinear constraints, save the following code to a file named double_ineq.m on the
MATLAB path.

function [c, ceq] = double_ineq(x)
c = [-1.5 + x(1)*x(2) + x(1) - x(2);
    -x(1)*x(2) - 10];
ceq = [];
end

To allow the solver to run to completion with nonlinear constraints, increase the allowed number of
function evaluations.

options.MaxFunctionEvaluations = 5e4;

Solve the problem including nonlinear constraints.

nonlcon = @double_ineq;
[x,fval] = patternsearch(F,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.
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x =

    7.2083
   -1.3873
    4.9579
   -3.1393
   -3.1843
    4.7457

fval =

   2.4018e+03

patternsearch also generates the second pair of plots shown in the Optimize Live Editor task
example.

Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

See Also
patternsearch

More About
• “Constrained Minimization Using Pattern Search, Solver-Based” on page 6-13
• “Effects of Pattern Search Options” on page 6-17
• “Optimize an ODE in Parallel” on page 6-83
• “Add Interactive Tasks to a Live Script”
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Use Cache
Typically, at any given iteration of a pattern search, some of the mesh points might coincide with
mesh points at previous iterations. By default, the pattern search recomputes the objective function
at these mesh points even though it has already computed their values and found that they are not
optimal. If computing the objective function takes a long time, this can make the pattern search run
significantly longer.

You can eliminate these redundant computations by using a cache, that is, by storing a history of the
points that the pattern search has already visited. To do so, set Cache to On in Cache options. At
each poll, the pattern search checks to see whether the current mesh point is within a specified
tolerance, Tolerance, of a point in the cache. If so, the search does not compute the objective
function for that point, but uses the cached function value and moves on to the next point.

Note When Cache is set to On, the pattern search might fail to identify a point in the current mesh
that improves the objective function because it is within the specified tolerance of a point in the
cache. As a result, the pattern search might run for more iterations with Cache set to On than with
Cache set to Off. It is generally a good idea to keep the value of Tolerance very small, especially for
highly nonlinear objective functions.

Note Cache does not work when you run the solver in parallel.

For example, set up the problem described in “Constrained Minimization Using patternsearch and
Optimize Live Editor Task” on page 6-67 as follows:

1 Enter the following at the command line:

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];

2 Create options to plot the best function value and function evaluations. Because the problem has
linear constraints, use the 'GSSPositiveBasis2N' poll method. Turn off the display.

opts = optimoptions('patternsearch','PollMethod','GSSPositiveBasis2N',...
    'PlotFcn',{@psplotbestf,@psplotfuncount},'Display','none');

3 Run the optimization.

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],opts);

After the pattern search finishes, the plots appear as shown in the following figure.
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Note that the total function count is 758.

Now, set the Cache option to 'On' and run the example again.

opts.Cache = 'on';
[x2,fval2,exitflag2,output2] = patternsearch(@lincontest7,x0,...
    Aineq,bineq,Aeq,beq,[],[],[],opts);
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The total function count is reduced to 735.

[output.funccount,output2.funccount]

ans =

   758   735

See Also
patternsearch

More About
• “Pattern Search Options” on page 17-7
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Vectorize the Objective and Constraint Functions
In this section...
“Vectorize for Speed” on page 6-79
“Vectorized Objective Function” on page 6-79
“Vectorized Constraint Functions” on page 6-81
“Example of Vectorized Objective and Constraints” on page 6-81

Vectorize for Speed
Direct search often runs faster if you vectorize the objective and nonlinear constraint functions. This
means your functions evaluate all the points in a poll or search pattern at once, with one function
call, without having to loop through the points one at a time. Therefore, the option UseVectorized
= true works only when UseCompletePoll or UseCompleteSearch is also set to true. However,
when you set UseVectorized = true, patternsearch checks that the objective and any nonlinear
constraint functions give outputs of the correct shape for vectorized calculations, regardless of the
setting of the UseCompletePoll or UseCompleteSearch options.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be
vectorized in order for the algorithm to compute in a vectorized manner.

Note Write your vectorized objective function or nonlinear constraint function to accept a matrix
with an arbitrary number of points. patternsearch sometimes evaluates a single point even during
a vectorized calculation.

Vectorized Objective Function
A vectorized objective function accepts a matrix as input and generates a vector of function values,
where each function value corresponds to one row or column of the input matrix. patternsearch
resolves the ambiguity in whether the rows or columns of the matrix represent the points of a pattern
as follows. Suppose the input matrix has m rows and n columns:

• If the initial point x0 is a column vector of size m, the objective function takes each column of the
matrix as a point in the pattern and returns a row vector of size n.

• If the initial point x0 is a row vector of size n, the objective function takes each row of the matrix
as a point in the pattern and returns a column vector of size m.

• If the initial point x0 is a scalar, patternsearch assumes that x0 is a row vector. Therefore, the
input matrix has one column (n = 1, the input matrix is a vector), and each entry of the matrix
represents one row for the objective function to evaluate. The output of the objective function in
this case is a column vector of size m.

Pictorially, the matrix and calculation are represented by the following figure.
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Structure of Vectorized Functions

For example, suppose the objective function is

f (x) = x1
4 + x2

4− 4x1
2− 2x2

2 + 3x1− x2/2.

If the initial vector x0 is a column vector, such as [0;0], a function for vectorized evaluation is

function f = vectorizedc(x)

f = x(1,:).^4+x(2,:).^4-4*x(1,:).^2-2*x(2,:).^2 ...
    +3*x(1,:)-.5*x(2,:);

If the initial vector x0 is a row vector, such as [0,0], a function for vectorized evaluation is

function f = vectorizedr(x)

f = x(:,1).^4+x(:,2).^4-4*x(:,1).^2-2*x(:,2).^2 ...
    +3*x(:,1)-.5*x(:,2);

Tip If you want to use the same objective (fitness) function for both pattern search and genetic
algorithm, write your function to have the points represented by row vectors, and write x0 as a row
vector. The genetic algorithm always takes individuals as the rows of a matrix. This was a design
decision—the genetic algorithm does not require a user-supplied population, so needs to have a
default format.
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To minimize vectorizedc, enter the following commands:

options=optimoptions('patternsearch','UseVectorized',true,'UseCompletePoll',true);
x0=[0;0];
[x,fval]=patternsearch(@vectorizedc,x0,...
         [],[],[],[],[],[],[],options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.MeshTolerance.

x =
   -1.5737
    1.0575

fval =
  -10.0088

Vectorized Constraint Functions
Only nonlinear constraints need to be vectorized; bounds and linear constraints are handled
automatically. If there are nonlinear constraints, the objective function and the nonlinear constraints
all need to be vectorized in order for the algorithm to compute in a vectorized manner.

The same considerations hold for constraint functions as for objective functions: the initial point x0
determines the type of points (row or column vectors) in the poll or search. If the initial point is a row
vector of size k, the matrix x passed to the constraint function has k columns. Similarly, if the initial
point is a column vector of size k, the matrix of poll or search points has k rows. The figure “Structure
of Vectorized Functions” on page 6-80 may make this clear. If the initial point is a scalar,
patternsearch assumes that it is a row vector.

Your nonlinear constraint function returns two matrices, one for inequality constraints, and one for
equality constraints. Suppose there are nc nonlinear inequality constraints and nceq nonlinear equality
constraints. For row vector x0, the constraint matrices have nc and nceq columns respectively, and the
number of rows is the same as in the input matrix. Similarly, for a column vector x0, the constraint
matrices have nc and nceq rows respectively, and the number of columns is the same as in the input
matrix. In figure “Structure of Vectorized Functions” on page 6-80, “Results” includes both nc and
nceq.

Example of Vectorized Objective and Constraints
Suppose that the nonlinear constraints are

x1
2

9 +
x2

2

4 ≤ 1 (the interior of an ellipse),

x2 ≥ cosh x1 − 1.

Write a function for these constraints for row-form x0 as follows:

function [c ceq] = ellipsecosh(x)

c(:,1)=x(:,1).^2/9+x(:,2).^2/4-1;
c(:,2)=cosh(x(:,1))-x(:,2)-1;
ceq=[];
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Minimize vectorizedr (defined in “Vectorized Objective Function” on page 6-79) subject to the
constraints ellipsecosh:

x0=[0,0];
options = optimoptions('patternsearch','UseVectorized',true,'UseCompletePoll',true);
[x,fval] = patternsearch(@vectorizedr,x0,...
         [],[],[],[],[],[],@ellipsecosh,options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

x =
   -1.3516    1.0612

fval =
   -9.5394

See Also

More About
• “Optimize an ODE in Parallel” on page 6-83
• “Compute Objective Functions” on page 2-2
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Optimize an ODE in Parallel
This example shows how to optimize parameters of an ODE.

It also shows how to avoid computing the objective and nonlinear constraint function twice when the
ODE solution returns both. The example compares patternsearch and ga in terms of time to run
the solver and the quality of the solutions.

You need a Parallel Computing Toolbox license to use parallel computing.

Step 1. Define the problem.

The problem is to change the position and angle of a cannon to fire a projectile as far as possible
beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is
too close to the wall, it has to fire at too steep an angle, and the projectile does not travel far enough.
If the cannon is too far from the wall, the projectile does not travel far enough either.

Air resistance slows the projectile. The resisting force is proportional to the square of the velocity,
with proportionality constant 0.02. Gravity acts on the projectile, accelerating it downward with
constant 9.81 m/s2. Therefore, the equations of motion for the trajectory x(t) are

d2x(t)
dt2 = − 0.02 v(t) v(t)− (0, 9.81),

where v(t) = dx(t)/dt .

The initial position x0 and initial velocity xp0 are 2-D vectors. However, the initial height x0(2) is 0,
so the initial position depends only on the scalar x0(1). And the initial velocity xp0 has magnitude
300 (the muzzle velocity), so depends only on the initial angle, a scalar. For an initial angle th,
xp0 = 300*(cos(th),sin(th)). Therefore, the optimization problem depends only on two scalars,
so it is a 2-D problem. Use the horizontal distance and the angle as the decision variables.

Step 2. Formulate the ODE model.

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory
vector (x1(t),x2(t)) with its time derivative (x'1(t),x'2(t)) to form a 4-D trajectory vector. In terms of this
augmented vector, the differential equation becomes

d
dtx(t) =

x3(t)
x4(t)

−.02 x3(t), x4(t) x3(t)
−.02 x3(t), x4(t) x4(t)− 9.81

.

Write the differential equation as a function file, and save it on your MATLAB path.

function f = cannonfodder(t,x)

f = [x(3);x(4);x(3);x(4)]; % Initial, gets f(1) and f(2) correct
nrm = norm(x(3:4)) * .02; % Norm of the velocity times constant
f(3) = -x(3)*nrm; % Horizontal acceleration
f(4) = -x(4)*nrm - 9.81; % Vertical acceleration

Visualize the solution of the ODE starting 30 m from the wall at an angle of pi/3.
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Code for generating the figure

x0 = [-30;0;300*cos(pi/3);300*sin(pi/3)];
sol = ode45(@cannonfodder,[0,10],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values
ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
legend('Trajectory','Wall','Location','NW')
ylim([0 120])
hold off

Step 3. Solve using patternsearch.

The problem is to find initial position x0(1) and initial angle x0(2) to maximize the distance from
the wall the projectile lands. Because this is a maximization problem, minimize the negative of the
distance (see “Maximizing vs. Minimizing” on page 2-5).

To use patternsearch to solve this problem, you must provide the objective, constraint, initial
guess, and options.
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These two files are the objective and constraint functions. Copy them to a folder on your MATLAB
path.

function f = cannonobjective(x)
x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = ode45(@cannonfodder,[0,15],x0);

% Find the time t when y_2(t) = 0
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
% Then find the x-position at that time
f = deval(sol,zerofnd,1);

f = -f; % take negative of distance for maximization

function [c,ceq] = cannonconstraint(x)

ceq = [];
x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = ode45(@cannonfodder,[0,15],x0);

if sol.y(1,end) <= 0 % Projectile never reaches wall
    c = 20 - sol.y(2,end);
else
    % Find when the projectile crosses x = 0
    zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);
    % Then find the height there, and subtract from 20
    c = 20 - deval(sol,zerofnd,2);
end

Notice that the objective and constraint functions set their input variable x0 to a 4-D initial point for
the ODE solver. The ODE solver does not stop if the projectile hits the wall. Instead, the constraint
function simply becomes positive, indicating an infeasible initial value.

The initial position x0(1) cannot be above 0, and it is futile to have it be below –200. (It should be
near –20 because, with no air resistance, the longest trajectory would start at –20 at an angle pi/4.)
Similarly, the initial angle x0(2) cannot be below 0, and cannot be above pi/2. Set bounds slightly
away from these initial values:

lb = [-200;0.05];
ub = [-1;pi/2-.05];
x0 = [-30,pi/3]; % Initial guess

Set the UseCompletePoll option to true. This gives a higher-quality solution, and enables direct
comparison with parallel processing, because computing in parallel requires this setting.

opts = optimoptions('patternsearch','UseCompletePoll',true);

Call patternsearch to solve the problem.

tic % Time the solution
[xsolution,distance,eflag,outpt] = patternsearch(@cannonobjective,x0,...
    [],[],[],[],lb,ub,@cannonconstraint,opts)
toc
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Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

xsolution =

  -28.8123    0.6095

distance =

 -125.9880

eflag =

     1

outpt = 

  struct with fields:

         function: @cannonobjective
      problemtype: 'nonlinearconstr'
       pollmethod: 'gpspositivebasis2n'
    maxconstraint: 0
     searchmethod: []
       iterations: 5
        funccount: 269
         meshsize: 8.9125e-07
         rngstate: [1×1 struct]
          message: 'Optimization terminated: mesh size less than options.MeshTolerance↵ and constraint violation is less than options.ConstraintTolerance.'

Elapsed time is 0.792152 seconds.

Starting the projectile about 29 m from the wall at an angle 0.6095 radian results in the farthest
distance, about 126 m. The reported distance is negative because the objective function is the
negative of the distance to the wall.

Visualize the solution.

x0 = [xsolution(1);0;300*cos(xsolution(2));300*sin(xsolution(2))];

sol = ode45(@cannonfodder,[0,15],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % Interpolated x values
ys = deval(sol,t,2); % Interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
legend('Trajectory','Wall','Location','NW')
ylim([0 70])
hold off
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Step 4. Avoid calling the expensive subroutine twice.

Both the objective and nonlinear constraint function call the ODE solver to calculate their values. Use
the technique in “Objective and Nonlinear Constraints in the Same Function” to avoid calling the
solver twice. The runcannon file implements this technique. Copy this file to a folder on your
MATLAB path.

function [x,f,eflag,outpt] = runcannon(x0,opts)

if nargin == 1 % No options supplied
    opts = [];
end

xLast = []; % Last place ode solver was called
sol = []; % ODE solution structure

fun = @objfun; % The objective function, nested below
cfun = @constr; % The constraint function, nested below

lb = [-200;0.05];
ub = [-1;pi/2-.05];

% Call patternsearch
[x,f,eflag,outpt] = patternsearch(fun,x0,[],[],[],[],lb,ub,cfun,opts);

    function y = objfun(x)
        if ~isequal(x,xLast) % Check if computation is necessary
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            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
            sol = ode45(@cannonfodder,[0,15],x0);
            xLast = x;
        end
        % Now compute objective function
        % First find when the projectile hits the ground
        zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
        % Then compute the x-position at that time
        y = deval(sol,zerofnd,1);
        y = -y; % take negative of distance
    end

    function [c,ceq] = constr(x)
       ceq = [];
        if ~isequal(x,xLast) % Check if computation is necessary
            x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
            sol = ode45(@cannonfodder,[0,15],x0);
            xLast = x;
        end
        % Now compute constraint functions
        % First find when the projectile crosses x = 0
        zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(1),sol.x(end)]);
        % Then find the height there, and subtract from 20
        c = 20 - deval(sol,zerofnd,2);
    end

end

Reinitialize the problem and time the call to runcannon.

x0 = [-30;pi/3];
tic
[xsolution,distance,eflag,outpt] = runcannon(x0,opts);
toc

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.
Elapsed time is 0.670715 seconds.

The solver ran faster than before. If you examine the solution, you see that the output is identical.

Step 5. Compute in parallel.

Try to save more time by computing in parallel. Begin by opening a parallel pool of workers.

parpool

Starting parpool using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ans = 

 ProcessPool with properties: 

            Connected: true
           NumWorkers: 6
              Cluster: local
        AttachedFiles: {}
    AutoAddClientPath: true
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          IdleTimeout: 30 minutes (30 minutes remaining)
          SpmdEnabled: true

Set the options to use parallel computing, and rerun the solver.

opts = optimoptions('patternsearch',opts,'UseParallel',true);
x0 = [-30;pi/3];
tic
[xsolution,distance,eflag,outpt] = runcannon(x0,opts);
toc

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.
Elapsed time is 1.894515 seconds.

In this case, parallel computing was slower. If you examine the solution, you see that the output is
identical.

Step 6. Compare with the genetic algorithm.

You can also try to solve the problem using the genetic algorithm. However, the genetic algorithm is
usually slower and less reliable.

As explained in “Objective and Nonlinear Constraints in the Same Function”, you cannot save time
when using ga by the nested function technique used by patternsearch in Step 4. Instead, call ga
in parallel by setting the appropriate options.

options = optimoptions('ga','UseParallel',true);
rng default % For reproducibility
tic % Time the solution
[xsolution,distance,eflag,outpt] = ga(@cannonobjective,2,...
    [],[],[],[],lb,ub,@cannonconstraint,options)
toc

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.

xsolution =

  -37.6217    0.4926

distance =

 -122.2181

eflag =

     1

outpt = 

  struct with fields:

      problemtype: 'nonlinearconstr'
         rngstate: [1×1 struct]
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      generations: 4
        funccount: 9874
          message: 'Optimization terminated: average change in the fitness value less than options.FunctionTolerance↵ and constraint violation is less than options.ConstraintTolerance.'
    maxconstraint: 0
       hybridflag: []

Elapsed time is 12.529131 seconds.

The ga solution is not as good as the patternsearch solution: 122 m versus 126 m. ga takes more
time: about 12 s versus under 2 s; patternsearch takes even less time in serial and nested, less
than 1 s. Running ga serially takes even longer, about 30 s in one test run.

See Also

Related Examples
• “Objective and Nonlinear Constraints in the Same Function”

More About
• “Parallel Computing”
• “Surrogate Optimization with Nonlinear Constraint” on page 11-41
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Optimization of Stochastic Objective Function
This example shows how to find a minimum of a stochastic objective function using patternsearch.
It also shows how Optimization Toolbox™ solvers are not suitable for this type of problem. The
example uses a simple 2-dimensional objective function that is then perturbed by noise.

Initialization

X0 = [2.5 -2.5];   % Starting point.
LB = [-5 -5];      % Lower bound
UB = [5 5];        % Upper bound
range = [LB(1) UB(1); LB(2) UB(2)];
Objfcn = @smoothFcn; % Handle to the objective function.
% Plot the smooth objective function
fig = figure('Color','w');
showSmoothFcn(Objfcn,range);
hold on;
title('Smooth objective function');
ph = [];
ph(1) = plot3(X0(1),X0(2),Objfcn(X0)+30,'or','MarkerSize',10,'MarkerFaceColor','r');
hold off;
ax = gca;
ax.CameraPosition = [-31.0391  -85.2792 -281.4265];
ax.CameraTarget = [0 0 -50];
ax.CameraViewAngle = 6.7937;
% Add legend information
legendLabels = {'Start point'};
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
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Run fmincon on a Smooth Objective Function

The objective function is smooth (twice continuously differentiable). Solve the optimization problem
using the Optimization Toolbox fmincon solver. fmincon finds a constrained minimum of a function
of several variables. This function has a unique minimum at the point x* = [-5,-5] where it has a
value f(x*) = -250.

Set options to return iterative display.

options = optimoptions(@fmincon,'Algorithm','interior-point','Display','iter');
[Xop,Fop] = fmincon(Objfcn,X0,[],[],[],[],LB,UB,[],options)
figure(fig);
hold on;

                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3   -1.062500e+01    0.000e+00    2.004e+01
    1       6   -1.578420e+02    0.000e+00    5.478e+01    6.734e+00
    2       9   -2.491310e+02    0.000e+00    6.672e+01    1.236e+00
    3      12   -2.497554e+02    0.000e+00    2.397e-01    6.310e-03
    4      15   -2.499986e+02    0.000e+00    5.065e-02    8.016e-03
    5      18   -2.499996e+02    0.000e+00    9.632e-05    3.367e-05
    6      21   -2.500000e+02    0.000e+00    1.502e-04    6.867e-06
    7      24   -2.500000e+02    0.000e+00    1.159e-06    6.920e-08

Local minimum found that satisfies the constraints.

6 Using Direct Search

6-92



Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Xop =

   -5.0000   -5.0000

Fop =

 -250.0000

Plot the final point

ph(2) = plot3(Xop(1),Xop(2),Fop,'dm','MarkerSize',10,'MarkerFaceColor','m');
% Add a legend to plot
legendLabels = [legendLabels, '|fmincon| solution'];
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
hold off;

Stochastic Objective Function

Now perturb the objective function by adding random noise.
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rng(0,'twister') % Reset the global random number generator
peaknoise = 4.5;
Objfcn = @(x) smoothFcn(x,peaknoise); % Handle to the objective function.
% Plot the objective function (non-smooth)
fig = figure('Color','w');
showSmoothFcn(Objfcn,range);
title('Stochastic objective function')
ax = gca;
ax.CameraPosition = [-31.0391  -85.2792 -281.4265];
ax.CameraTarget = [0 0 -50];
ax.CameraViewAngle = 6.7937;

Run fmincon on a Stochastic Objective Function

The perturbed objective function is stochastic and not smooth. fmincon is a general constrained
optimization solver which finds a local minimum using derivatives of the objective function. If you do
not provide the first derivatives of the objective function, fmincon uses finite differences to
approximate the derivatives. In this example, the objective function is random, so finite difference
estimates derivatives hence can be unreliable. fmincon can potentially stop at a point that is not a
minimum. This may happen because the optimal conditions seems to be satisfied at the final point
because of noise, or fmincon could not make further progress.

[Xop,Fop] = fmincon(Objfcn,X0,[],[],[],[],LB,UB,[],options)
figure(fig);
hold on;
ph = [];
ph(1) = plot3(X0(1),X0(2),Objfcn(X0)+30,'or','MarkerSize',10,'MarkerFaceColor','r');

6 Using Direct Search

6-94



ph(2) = plot3(Xop(1),Xop(2),Fop,'dm','MarkerSize',10,'MarkerFaceColor','m');
% Add legend to plot
legendLabels = {'Start point','|fmincon| solution'};
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
hold off;

                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3   -1.925772e+01    0.000e+00    2.126e+08
    1       6   -7.107849e+01    0.000e+00    2.623e+08    8.873e+00
    2      11   -8.055890e+01    0.000e+00    2.401e+08    6.715e-01
    3      20   -8.325315e+01    0.000e+00    7.348e+07    3.047e-01
    4      48   -8.366302e+01    0.000e+00    1.762e+08    1.593e-07
    5      64   -8.591081e+01    0.000e+00    1.569e+08    3.111e-10

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.

Xop =

   -4.9628    2.6673

Fop =

  -85.9108
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Run patternsearch

Now minimize the stochastic objective function using the Global Optimization Toolbox
patternsearch solver. Pattern search optimization techniques are a class of direct search methods
for optimization. A pattern search algorithm does not use derivatives of the objective function to find
an optimal point.

PSoptions = optimoptions(@patternsearch,'Display','iter');
[Xps,Fps] = patternsearch(Objfcn,X0,[],[],[],[],LB,UB,PSoptions)
figure(fig);
hold on;
ph(3) = plot3(Xps(1),Xps(2),Fps,'dc','MarkerSize',10,'MarkerFaceColor','c');
% Add legend to plot
legendLabels = [legendLabels, 'Pattern Search solution'];
lh = legend(ph,legendLabels,'Location','SouthEast');
lp = lh.Position;
lh.Position = [1-lp(3)-0.005 0.005 lp(3) lp(4)];
hold off

Iter     Func-count       f(x)      MeshSize     Method
    0           1       -7.20766             1      
    1           3       -34.7227             2     Successful Poll
    2           3       -34.7227             1     Refine Mesh
    3           5       -34.7227           0.5     Refine Mesh
    4           8       -96.0847             1     Successful Poll
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    5          10       -96.0847           0.5     Refine Mesh
    6          13       -132.888             1     Successful Poll
    7          15       -132.888           0.5     Refine Mesh
    8          17       -132.888          0.25     Refine Mesh
    9          20       -197.689           0.5     Successful Poll
   10          22       -197.689          0.25     Refine Mesh
   11          24       -197.689         0.125     Refine Mesh
   12          27       -241.344          0.25     Successful Poll
   13          30       -241.344         0.125     Refine Mesh
   14          33       -241.344        0.0625     Refine Mesh
   15          36       -241.344       0.03125     Refine Mesh
   16          39       -241.344       0.01562     Refine Mesh
   17          42       -242.761       0.03125     Successful Poll
   18          45       -242.761       0.01562     Refine Mesh
   19          48       -242.761      0.007812     Refine Mesh
   20          51       -242.761      0.003906     Refine Mesh
   21          55       -242.761      0.001953     Refine Mesh
   22          59       -242.761     0.0009766     Refine Mesh
   23          63       -242.761     0.0004883     Refine Mesh
   24          67       -242.761     0.0002441     Refine Mesh
   25          71       -242.761     0.0001221     Refine Mesh
   26          75       -242.761     6.104e-05     Refine Mesh
   27          79       -242.761     3.052e-05     Refine Mesh
   28          83       -242.761     1.526e-05     Refine Mesh
   29          87       -242.761     7.629e-06     Refine Mesh
   30          91       -242.761     3.815e-06     Refine Mesh

Iter     Func-count        f(x)       MeshSize      Method
   31          95       -242.761     1.907e-06     Refine Mesh
   32          99       -242.761     9.537e-07     Refine Mesh
Optimization terminated: mesh size less than options.MeshTolerance.

Xps =

   -4.9844   -4.5000

Fps =

 -242.7611
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Pattern search is not as strongly affected by random noise in the objective function. Pattern search
requires only function values and not the derivatives, hence noise (of some uniform kind) may not
affect it. However, pattern search requires more function evaluation to find the true minimum than
derivative based algorithms, a cost for not using the derivatives.

See Also

More About
• “Global Optimization Toolbox Solver Characteristics” on page 1-31
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Problem-Based Direct Search

• “Optimize Nonsmooth Function Using patternsearch, Problem-Based” on page 7-2
• “Constrained Minimization Using Pattern Search, Problem-Based” on page 7-4
• “Effects of Pattern Search Options, Problem-Based” on page 7-10
• “Search and Poll, Problem-Based” on page 7-16
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Optimize Nonsmooth Function Using patternsearch, Problem-
Based

This example shows how to minimize a nonsmooth function using direct search in the problem-based
approach. The function to minimize, ps_example(x), is included with Global Optimization Toolbox
software.

Plot the objective function.

fsurf(@(x,y)reshape(ps_example([x(:),y(:)]),size(x)),...
    [-6 2 -4 4],"LineStyle","none","MeshDensity",300)
colormap 'jet'
view(-26,43)
xlabel("x(1)")
ylabel("x(2)")
title("ps\_example(x)")

Create a 2-D optimization variable x. The ps_example function expects the variable to be a row
vector, so specify x as a 2-element row vector.

x = optimvar("x",1,2);

To use ps_example as the objective function, convert the function to an optimization expression
using fcn2optimexpr.

fun = fcn2optimexpr(@ps_example,x);
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Create an optimization problem with objective function ps_example.

prob = optimproblem("Objective",fun);

Specify the initial point x0 as a structure with field x taking the value [2.1 1.7].

x0.x = [2.1 1.7];

Solve the problem, specifying the patternsearch solver.

[sol,fval] = solve(prob,x0,"Solver","patternsearch")

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

sol = struct with fields:
    x: [-4.7124 -7.6294e-07]

fval = -2.0000

patternsearch finds a better solution (lower function value) than the default fminunc solver,
which is not recommended for minimizing nonsmooth functions.

[solfminunc,fvalfminunc] = solve(prob,x0)

Solving problem using fminunc.

Local minimum possible.

fminunc stopped because it cannot decrease the objective function
along the current search direction.

solfminunc = struct with fields:
    x: [1.9240 8.8818e-16]

fvalfminunc = 2.9161

See Also
patternsearch | fcn2optimexpr | solve

Related Examples
• “Direct Search”
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Constrained Minimization Using Pattern Search, Problem-
Based

This example shows how to minimize an objective function, subject to nonlinear inequality constraints
and bounds, using pattern search in the problem-based approach. For a solver-based version of this
problem, see “Constrained Minimization Using Pattern Search, Solver-Based” on page 6-13.

Constrained Minimization Problem

For this problem, the objective function to minimize is a simple function of 2-D variables X and Y:

camxy = @(X,Y)(4 - 2.1.*X.^2 + X.^4./3).*X.^2 + X.*Y + (-4 + 4.*Y.^2).*Y.^2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1] on page 7-0 .

Additionally, the problem has nonlinear constraints and bounds.

   x(1)*x(2) + x(1) - x(2) + 1.5 <= 0  (nonlinear constraint)
   10 - x(1)*x(2) <= 0                 (nonlinear constraint)
   0 <= x(1) <= 1                      (bound)
   0 <= x(2) <= 13                     (bound)

Plot the nonlinear constraint region on a surface plot of the objective function. The constraints limit
the solution to the small region above both red curves.

x1 = linspace(0,1);
y1 = (-x1 - 1.5)./(x1 - 1);
y2 = 10./x1;
[X,Y] = meshgrid(x1,linspace(0,13));
Z = camxy(X,Y);
surf(X,Y,Z,"LineStyle","none")
hold on
z1 = camxy(x1,y1);
z2 = camxy(x1,y2);
plot3(x1,y1,z1,'r-',x1,y2,z2,'r-')
xlim([0 1])
ylim([0 13])
zlim([0,max(Z,[],"all")])
hold off
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Create Optimization Variables, Problem, and Constraints

To set up this problem, create optimization variables x and y. Set the bounds as you create the
variables.

x = optimvar("x","LowerBound",0,"UpperBound",1);
y = optimvar("y","LowerBound",0,"UpperBound",13);

Create the objective as an optimization expression.

cam = camxy(x,y);

Create an optimization problem with this objective function.

prob = optimproblem("Objective",cam);

Create the two nonlinear inequality constraints, and include them in the problem.

prob.Constraints.cons1 = x*y + x - y + 1.5 <= 0;
prob.Constraints.cons2 = 10 - x*y <= 0;

Review the problem.

show(prob)

  OptimizationProblem : 

    Solve for:
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       x, y

    minimize :
       (((((4 - (2.1 .* x.^2)) + (x.^4 ./ 3)) .* x.^2) + (x .* y)) + (((-4)
     + (4 .* y.^2)) .* y.^2))

    subject to cons1:
       ((((x .* y) + x) - y) + 1.5) <= 0

    subject to cons2:
       (10 - (x .* y)) <= 0

    variable bounds:
       0 <= x <= 1

       0 <= y <= 13

Set Initial Point and Solve

Set the initial point as a structure with field x equal to 0.5 and y equal to 0.5.

x0.x = 0.5;
x0.y = 0.5;

Solve the problem specifying the patternsearch solver.

[sol,fval] = solve(prob,x0,"Solver","patternsearch")

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

sol = struct with fields:
    x: 0.8122
    y: 12.3122

fval = 9.1324e+04

patternsearch finds the solution point x = 0.8122, y = 12.3122 with objective function value
9.1324e4.

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
psplotbestf plots the best objective function value at every iteration, and the plot function
psplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter'.

options = optimoptions(@patternsearch,...
    "PlotFcn",{@psplotbestf,@psplotmaxconstr},...
    "Display","iter");

Run the solver, including the options argument.

[sol,fval] = solve(prob,x0,"Solver","patternsearch","Options",options)
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Solving problem using patternsearch.

                                      Max
  Iter   Func-count       f(x)      Constraint   MeshSize      Method
    0         1     0.373958         9.75       0.9086    
    1        18       113581    1.617e-10        0.001   Increase penalty
    2       148        92267            0        1e-05   Increase penalty
    3       374      91333.2            0        1e-07   Increase penalty
    4       639        91324            0        1e-09   Increase penalty
Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

sol = struct with fields:
    x: 0.8122
    y: 12.3122

fval = 9.1324e+04

Nonlinear constraints cause patternsearch to solve many subproblems at each iteration. As shown
in both the plots and the iterative display, the solution process has few iterations. However, the
Func-count column in the iterative display shows many function evaluations per iteration. Both the
plots and the iterative display show that the initial point is infeasible, and that the objective function
is low at the initial point. During the solution process, the objective function value initially increases,
then decreases to its final value.
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Unsupported Functions

If your objective or nonlinear constraint functions are not “Supported Operations for Optimization
Variables and Expressions”, use fcn2optimexpr to convert them to a form suitable for the problem-
based approach. For example, suppose that instead of the constraint xy ≥ 10 you have the constraint
I1(x) + I1(y) ≥ 10, where I1(x) is the modified Bessel function besseli(1,x). (The Bessel functions
are not supported functions.) Create this constraint using fcn2optimexpr as follows. First create an
optimization expression for I1(x) + I1(y).

bfun = fcn2optimexpr(@(t,u)besseli(1,t) + besseli(1,u),x,y);

Next, replace the constraint cons2 with the constraint bfun >= 10.

prob.Constraints.cons2 = bfun >= 10;

Solve the problem. The solution differs because the constraint region is different.

[sol2,fval2] = solve(prob,x0,"Solver","patternsearch","Options",options)

Solving problem using patternsearch.

                                      Max
  Iter   Func-count       f(x)      Constraint   MeshSize      Method
    0         1     0.373958        9.484       0.9307    
    1        18       113581            0        0.001   Increase penalty
    2        78      962.841            0        1e-05   Increase penalty
    3       394      960.942            0        1e-07   Increase penalty
    4       531       960.94            0    8.511e-15   Update multipliers
Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.
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sol2 = struct with fields:
    x: 0.4998
    y: 3.9981

fval2 = 960.9401

References

[1] Dixon, L. C. W., and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also
patternsearch | solve

Related Examples
• “Direct Search”
• “Constrained Minimization Using ga, Problem-Based” on page 9-19
• “Constrained Minimization Using Pattern Search, Solver-Based” on page 6-13
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Effects of Pattern Search Options, Problem-Based
This example shows the effects of some options for pattern search in the problem-based approach.
The options include plotting, stopping criteria, and other algorithmic controls for speeding a solution.

Set Up a Problem for Pattern Search

The problem to minimize is a quadratic function of six variables subject to linear equality and
inequality constraints. The objective function, lincontest7, is included with Global Optimization
Toolbox.

type lincontest7

function y = lincontest7(x)
%LINCONTEST7 objective function.
%   y = LINCONTEST7(X) evaluates y for the input X. Make sure that x is a column 
%   vector, whereas objective function gets a row vector.

%   Copyright 2003-2017 The MathWorks, Inc.
x = x';

%Define a quadratic problem in terms of H and f 
H = [36 17 19 12  8 15; 
     17 33 18 11  7 14; 
     19 18 43 13  8 16;
     12 11 13 18  6 11; 
      8  7  8  6  9  8; 
     15 14 16 11  8 29];

f = [ 20 15 21 18 29 24 ]';
 
y = 0.5*x'*H*x + f'*x;

Create a six-element optimization variable x as a row vector.

x = optimvar("x",1,6);

Create an optimization problem with the objective function lincontest7(x).

prob = optimproblem("Objective",lincontest7(x));

Specify an initial point for the optimization.

x0.x = [2 1 0 9 1 0];

Create linear constraint matrices for the constraints Aineq*x' <= Bineq and Aeq*x' = Beq. You
need to use x' in these constraints because x is a row vector.

Aineq = [-8 7 3 -4 9 0 ];
Bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
Beq = [84 62 65 1]';
prob.Constraints.Aineq = Aineq*x' <= Bineq;
prob.Constraints.Aeq = Aeq*x' == Beq;

Run the patternsearch solver, and note the number of iterations and function evaluations required
to reach the solution.
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[sol,Fval,eflag,output] = solve(prob,x0,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

fprintf('The number of iterations is: %d\n', output.iterations);

The number of iterations is: 158

fprintf('The number of function evaluations is: %d\n', output.funccount);

The number of function evaluations is: 849

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.18

Add Visualization

Monitor the optimization process by specifying options that select two plot functions. The plot
function psplotbestf plots the best objective function value at every iteration, and the plot function
psplotfuncount plots the number of times the objective function is evaluated at each iteration. Set
these two plot functions in a cell array.

opts = optimoptions(@patternsearch,"PlotFcn",{@psplotbestf,@psplotfuncount});

Run the patternsearch solver, including the opts argument.

[sol2,Fval2,eflag2,output2] = solve(prob,x0,"Solver","patternsearch",...
    "Options",opts);

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.
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Mesh Options

Pattern search involves evaluating the objective function at points in a mesh. The size of the mesh can
influence the speed of the solution. You can control the size of the mesh by setting options.

Initial Mesh Size

The mesh at each iteration is the span of a set of search directions that are added to the current
point, scaled by the current mesh size. The solver starts with an initial mesh size of 1 by default. To
start with the initial mesh size of 1/2, set the InitialMeshSize option. This can save an iteration
and several function evaluations when the initial point is good relative to a mesh of size 1.

opts = optimoptions(opts,'InitialMeshSize',1/2);

Mesh Scaling

You can scale the mesh to improve the minimization of a poorly scaled optimization problem. Scaling
rotates the pattern by some degree and scales along the search directions. The ScaleMesh option is
on (true) by default, but you can turn it off if the problem is well scaled. In general, if the problem is
poorly scaled, setting this option to true can reduce the number of function evaluations. For this
problem, set ScaleMesh to false, because lincontest7 is a well-scaled objective function.

opts = optimoptions(opts,'ScaleMesh',false);

Mesh Accelerator

Direct search methods require many function evaluations compared to derivative-based optimization
methods. The pattern search algorithm can quickly find the neighborhood of an optimum point, but
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can be slow in detecting the minimum itself. The patternsearch solver can reduce the number of
function evaluations by using an accelerator. When the accelerator is on (opts.AccelerateMesh =
true), the solver contracts the mesh size rapidly after reaching a minimum mesh size. This option is
recommended only for smooth problems; in other types of problems, you can lose some accuracy. The
AccelerateMesh option is off (false) by default. For this problem, set AccelerateMesh to true
because the objective function is smooth.

opts = optimoptions(opts,'AccelerateMesh',true);

Run the patternsearch solver.

[sol3,Fval3,eflag3,output3] = solve(prob,x0,"Solver","patternsearch",...
    "Options",opts);

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

fprintf('The number of iterations is: %d\n', output3.iterations);

The number of iterations is: 147

fprintf('The number of function evaluations is: %d\n', output3.funccount);

The number of function evaluations is: 808

fprintf('The best function value found is: %g\n', Fval3);

The best function value found is: 2189.18
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The mesh option settings reduce the number of iterations and the number of function evaluations,
and with no apparent loss of accuracy.

Stopping Criteria and Tolerances

MeshTolerance is a tolerance on the mesh size. If the mesh size is less than MeshTolerance, the
solver stops. StepTolerance is the minimum tolerance on the change in the current point to the
next point. FunctionTolerance is the minimum tolerance on the change in the function value from
the current point to the next point.

Set the MeshTolerance to 1e-7, which is 10 times smaller than the default value. This setting can
increase the number of function evaluations and iterations, and can lead to a more accurate solution.

opts.MeshTolerance = 1e-7;

Search Methods in Pattern Search

The pattern search algorithm can use an additional search method at every iteration, based on the
value of the SearchFcn option. When you specify a search method using SearchFcn,
patternsearch performs the specified search first, before the mesh search. If the search method is
successful, patternsearch skips the mesh search, commonly called the poll function, for that
iteration. If the search method is unsuccessful in improving the current point, patternsearch
performs the mesh search.

You can specify different search methods for SearchFcn, including searchga and
searchneldermead, which are optimization algorithms. Use these two search methods only for the
first iteration, which is the default setting. Using either of these methods at every iteration might not
improve the results and can be computationally expensive. However, you can use the searchlhs
method, which generates Latin hypercube points, at every iteration or possibly every 10 iterations.

Other choices for search methods include poll methods such as positive basis N+1 or positive basis
2N. A recommended strategy is to use positive basis N+1 (which requires at most N+1 points to
create a pattern) as a search method and positive basis 2N (which requires 2N points to create a
pattern) as a poll method.

Update the options structure to use positivebasisnp1 as the search method. Because positive
basis 2N is the default for the PollFcn option, do not set that option.

opts.SearchFcn = @positivebasisnp1;

Run the patternsearch solver.

[sol4,Fval4,eflag4,output4] = solve(prob,x0,"Solver","patternsearch",...
    "Options",opts);

Solving problem using patternsearch.
Optimization terminated: change in X less than options.StepTolerance.
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fprintf('The number of iterations is: %d\n', output4.iterations);

The number of iterations is: 48

fprintf('The number of function evaluations is: %d\n', output4.funccount);

The number of function evaluations is: 612

fprintf('The best function value found is: %g\n', Fval4);

The best function value found is: 2189.18

The total number of iterations and function evaluations decreases, even though the mesh tolerance is
smaller than its previous value and is the stopping criterion that halts the solver.

See Also
patternsearch | solve

Related Examples
• “Effects of Pattern Search Options” on page 6-17
• “Search and Poll” on page 6-39
• “Pattern Search Options” on page 17-7
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Search and Poll, Problem-Based
In addition to polling the mesh points, the pattern search algorithm can perform an optional step at
every iteration, called search. At each iteration, the search step applies another optimization method
to the current point. If this search does not improve the current point, the poll step is performed.

Search Using a Poll Method

The following example illustrates the use of a search method on the problem described in
“Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 6-67. In this
case, the search method is the GSS Positive Basis 2N poll. For comparison, first run the problem
without a search method.

x = optimvar("x",1,6);
prob = optimproblem("Objective",lincontest7(x));
x0.x = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;
Aeq = [7 1 8 3 3 3; 5 0 -5 1 -5 8; -2 -6 7 1 1 9; 1 -1 2 -2 3 -3];
beq = [84 62 65 1];
prob.Constraints.Aineq = Aineq*x' <= bineq;
prob.Constraints.Aeq = Aeq*x' == beq';
options = optimoptions('patternsearch',...
    'PlotFcn',{@psplotbestf,@psplotfuncount});
[x,fval,exitflag,output] = solve(prob,x0,...
    "Options",options,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.
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To use the GSS Positive Basis 2N poll as a search method, change the SearchFcn option.

rng default % For reproducibility
options.SearchFcn = @GSSPositiveBasis2N;
[x2,fval2,exitflag2,output2] = solve(prob,x0,...
    "Options",options,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.
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Both optimizations reached the same objective function value. Using the search method reduces the
number of function evaluations, though not the number of iterations.

table([output.funccount;output2.funccount],[output.iterations;output2.iterations],...
    'VariableNames',["Function Evaluations" "Iterations"],...
    'RowNames',["Without Search" "With Search"])

ans=2×2 table
                      Function Evaluations    Iterations
                      ____________________    __________

    Without Search            758                 84    
    With Search               667                 93    

Search Using a Different Solver

patternsearch takes a long time to minimize Rosenbrock's function. The function is

f (x) = 100 x2− x1
2 2 + (1− x1)2 .

Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear Problem, Solver-
Based”. The minimum of Rosenbrock's function is 0, attained at the point [1,1]. Because
patternsearch is not efficient at minimizing this function, use a different search method to help.

Create the objective function.
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dejong2fcn = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

The default maximum number of iterations for patternsearch with two variables is 200, and the
default maximum number of function evaluations is 4000. Increase these values to
MaxFunctionEvaluations = 5000 and MaxIterations = 2000.

opts = optimoptions("patternsearch","MaxFunctionEvaluations",5000,"MaxIterations",2000);

Run patternsearch starting from [-1.9 2].

x = optimvar("x",1,2);
prob = optimproblem("Objective",dejong2fcn(x));
x0.x = [-1.9,2];
[sol,feval,eflag,output] = solve(prob,x0,...
    "Options",opts,"Solver","patternsearch");

Solving problem using patternsearch.
Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.

disp(feval)

    0.8560

disp(output.funccount)

        5000

The optimization did not complete even after 5000 function evaluations, and the result is not very
close to the optimal value of 0.

Set the options to use fminsearch as the search method, using the default number of function
evaluations and iterations.

opts = optimoptions("patternsearch","SearchFcn",@searchneldermead);

Rerun the optimization.

[sol2,feval2,eflag2,output2] = solve(prob,x0,...
    "Options",opts,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

disp(feval2)

   4.0686e-10

disp(output2.funccount)

   291

The objective function value at the solution is much better (lower) when using this search method,
and the number of function evaluations is much lower. fminsearch is more efficient at getting close
to the minimum of Rosenbrock's function.

See Also
patternsearch | solve
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Related Examples
• “Direct Search”
• “Search and Poll” on page 6-39
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Using the Genetic Algorithm

• “What Is the Genetic Algorithm?” on page 8-2
• “Minimize Rastrigin's Function” on page 8-4
• “Genetic Algorithm Terminology” on page 8-11
• “How the Genetic Algorithm Works” on page 8-13
• “Coding and Minimizing a Fitness Function Using the Genetic Algorithm” on page 8-20
• “Constrained Minimization Using the Genetic Algorithm” on page 8-25
• “Effects of Genetic Algorithm Options” on page 8-30
• “Mixed Integer ga Optimization” on page 8-38
• “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm” on page 8-45
• “Nonlinear Constraint Solver Algorithms” on page 8-54
• “Create Custom Plot Function” on page 8-57
• “Resume ga” on page 8-60
• “Options and Outputs” on page 8-62
• “Reproduce Results” on page 8-65
• “Run ga from a File” on page 8-67
• “Population Diversity” on page 8-69
• “Fitness Scaling” on page 8-77
• “Vary Mutation and Crossover” on page 8-80
• “Global vs. Local Optimization Using ga” on page 8-87
• “Hybrid Scheme in the Genetic Algorithm” on page 8-91
• “Set Maximum Number of Generations and Stall Generations” on page 8-97
• “Vectorize the Fitness Function” on page 8-99
• “Custom Output Function for Genetic Algorithm” on page 8-101
• “Custom Data Type Optimization Using the Genetic Algorithm” on page 8-105
• “When to Use a Hybrid Function” on page 8-112
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What Is the Genetic Algorithm?
The genetic algorithm is a method for solving both constrained and unconstrained optimization
problems that is based on natural selection, the process that drives biological evolution. The genetic
algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm
selects individuals from the current population to be parents and uses them to produce the children
for the next generation. Over successive generations, the population "evolves" toward an optimal
solution. You can apply the genetic algorithm to solve a variety of optimization problems that are not
well suited for standard optimization algorithms, including problems in which the objective function
is discontinuous, nondifferentiable, stochastic, or highly nonlinear. The genetic algorithm can address
problems of mixed integer programming, where some components are restricted to be integer-valued.

This flow chart outlines the main algorithmic steps. For details, see “How the Genetic Algorithm
Works” on page 8-13.

The genetic algorithm uses three main types of rules at each step to create the next generation from
the current population:

• Selection rules select the individuals, called parents, that contribute to the population at the next
generation. The selection is generally stochastic, and can depend on the individuals' scores.

• Crossover rules combine two parents to form children for the next generation.
• Mutation rules apply random changes to individual parents to form children.
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The genetic algorithm differs from a classical, derivative-based, optimization algorithm in two main
ways, as summarized in the following table:

Classical Algorithm Genetic Algorithm
Generates a single point at each iteration. The
sequence of points approaches an optimal
solution.

Generates a population of points at each
iteration. The best point in the population
approaches an optimal solution.

Selects the next point in the sequence by a
deterministic computation.

Selects the next population by computation which
uses random number generators.

Typically converges quickly to a local solution. Typically takes many function evaluations to
converge. May or may not converge to a local or
global minimum.

See Also

More About
• “Genetic Algorithm Terminology” on page 8-11
• “How the Genetic Algorithm Works” on page 8-13
• “Nonlinear Constraint Solver Algorithms” on page 8-54
• “Local vs. Global Optima” on page 1-25
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Minimize Rastrigin's Function
In this section...
“Rastrigin's Function” on page 8-4
“Minimize Using the Optimize Live Editor Task” on page 8-5
“Minimize at the Command Line” on page 8-9

Rastrigin's Function
This example shows how to find the minimum of Rastrigin's function, a function that is often used to
test the genetic algorithm. The example presents two approaches for minimizing: using the Optimize
Live Editor task and working at the command line.

For two independent variables, Rastrigin's function is defined as

Ras(x) = 20 + x1
2 + x2

2− 10 cos2πx1 + cos2πx2 .

Global Optimization Toolbox contains the rastriginsfcn.m file, which computes the values of
Rastrigin's function. The following figure shows a plot of Rastrigin's function.

As the plot shows, Rastrigin's function has many local minima—the “valleys” in the plot. However, the
function has just one global minimum, which occurs at the point [0 0] in the x-y plane, as indicated by
the vertical line in the plot, where the value of the function is 0. At any local minimum other than [0
0], the value of Rastrigin's function is greater than 0. The farther the local minimum is from the
origin, the larger the value of the function is at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many local minima make it
difficult for standard, gradient-based methods to find the global minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and minima.
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Minimize Using the Optimize Live Editor Task
This section explains how to find the minimum of Rastrigin's function using the genetic algorithm.

Note Because the genetic algorithm uses random number generators, the algorithm returns different
results each time you run it.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.
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3 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

4 In the new section above the task, enter the following code to define the number of variables and
objective function.

nvar = 2;
fun = @rastriginsfcn;

5 To place these variables into the workspace, run the section by pressing Ctrl+Enter.
6 In the Specify problem type section of the task, click the Objective > Nonlinear button.
7 Select Solver > ga - Genetic algorithm.
8 In the Select problem data section of the task, select Objective function > Function handle

and then choose fun.
9 Select Number of variables > nvar.
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10 In the Display progress section of the task, select the Best fitness plot.
11 To run the solver, click the options button ⁝ at the top right of the task window, and select Run

Section. The plot appears in a separate figure window and in the task output area. Note that
your plot might be different from the one shown, because ga is a stochastic algorithm.

The points at the bottom of the plot denote the best fitness values, while the points above them
denote the averages of the fitness values in each generation. The top of the plot displays the best
and mean values, numerically, in the current generation.

12 To see the solution and fitness function value, look at the top of the task.

13 To view the values of these variables, enter the following code in the section below the task.
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disp(solution)
disp(objectiveValue)

14 Run the section by pressing Ctrl+Enter.

disp(solution)

    0.9785    0.9443

disp(objectiveValue)

    2.5463

Your values can differ because ga is a stochastic algorithm.

The value shown is not very close to the actual minimum value of Rastrigin's function, which is 0. The
topics “Set Initial Range” on page 8-69, “Setting the Amount of Mutation” on page 8-80, and “Set
Maximum Number of Generations and Stall Generations” on page 8-97 describe ways to achieve a
result that is closer to the actual minimum. Or, you can simply rerun the solver to try to obtain a
better result.

Minimize at the Command Line
To find the minimum of Rastrigin's function at the command line, enter the following code.
rng default % For reproducibility
options = optimoptions('ga','PlotFcn','gaplotbestf');
[solution,objectiveValue] = ga(@rastriginsfcn,2,...
    [],[],[],[],[],[],[],options)
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Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

solution =

    0.9785    0.9443

objectiveValue =

    2.5463

The points at the bottom of the plot denote the best fitness values, while the points above them
denote the averages of the fitness values in each generation. The top of the plot displays the best and
mean values, numerically, in the current generation.

Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

See Also

More About
• “Constrained Minimization Using the Genetic Algorithm” on page 8-25
• “Effects of Genetic Algorithm Options” on page 8-30
• “Constrained Minimization Using the Genetic Algorithm” on page 8-25
• “Add Interactive Tasks to a Live Script”
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Genetic Algorithm Terminology

In this section...
“Fitness Functions” on page 8-11
“Individuals” on page 8-11
“Populations and Generations” on page 8-11
“Diversity” on page 8-11
“Fitness Values and Best Fitness Values” on page 8-12
“Parents and Children” on page 8-12

Fitness Functions
The fitness function is the function you want to optimize. For standard optimization algorithms, this is
known as the objective function. The toolbox software tries to find the minimum of the fitness
function.

Write the fitness function as a file or anonymous function, and pass it as a function handle input
argument to the main genetic algorithm function.

Individuals
An individual is any point to which you can apply the fitness function. The value of the fitness function
for an individual is its score. For example, if the fitness function is

f x1, x2, x3 = 2x1 + 1 2 + 3x2 + 4 2 + x3− 2 2,

the vector (2, -3, 1), whose length is the number of variables in the problem, is an individual. The
score of the individual (2, –3, 1) is f(2, –3, 1) = 51.

An individual is sometimes referred to as a genome and the vector entries of an individual as genes.

Populations and Generations
A population is an array of individuals. For example, if the size of the population is 100 and the
number of variables in the fitness function is 3, you represent the population by a 100-by-3 matrix.
The same individual can appear more than once in the population. For example, the individual (2, -3,
1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on the current population
to produce a new population. Each successive population is called a new generation.

Diversity
Diversity refers to the average distance between individuals in a population. A population has high
diversity if the average distance is large; otherwise it has low diversity. In the following figure, the
population on the left has high diversity, while the population on the right has low diversity.
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Diversity is essential to the genetic algorithm because it enables the algorithm to search a larger
region of the space.

Fitness Values and Best Fitness Values
The fitness value of an individual is the value of the fitness function for that individual. Because the
toolbox software finds the minimum of the fitness function, the best fitness value for a population is
the smallest fitness value for any individual in the population.

Parents and Children
To create the next generation, the genetic algorithm selects certain individuals in the current
population, called parents, and uses them to create individuals in the next generation, called
children. Typically, the algorithm is more likely to select parents that have better fitness values.

See Also

More About
• “What Is the Genetic Algorithm?” on page 8-2
• “How the Genetic Algorithm Works” on page 8-13
• “Nonlinear Constraint Solver Algorithms” on page 8-54
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How the Genetic Algorithm Works

In this section...
“Outline of the Algorithm” on page 8-13
“Initial Population” on page 8-13
“Creating the Next Generation” on page 8-14
“Plots of Later Generations” on page 8-16
“Stopping Conditions for the Algorithm” on page 8-16
“Selection” on page 8-17
“Reproduction Options” on page 8-17
“Mutation and Crossover” on page 8-17
“Integer and Linear Constraints” on page 8-18

Outline of the Algorithm
The following outline summarizes how the genetic algorithm works:

1 The algorithm begins by creating a random initial population.
2 The algorithm then creates a sequence of new populations. At each step, the algorithm uses the

individuals in the current generation to create the next population. To create the new population,
the algorithm performs the following steps:

a Scores each member of the current population by computing its fitness value. These values
are called the raw fitness scores.

b Scales the raw fitness scores to convert them into a more usable range of values. These
scaled values are called expectation values.

c Selects members, called parents, based on their expectation.
d Some of the individuals in the current population that have lower fitness are chosen as elite.

These elite individuals are passed to the next population.
e Produces children from the parents. Children are produced either by making random

changes to a single parent—mutation—or by combining the vector entries of a pair of
parents—crossover.

f Replaces the current population with the children to form the next generation.
3 The algorithm stops when one of the stopping criteria is met. See “Stopping Conditions for the

Algorithm” on page 8-16.
4 The algorithm takes modified steps for linear and integer constraints. See “Integer and Linear

Constraints” on page 8-18.
5 The algorithm is further modified for nonlinear constraints. See “Nonlinear Constraint Solver

Algorithms” on page 8-54.

Initial Population
The algorithm begins by creating a random initial population, as shown in the following figure.
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In this example, the initial population contains 20 individuals. Note that all the individuals in the
initial population lie in the upper-right quadrant of the picture, that is, their coordinates lie between 0
and 1. For this example, the InitialPopulationRange option is [0;1].

If you know approximately where the minimal point for a function lies, you should set
InitialPopulationRange so that the point lies near the middle of that range. For example, if you
believe that the minimal point for Rastrigin's function is near the point [0 0], you could set
InitialPopulationRange to be [-1;1]. However, as this example shows, the genetic algorithm
can find the minimum even with a less than optimal choice for InitialPopulationRange.

Creating the Next Generation
At each step, the genetic algorithm uses the current population to create the children that make up
the next generation. The algorithm selects a group of individuals in the current population, called
parents, who contribute their genes—the entries of their vectors—to their children. The algorithm
usually selects individuals that have better fitness values as parents. You can specify the function that
the algorithm uses to select the parents in the SelectionFcn option. See “Selection Options” on
page 17-30.

The genetic algorithm creates three types of children for the next generation:

• Eliteare the individuals in the current generation with the best fitness values. These individuals
automatically survive to the next generation.

• Crossover are created by combining the vectors of a pair of parents.
• Mutation children are created by introducing random changes, or mutations, to a single parent.

The following schematic diagram illustrates the three types of children.
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“Mutation and Crossover” on page 8-17 explains how to specify the number of children of each type
that the algorithm generates and the functions it uses to perform crossover and mutation.

The following sections explain how the algorithm creates crossover and mutation children.

Crossover Children

The algorithm creates crossover children by combining pairs of parents in the current population. At
each coordinate of the child vector, the default crossover function randomly selects an entry, or gene,
at the same coordinate from one of the two parents and assigns it to the child. For problems with
linear constraints, the default crossover function creates the child as a random weighted average of
the parents.

Mutation Children

The algorithm creates mutation children by randomly changing the genes of individual parents. By
default, for unconstrained problems the algorithm adds a random vector from a Gaussian distribution
to the parent. For bounded or linearly constrained problems, the child remains feasible.

The following figure shows the children of the initial population, that is, the population at the second
generation, and indicates whether they are elite, crossover, or mutation children.
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Plots of Later Generations
The following figure shows the populations at iterations 60, 80, 95, and 100.

As the number of generations increases, the individuals in the population get closer together and
approach the minimum point [0 0].

Stopping Conditions for the Algorithm
The genetic algorithm uses the following options to determine when to stop. See the default values
for each option by running opts = optimoptions('ga').

• MaxGenerations — The algorithm stops when the number of generations reaches
MaxGenerations.

• MaxTime — The algorithm stops after running for an amount of time in seconds equal to MaxTime.
• FitnessLimit — The algorithm stops when the value of the fitness function for the best point in

the current population is less than or equal to FitnessLimit.
• MaxStallGenerations — The algorithm stops when the average relative change in the fitness

function value over MaxStallGenerations is less than Function tolerance.
• MaxStallTime — The algorithm stops if there is no improvement in the objective function during

an interval of time in seconds equal to MaxStallTime.
• FunctionTolerance — The algorithm runs until the average relative change in the fitness

function value over MaxStallGenerations is less than Function tolerance.
• ConstraintTolerance — The ConstraintTolerance is not used as stopping criterion. It is

used to determine the feasibility with respect to nonlinear constraints. Also,
max(sqrt(eps),ConstraintTolerance) determines feasibility with respect to linear
constraints.
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The algorithm stops as soon as any one of these conditions is met.

Selection
The selection function chooses parents for the next generation based on their scaled values from the
fitness scaling function. The scaled fitness values are called the expectation values. An individual can
be selected more than once as a parent, in which case it contributes its genes to more than one child.
The default selection option, @selectionstochunif, lays out a line in which each parent
corresponds to a section of the line of length proportional to its scaled value. The algorithm moves
along the line in steps of equal size. At each step, the algorithm allocates a parent from the section it
lands on.

A more deterministic selection option is @selectionremainder, which performs two steps:

• In the first step, the function selects parents deterministically according to the integer part of the
scaled value for each individual. For example, if an individual's scaled value is 2.3, the function
selects that individual twice as a parent.

• In the second step, the selection function selects additional parents using the fractional parts of
the scaled values, as in stochastic uniform selection. The function lays out a line in sections,
whose lengths are proportional to the fractional part of the scaled value of the individuals, and
moves along the line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur using Top scaling,
the selection is entirely deterministic.

For details and more selection options, see “Selection Options” on page 17-30.

Reproduction Options
Reproduction options control how the genetic algorithm creates the next generation. The options are

• EliteCount — The number of individuals with the best fitness values in the current generation
that are guaranteed to survive to the next generation. These individuals are called elite children.

When EliteCount is at least 1, the best fitness value can only decrease from one generation to
the next. This is what you want to happen, since the genetic algorithm minimizes the fitness
function. Setting EliteCount to a high value causes the fittest individuals to dominate the
population, which can make the search less effective.

• CrossoverFraction — The fraction of individuals in the next generation, other than elite
children, that are created by crossover. “Setting the Crossover Fraction” on page 8-82 describes
how the value of CrossoverFraction affects the performance of the genetic algorithm.

Because elite individuals have already been evaluated, ga does not reevaluate the fitness function of
elite individuals during reproduction. This behavior assumes that the fitness function of an individual
is not random, but is a deterministic function. To change this behavior, use an output function. See
EvalElites in “The State Structure” on page 17-25.

Mutation and Crossover
The genetic algorithm uses the individuals in the current generation to create the children that make
up the next generation. Besides elite children, which correspond to the individuals in the current
generation with the best fitness values, the algorithm creates
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• Crossover children by selecting vector entries, or genes, from a pair of individuals in the current
generation and combines them to form a child

• Mutation children by applying random changes to a single individual in the current generation to
create a child

Both processes are essential to the genetic algorithm. Crossover enables the algorithm to extract the
best genes from different individuals and recombine them into potentially superior children. Mutation
adds to the diversity of a population and thereby increases the likelihood that the algorithm will
generate individuals with better fitness values.

See “Creating the Next Generation” on page 8-14 for an example of how the genetic algorithm
applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as follows:

• EliteCount specifies the number of elite children.
• CrossoverFraction specifies the fraction of the population, other than elite children, that are

crossover children.

For example, if the PopulationSize is 20, the EliteCount is 2, and the CrossoverFraction is
0.8, the numbers of each type of children in the next generation are as follows:

• There are two elite children.
• There are 18 individuals other than elite children, so the algorithm rounds 0.8*18 = 14.4 to 14 to

get the number of crossover children.
• The remaining four individuals, other than elite children, are mutation children.

Integer and Linear Constraints
When a problem has integer or linear constraints (including bounds), the algorithm modifies the
evolution of the population.

• When the problem has both integer and linear constraints, the software modifies all generated
individuals to be feasible with respect to those constraints. You can use any creation, mutation, or
crossover function, and the entire population remains feasible with respect to integer and linear
constraints.

• When the problem has only linear constraints, the software does not modify the individuals to be
feasible with respect to those constraints. You must use creation, mutation, and crossover
functions that maintain feasibility with respect to linear constraints. Otherwise, the population can
become infeasible, and the result can be infeasible. The default operators maintain linear
feasibility: gacreationlinearfeasible or gacreationnonlinearfeasible for creation,
mutationadaptfeasible for mutation, and crossoverintermediate for crossover.

The internal algorithms for integer and linear feasibility are similar to those for surrogateopt.
When a problem has integer and linear constraints, the algorithm first creates linearly feasible points.
Then the algorithm tries to satisfy integer constraints by rounding linearly feasible points to integers
using a heuristic that attempts to keep the points linearly feasible. When this process is unsuccessful
in obtaining enough feasible points for constructing a population, the algorithm calls intlinprog to
try to find more points that are feasible with respect to bounds, linear constraints, and integer
constraints.

Later, when mutation or crossover creates new population members, the algorithms ensure that the
new members are integer and linear feasible by taking similar steps. Each new member is modified, if
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necessary, to be as close as possible to its original value, while also satisfying the integer and linear
constraints and bounds.

See Also

More About
• “Genetic Algorithm Terminology” on page 8-11
• “Nonlinear Constraint Solver Algorithms” on page 8-54
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Coding and Minimizing a Fitness Function Using the Genetic
Algorithm

This example shows how to create and minimize a fitness function for the genetic algorithm solver ga
using three techniques:

• Basic
• Including additional parameters
• Vectorized for speed

Basic Fitness Function

The basic fitness function is Rosenbrock's function, a common test function for optimizers. The
function is a sum of squares:

f (x) = 100(x1
2− x2)2 + (1− x1)2 .

The function has a minimum value of zero at the point [1,1]. Because the Rosenbrock function is
quite steep, plot the logarithm of one plus the function.

fsurf(@(x,y)log(1 + 100*(x.^2 - y).^2 + (1 - x).^2),[0,2])
title('log(1 + 100*(x(1)^2 - x(2))^2 + (1 - x(1))^2)')
view(-13,78)
hold on
h1 = plot3(1,1,0.1,'r*','MarkerSize',12);
legend(h1,'Minimum','Location','best');
hold off
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Fitness Function Code

The simple_fitness function file implements Rosenbrock's function.

type simple_fitness

function y = simple_fitness(x)
%SIMPLE_FITNESS fitness function for GA

%   Copyright 2004 The MathWorks, Inc. 

  y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

A fitness function must take one input x where x is a row vector with as many elements as number of
variables in the problem. The fitness function computes the value of the function and returns that
scalar value in its one return argument y.

Minimize Using ga

To minimize the fitness function using ga, pass a function handle to the fitness function as well as the
number of variables in the problem. To have ga examine the relevant region, include bounds -3 <=
x(i) <= 3. Pass the bounds as the fifth and sixth arguments after numberOfVariables. For ga
syntax details, see ga.

ga is a random algorithm. For reproducibility, set the random number stream.

rng default % For reproducibility
FitnessFunction = @simple_fitness;
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numberOfVariables = 2;
lb = [-3,-3];
ub = [3,3];
[x,fval] = ga(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub)

Optimization terminated: maximum number of generations exceeded.

x = 1×2

    1.5083    2.2781

fval = 0.2594

The x returned by the solver is the best point in the final population computed by ga. The fval is the
value of the function simple_fitness evaluated at the point x. ga did not find an especially good
solution. For ways to improve the solution, see “Effects of Genetic Algorithm Options” on page 8-30.

Fitness Function with Additional Parameters

Sometimes your fitness function has extra parameters that act as constants during the optimization.
For example, a generalized Rosenbrock's function can have extra parameters representing the
constants 100 and 1:

f (x, a, b) = a(x1
2− x2)2 + (b− x1)2 .

a and b are parameters to the fitness function that act as constants during the optimization (they are
not varied as part of the minimization). The parameterized_fitness.m file implements this
parameterized fitness function.

type parameterized_fitness

function y = parameterized_fitness(x,p1,p2)
%PARAMETERIZED_FITNESS fitness function for GA

%   Copyright 2004 The MathWorks, Inc.        
 
y = p1 * (x(1)^2 - x(2)) ^2 + (p2 - x(1))^2;

Minimize Using Additional Parameters

Use an anonymous function to capture the values of the additional arguments, namely, the constants
a and b. Create a function handle FitnessFunction to an anonymous function that takes one input
x, and calls parameterized_fitness with x, a, and b. The anonymous function contains the values
of a and b that exist when the function handle is created.

a = 100;
b = 1; % define constant values
FitnessFunction = @(x) parameterized_fitness(x,a,b);
[x,fval] = ga(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub)

Optimization terminated: maximum number of generations exceeded.

x = 1×2

    1.3198    1.7434
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fval = 0.1025

See “Passing Extra Parameters”.

Vectorized Fitness Function

To gain speed, vectorize your fitness function. A vectorized fitness function computes the fitness of a
collection of points at once, which generally saves time over evaluating these points individually. To
write a vectorized fitness function, have your function accept a matrix, where each matrix row
represents one point, and have the fitness function return a column vector of fitness function values.

To change the parameterized_fitness function file to a vectorized form:

• Change each variable x(i) to x(:,i), meaning the column vector of variables corresponding to
x(i).

• Change each vector multiplication * to .* and each exponentiation ^ to .^ indicating that the
operations are element-wise. There are no vector multiplications in this code, so simply change
the exponents.

type vectorized_fitness

function y = vectorized_fitness(x,p1,p2)
%VECTORIZED_FITNESS fitness function for GA

%   Copyright 2004-2010 The MathWorks, Inc.  

y = p1 * (x(:,1).^2 - x(:,2)).^2 + (p2 - x(:,1)).^2;

This vectorized version of the fitness function takes a matrix x with an arbitrary number of points,
meaning and arbitrary number of rows, and returns a column vector y with the same number of rows
as x.

Tell the solver that the fitness function is vectorized in the 'UseVectorized' option.

options = optimoptions(@ga,'UseVectorized',true);

Include options as the last argument to ga.

VFitnessFunction = @(x) vectorized_fitness(x,100,1);
[x,fval] = ga(VFitnessFunction,numberOfVariables,[],[],[],[],lb,ub,[],options)

Optimization terminated: maximum number of generations exceeded.

x = 1×2

    1.6219    2.6334

fval = 0.3876

What is the difference in speed? Time the optimization both with and without vectorization.

tic
[x,fval] = ga(VFitnessFunction,numberOfVariables,[],[],[],[],lb,ub,[],options);

Optimization terminated: maximum number of generations exceeded.
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v = toc;
tic
[x,fval] = ga(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub);

Optimization terminated: maximum number of generations exceeded.

nv = toc;
fprintf('Using vectorization took %f seconds. No vectorization took %f seconds.\n',v,nv)

Using vectorization took 0.153337 seconds. No vectorization took 0.212880 seconds.

In this case, the improvement by vectorization was not great, because computing the fitness function
takes very little time. However, for more time-consuming fitness functions, vectorization can be
helpful. See “Vectorize the Fitness Function” on page 8-99.

See Also

More About
• “Passing Extra Parameters”
• “Vectorize the Fitness Function” on page 8-99
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Constrained Minimization Using the Genetic Algorithm
This example shows how to minimize an objective function subject to nonlinear inequality constraints
and bounds using the Genetic Algorithm.

Constrained Minimization Problem

For this problem, the objective function to minimize is a simple function of a 2-D variable x.

simple_objective(x) = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 +
4*x(2)^2)*x(2)^2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1] on page 8-0 .

Additionally, the problem has nonlinear constraints and bounds.

   x(1)*x(2) + x(1) - x(2) + 1.5 <= 0  (nonlinear constraint)
   10 - x(1)*x(2) <= 0                 (nonlinear constraint)
   0 <= x(1) <= 1                      (bound)
   0 <= x(2) <= 13                     (bound)

Code the Fitness Function

Create a MATLAB file named simple_objective.m containing the following code:

type simple_objective

function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver

%   Copyright 2004 The MathWorks, Inc.  

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;

Solvers such as ga accept a single input x, where x has as many elements as the number of variables
in the problem. The objective function computes the scalar value of the objective function and returns
it in its single output argument y.

Code the Constraint Function

Create a MATLAB file named simple_constraint.m containing the following code:

type simple_constraint

function [c, ceq] = simple_constraint(x)
%SIMPLE_CONSTRAINT Nonlinear inequality constraints.

%   Copyright 2005-2007 The MathWorks, Inc.

c = [1.5 + x(1)*x(2) + x(1) - x(2); 
     -x(1)*x(2) + 10];

% No nonlinear equality constraints:
ceq = [];
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The constraint function computes the values of all the inequality and equality constraints and returns
the vectors c and ceq, respectively. The value of c represents nonlinear inequality constraints that
the solver attempts to make less than or equal to zero. The value of ceq represents nonlinear equality
constraints that the solver attempts to make equal to zero. This example has no nonlinear equality
constraints, so ceq = []. For details, see “Nonlinear Constraints”.

Minimizing Using ga

Specify the objective function as a function handle.

ObjectiveFunction = @simple_objective;

Specify the problem bounds.

lb = [0 0];   % Lower bounds
ub = [1 13];  % Upper bounds

Specify the nonlinear constraint function as a function handle.

ConstraintFunction = @simple_constraint;

Specify the number of problem variables.

nvars = 2;

Call the solver, requesting the optimal point x and the function value at the optimal point fval.

rng default % For reproducibility
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],lb,ub,ConstraintFunction)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.

x = 1×2

    0.8122   12.3103

fval = 9.1268e+04

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
gaplotbestf plots the best objective function value at every iteration, and the plot function
gaplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter'.

options = optimoptions("ga",'PlotFcn',{@gaplotbestf,@gaplotmaxconstr}, ...
    'Display','iter');

Run the solver, including the options argument.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],lb,ub, ...
    ConstraintFunction,options)

Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)
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Options:
CreationFcn:       @gacreationuniform
CrossoverFcn:      @crossoverscattered
SelectionFcn:      @selectionstochunif
MutationFcn:       @mutationadaptfeasible

                              Best       Max        Stall
Generation  Func-count        f(x)     Constraint  Generations
    1           2524       91986.8    7.786e-09      0
    2           4986       94677.4            0      0
    3          10362       96929.2            0      0
    4          16067       96006.3            0      0
    5          23405       91267.6    0.0009898      0
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.

x = 1×2

    0.8122   12.3103

fval = 9.1268e+04

With iterative display, that ga provides details about the problem type and the creation, crossover,
mutation, and selection operators.
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Nonlinear constraints cause ga to solve many subproblems at each iteration. As shown in both the
plots and the iterative display, the solution process has few iterations. However, the Func-count
column in the iterative display shows many function evaluations per iteration.

The ga solver handles linear constraints and bounds differently from nonlinear constraints. All the
linear constraints and bounds are satisfied throughout the optimization. However, ga may not satisfy
all the nonlinear constraints at every generation. If ga converges to a solution, the nonlinear
constraints will be satisfied at that solution.

ga uses the mutation and crossover functions to produce new individuals at every generation. The
way the ga satisfies the linear and bound constraints is to use mutation and crossover functions that
only generate feasible points. For example, in the previous call to ga, the default mutation function
(for unconstrained problems) mutationgaussian does not satisfy the linear constraints and so ga
uses the mutationadaptfeasible function instead by default. If you provide a custom mutation
function, this custom function must only generate points that are feasible with respect to the linear
and bound constraints. All the crossover functions in the toolbox generate points that satisfy the
linear constraints and bounds.

However, when your problem contains integer constraints, ga enforces that all iterations satisfy
bounds and linear constraints. This feasibility occurs for all mutation, crossover, and creation
operators, to within a small tolerance.

Provide a Start Point

To speed the solver, you can provide an initial population in the InitialPopulationMatrix option.
ga uses the initial population to start its optimization. Specify a row vector or a matrix where each
row represents one start point.

X0 = [0.8 12.5]; % Start point (row vector)
options.InitialPopulationMatrix = X0;
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],lb,ub, ...
    ConstraintFunction,options)

Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)

Options:
CreationFcn:       @gacreationuniform
CrossoverFcn:      @crossoverscattered
SelectionFcn:      @selectionstochunif
MutationFcn:       @mutationadaptfeasible

                              Best       Max        Stall
Generation  Func-count        f(x)     Constraint  Generations
    1           2500       91507.4            0      0
    2           4950       91270.4    0.0009621      0
    3           7400       91270.4    0.0009621      1
    4           9850       91269.2    0.0009958      0
    5          12300       91269.2    0.0009958      1
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.
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x = 1×2

    0.8122   12.3104

fval = 9.1269e+04

In this case, providing a start point does not substantially change the solver progress.

References

[1] Dixon, L. C. W., and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also

More About
• “Write Constraints” on page 2-6
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Effects of Genetic Algorithm Options
This example shows the effects of some options for the genetic algorithm function ga. You create and
change options by using the optimoptions function.

Set Up a Problem for ga

ga searches for a minimum of a function using the genetic algorithm. For this example, use ga to
minimize the fitness function shufcn, a real-valued function of two variables.

Plot shufcn over the range = [-2 2;-2 2] by calling plotobjective.

plotobjective(@shufcn,[-2 2; -2 2]);

To use the ga solver, provide at least two input arguments: a fitness function and the number of
variables in the problem. The first two output arguments returned by ga are x, the best point found,
and Fval, the function value at the best point. A third output argument, exitFlag, indicates why ga
stopped. ga can also return a fourth argument, Output, which contains information about the
performance of the solver.

FitnessFunction = @shufcn;
numberOfVariables = 2;

Run the ga solver.

rng default % For reproducibility
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);
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Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 124

fprintf('The number of function evaluations is: %d\n', Output.funccount);

The number of function evaluations is: 5881

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.199

If you run this example without the rng default command, your results can differ, because ga is a
stochastic algorithm.

How the Genetic Algorithm Works

The genetic algorithm works on a population using a set of operators that are applied to the
population. A population is a set of points in the design space. The initial population is generated
randomly by default. The algorithm computes the next generation of the population using the fitness
of the individuals in the current generation. For details, see “How the Genetic Algorithm Works” on
page 8-13.

Add Visualization

To visualize the solver performance while it is running, set a 'PlotFcn' option using
optimoptions. In this case, select two plot functions in a cell array. Set gaplotbestf, which plots
the best and mean score of the population at every generation. Also set gaplotstopping, which
plots the percentage of stopping criteria satisfied.

opts = optimoptions(@ga,'PlotFcn',{@gaplotbestf,@gaplotstopping});

Run the ga solver, including the opts argument.

[x,Fval,exitFlag,Output] = ...
    ga(FitnessFunction,numberOfVariables,[],[],[],[],[],[],[],opts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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Specify Population Options

Population options can have a large effect on solver performance. The speed of each iteration
depends on the population size: a larger population leads to slower iterations. Conversely, a larger
population leads to ga exploring more thoroughly, so can lead to a better solution. Similarly, a wider
initial range can lead to more thorough exploration, but can require a larger population to explore the
wider range with a similar thoroughness.

Specify Population Size

ga creates a default initial population by using a uniform random number generator. The default
population size used by ga is 50 when the number of decision variables is less than 5, and 200
otherwise. The default size might not work well for some problems; for example, a smaller population
size can be sufficient for smaller problems. Since the current problem has only two variables, specify
a population size of 10. Set the value of the option PopulationSize to 10 in the existing options,
opts.

opts.PopulationSize = 10;

Specify Initial Population Range

The default method for generating an initial population uses a uniform random number generator. For
problems without integer constraints, ga creates an initial population where all the points are in the
range –10 to 10. For example, you can generate a population of size three in the default range using
this command:

Population = [-10,-10] + 20*rand(3,2);
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You can set the initial range by changing the InitialPopulationRange option. The range must be
a matrix with two rows. If the range has only one column, that is, it is 2-by-1, then the range of every
variable is the given range. For example, if you set the range to [-1; 1], then the initial range for
both variables is –1 to 1. To specify a different initial range for each variable, you must specify the
range as a matrix with two rows and numberOfVariables columns. For example, if you set the
range to [-1 0; 1 2], then the first variable has the range –1 to 1, and the second variable has the
range 0 to 2 (each column corresponds to a variable).

Modify the value of the option InitialPopulationRange in the existing options, opts.

opts.InitialPopulationRange = [-1 0; 1 2];

Run the ga solver.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[],[], ...
    [],[],[],[],opts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 67

fprintf('The number of function evaluations is: %d\n', Output.funccount);

The number of function evaluations is: 614

fprintf('The best function value found is: %g\n', Fval);
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The best function value found is: -179.987

Reproduce Results

By default, ga starts with a random initial population created using MATLAB® random number
generators. The solver produces the next generation using ga operators that also use these same
random number generators. Every time a random number is generated, the state of the random
number generators changes. So, even if you do not change any options, you can get different results
when you run the solver again.

Run the solver twice to show this phenomenon.

Run the ga solver.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.484

Run ga again.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -185.867

ga gives different results in the two runs because the state of the random number generator changes
from one run to another.

If you want to reproduce your results before you run ga, you can save the state of the random
number stream.

thestate = rng;

Run ga.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.467

Reset the stream and rerun ga. The results are identical to the previous run.

rng(thestate);
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.467
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If you run ga before specifying to reproduce the results, you can reset the random number generator
as long as you have the output structure.

strm = RandStream.getGlobalStream;
strm.State = Output.rngstate.State;

Rerun ga. Again, the results are identical.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.467

Modify Stopping Criteria

ga uses four different criteria to determine when to stop the solver. ga stops when it reaches the
maximum number of generations; by default, this number is 100 times the number of variables. ga
also detects if the best fitness value does not change for some time given in seconds (stall time limit),
or for some number of generations (maximum stall generations). Another criteria is the maximum
time limit in seconds. Modify the stopping criteria to increase the maximum number of generations to
300 and the maximum stall generations to 100.

opts = optimoptions(opts,'MaxGenerations',300,'MaxStallGenerations', 100);

Rerun the ga solver.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[],[], ...
    [],[],[],[],opts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 299

fprintf('The number of function evaluations is: %d\n', Output.funccount);

The number of function evaluations is: 2702

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.729

Specify ga Operators

ga starts with a random set of points in the population and uses operators to produce the next
generation of the population. The different operators are scaling, selection, crossover, and mutation.
The toolbox provides several functions to specify for each operator. Specify fitscalingprop for
FitnessScalingFcn and selectiontournament for SelectionFcn.

opts = optimoptions(@ga,'SelectionFcn',@selectiontournament, ...
                        'FitnessScalingFcn',@fitscalingprop);

Rerun ga.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[],[], ...
    [],[],[],[],opts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 52

fprintf('The number of function evaluations is: %d\n', Output.funccount);

The number of function evaluations is: 2497

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.417

The best function value can improve or get worse based on the specified operators. Experimenting
with different operators is often the best way to determine which set of operators works best for your
problem.

See Also
optimoptions

More About
• “Set and Change Options” on page 2-9
• “How the Genetic Algorithm Works” on page 8-13
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Mixed Integer ga Optimization

In this section...
“Solving Mixed Integer Optimization Problems” on page 8-38
“Characteristics of the Integer ga Solver” on page 8-39
“Effective Integer ga” on page 8-43
“Integer ga Algorithm” on page 8-43

Solving Mixed Integer Optimization Problems
ga can solve problems when certain variables are integer-valued. Give intcon, a vector of the x
components that are integers:

[x,fval,exitflag] = ga(fitnessfcn,nvars,A,b,[],[],...
    lb,ub,nonlcon,intcon,options)

intcon is a vector of positive integers that contains the x components that are integer-valued. For
example, if you want to restrict x(2) and x(10) to be integers, set intcon to [2,10].

The surrogateopt solver also accepts integer constraints.

Note Restrictions exist on the types of problems that ga can solve with integer variables. In
particular, ga does not accept nonlinear equality constraints when there are integer variables. For
details, see “Characteristics of the Integer ga Solver” on page 8-39.

Tip ga solves integer problems best when you provide lower and upper bounds for every x
component.

Mixed Integer Optimization of Rastrigin's Function

This example shows how to find the minimum of Rastrigin's function restricted so the first component
of x is an integer. The components of x are further restricted to be in the region
5π ≤ x(1) ≤ 20π, − 20π ≤ x(2) ≤ − 4π .

Set up the bounds for your problem

lb = [5*pi,-20*pi];
ub = [20*pi,-4*pi];

Set a plot function so you can view the progress of ga

opts = optimoptions('ga','PlotFcn',@gaplotbestf);

Call the ga solver where x(1) has integer values

rng(1,'twister') % for reproducibility
intcon = 1;
[x,fval,exitflag] = ga(@rastriginsfcn,2,[],[],[],[],...
    lb,ub,[],intcon,opts)
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Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x = 1×2

   16.0000  -12.9325

fval = 424.1355

exitflag = 1

ga converges quickly to the solution.

Characteristics of the Integer ga Solver
There are some restrictions on the types of problems that ga can solve when you include integer
constraints:

• No nonlinear equality constraints. Any nonlinear constraint function must return [] for the
nonlinear equality constraint. For a possible workaround, see “Example: Integer Programming
with a Nonlinear Equality Constraint” on page 8-40.

• Only doubleVector population type.
• No hybrid function. ga overrides any setting of the HybridFcn option.
• ga ignores the ParetoFraction, DistanceMeasureFcn, InitialPenalty, and

PenaltyFactor options.
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The listed restrictions are mainly natural, not arbitrary. For example, no hybrid functions support
integer constraints. So ga does not use hybrid functions when there are integer constraints.

Example: Integer Programming with a Nonlinear Equality Constraint

This example attempts to locate the minimum of the Ackley function (included with your software) in
five dimensions with these constraints:

• x(1), x(3), and x(5) are integers.
• norm(x) = 4.

The Ackley function is difficult to minimize. Adding integer and equality constraints increases the
difficulty.

To include the nonlinear equality constraint, give a small tolerance tol that allows the norm of x to
be within tol of 4. Without a tolerance, the nonlinear equality constraint is never satisfied, and the
solver does not realize when it has a feasible solution.

1 Write the expression norm(x) = 4 as two “less than zero” inequalities:

norm(x) - 4 ≤ 0
-(norm(x) - 4) ≤ 0.

(8-1)

2 Allow a small tolerance in the inequalities:

norm(x) - 4 - tol ≤ 0
-(norm(x) - 4) - tol ≤ 0.

(8-2)

3 Write a nonlinear inequality constraint function that implements these inequalities:

function [c, ceq] = eqCon(x)

ceq = [];
rad = 4;
tol = 1e-3;
confcnval = norm(x) - rad;
c = [confcnval - tol;-confcnval - tol];

4 Set options:

• MaxStallGenerations = 50 — Allow the solver to try for a while.
• FunctionTolerance = 1e-10 — Specify a stricter stopping criterion than usual.
• MaxGenerations = 300 — Allow more generations than default.
• PlotFcn = @gaplotbestfun — Observe the optimization.

opts = optimoptions('ga','MaxStallGenerations',50,'FunctionTolerance',1e-10,...
    'MaxGenerations',300,'PlotFcn',@gaplotbestfun);

5 Set lower and upper bounds to help the solver:

nVar = 5;
lb = -5*ones(1,nVar);
ub = 5*ones(1,nVar);

6 Solve the problem:

rng(0,'twister') % for reproducibility
[x,fval,exitflag] = ga(@ackleyfcn,nVar,[],[],[],[], ...
    lb,ub,@eqCon,[1 3 5],opts);
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Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

7 Examine the solution:

x,fval,exitflag,norm(x)

x =

         0   -1.7367   -3.0000   -0.0000   -2.0000

fval =

    5.2303

exitflag =

     1

ans =

    4.0020

The odd x components are integers, as specified. The norm of x is 4, to within the given relative
tolerance of 1e-3.
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8 Despite the positive exit flag, the solution is not the global optimum. Run the problem again and
examine the solution:

opts = optimoptions('ga',opts,'Display','off');
[x2,fval2,exitflag2] = ga(@ackleyfcn,nVar,[],[],[],[], ...
    lb,ub,@eqCon,[1 3 5],opts);

Examine the second solution:

x2,fval2,exitflag2,norm(x2)

x2 =

   -2.0000    2.8930         0   -1.9095         0

fval2 =

    4.5520

exitflag2 =

     0

ans =

8 Using the Genetic Algorithm

8-42



    4.0020

The second run gives a better solution (lower fitness function value). Again, the odd x
components are integers, and the norm of x2 is 4, to within the given relative tolerance of 1e-3.

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and equality
constraints.

Effective Integer ga
To use ga most effectively on integer problems, follow these guidelines.

• Bound each component as tightly as you can. This practice gives ga the smallest search space,
enabling ga to search most effectively.

• If you cannot bound a component, then specify an appropriate initial range. By default, ga creates
an initial population with range [-1e4,1e4] for each component. A smaller or larger initial range
can give better results when the default value is inappropriate. To change the initial range, use
the InitialPopulationRange option.

• If you have more than 10 variables, set a population size that is larger than default by using the
PopulationSize option. The default value is 200 for six or more variables. For a large
population size:

• ga can take a long time to converge. If you reach the maximum number of generations (exit
flag 0), increase the value of the MaxGenerations option.

• Decrease the mutation rate. To do so, increase the value of the CrossoverFraction option
from its default of 0.8 to 0.9 or higher.

• Increase the value of the EliteCount option from its default of 0.05*PopulationSize to
0.1*PopulationSize or higher.

For information on options, see the ga options input argument.

Integer ga Algorithm
Integer programming with ga involves several modifications of the basic algorithm (see “How the
Genetic Algorithm Works” on page 8-13). For integer programming:

• By default, special creation, crossover, and mutation functions enforce variables to be integers.
For details, see Deep et al. [2].

• If you use nondefault creation, crossover, or mutation functions, ga enforces linear feasibility and
feasibility with respect to integer constraints at each iteration.

• The genetic algorithm attempts to minimize a penalty function, not the fitness function. The
penalty function includes a term for infeasibility. This penalty function is combined with binary
tournament selection by default to select individuals for subsequent generations. The penalty
function value of a member of a population is:

• If the member is feasible, the penalty function is the fitness function.
• If the member is infeasible, the penalty function is the maximum fitness function among

feasible members of the population, plus a sum of the constraint violations of the (infeasible)
point.
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For details of the penalty function, see Deb [1].

References
[1] Deb, Kalyanmoy. An efficient constraint handling method for genetic algorithms. Computer

Methods in Applied Mechanics and Engineering, 186(2–4), pp. 311–338, 2000.

[2] Deep, Kusum, Krishna Pratap Singh, M.L. Kansal, and C. Mohan. A real coded genetic algorithm
for solving integer and mixed integer optimization problems. Applied Mathematics and
Computation, 212(2), pp. 505–518, 2009.

See Also

Related Examples
• “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm” on page 8-

45
• “Mixed-Integer Surrogate Optimization” on page 11-62
• “Solve Nonlinear Problem with Integer and Nonlinear Constraints” on page 11-83
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Solve a Mixed-Integer Engineering Design Problem Using the
Genetic Algorithm

This example shows how to solve a mixed integer engineering design problem using the Genetic
Algorithm (ga) solver in Global Optimization Toolbox.

The problem illustrated in this example involves the design of a stepped cantilever beam. In
particular, the beam must be able to carry a prescribed end load. We will solve a problem to minimize
the beam volume subject to various engineering design constraints.

In this example we will solve two bounded versions of the problem published in [1].

Stepped Cantilever Beam Design Problem

A stepped cantilever beam is supported at one end and a load is applied at the free end, as shown in
the figure below. The beam must be able to support the given load, , at a fixed distance  from the
support. Designers of the beam can vary the width ( ) and height ( ) of each section. We will assume
that each section of the cantilever has the same length, .

Volume of the beam

The volume of the beam, , is the sum of the volume of the individual sections

Constraints on the Design : 1 - Bending Stress
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Consider a single cantilever beam, with the center of coordinates at the center of its cross section at
the free end of the beam. The bending stress at a point  in the beam is given by the following
equation

where  is the bending moment at ,  is the distance from the end load and  is the area
moment of inertia of the beam.

Now, in the stepped cantilever beam shown in the figure, the maximum moment of each section of the
beam is , where  is the maximum distance from the end load, , for each section of the beam.
Therefore, the maximum stress for the -th section of the beam, , is given by

where the maximum stress occurs at the edge of the beam, . The area moment of inertia of
the -th section of the beam is given by

Substituting this into the equation for  gives

The bending stress in each part of the cantilever should not exceed the maximum allowable stress,
. Consequently, we can finally state the five bending stress constraints (one for each step of the

cantilever)

Constraints on the Design : 2 - End deflection

The end deflection of the cantilever can be calculated using Castigliano's second theorem, which
states that

8 Using the Genetic Algorithm

8-46



where  is the deflection of the beam,  is the energy stored in the beam due to the applied force, .

The energy stored in a cantilever beam is given by

where  is the moment of the applied force at .

Given that  for a cantilever beam, we can write the above equation as

where  is the area moment of inertia of the -th part of the cantilever. Evaluating the integral gives
the following expression for .

Applying Castigliano's theorem, the end deflection of the beam is given by

Now, the end deflection of the cantilever, , should be less than the maximum allowable deflection,
, which gives us the following constraint.

Constraints on the Design : 3 - Aspect ratio

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable aspect ratio,
. That is,

 for 

State the Optimization Problem

We are now able to state the problem to find the optimal parameters for the stepped cantilever beam
given the stated constraints.

Let , , , , , , , ,  and 

Minimize:

Subject to:
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The first step of the beam can only be machined to the nearest centimeter. That is,  and  must be
integer. The remaining variables are continuous. The bounds on the variables are given below:-

Design Parameters for This Problem

For the problem we will solve in this example, the end load that the beam must support is
.

The beam lengths and maximum end deflection are:

• Total beam length, 
• Individual section of beam, 
• Maximum beam end deflection, 

The maximum allowed stress in each step of the beam, 

Young's modulus of each step of the beam, 

Solve the Mixed Integer Optimization Problem

We now solve the problem described in State the Optimization Problem.

Define the Fitness and Constraint Functions

Examine the MATLAB® files cantileverVolume.m and cantileverConstraints.m to see how
the fitness and constraint functions are implemented.
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A note on the linear constraints: When linear constraints are specified to ga, you normally specify
them via the A, b, Aeq and beq inputs. In this case we have specified them via the nonlinear
constraint function. This is because later in this example, some of the variables will become discrete.
When there are discrete variables in the problem it is far easier to specify linear constraints in the
nonlinear constraint function. The alternative is to modify the linear constraint matrices to work in
the transformed variable space, which is not trivial and maybe not possible. Also, in the mixed integer
ga solver, the linear constraints are not treated any differently to the nonlinear constraints regardless
of how they are specified.

Set the Bounds

Create vectors containing the lower bound (lb) and upper bound constraints (ub).

lb = [1 30 2.4 45 2.4 45 1 30 1 30];
ub = [5 65 3.1 60 3.1 60 5 65 5 65];

Set the Options

To obtain a more accurate solution, we increase the PopulationSize, and MaxGenerations
options from their default values, and decrease the EliteCount and FunctionTolerance options.
These settings cause ga to use a larger population (increased PopulationSize), to increase the search
of the design space (reduced EliteCount), and to keep going until its best member changes by very
little (small FunctionTolerance). We also specify a plot function to monitor the penalty function value
as ga progresses.

Note that there are a restricted set of ga options available when solving mixed integer problems - see
Global Optimization Toolbox User's Guide for more details.

opts = optimoptions(@ga, ...
                    'PopulationSize', 150, ...
                    'MaxGenerations', 200, ...
                    'EliteCount', 10, ...
                    'FunctionTolerance', 1e-8, ...
                    'PlotFcn', @gaplotbestf);

Call ga to Solve the Problem

We can now call ga to solve the problem. In the problem statement  and  are integer variables.
We specify this by passing the index vector [1 2] to ga after the nonlinear constraint input and
before the options input. We also seed and set the random number generator here for reproducibility.

rng(0, 'twister');
[xbest, fbest, exitflag] = ga(@cantileverVolume, 10, [], [], [], [], ...
    lb, ub, @cantileverConstraints, [1 2], opts);

Optimization terminated: maximum number of generations exceeded.
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Analyze the Results

If a problem has integer constraints, ga reformulates it internally. In particular, the fitness function in
the problem is replaced by a penalty function which handles the constraints. For feasible population
members, the penalty function is the same as the fitness function.

The solution returned from ga is displayed below. Note that the section nearest the support is
constrained to have a width ( ) and height ( ) which is an integer value and this constraint has
been honored by GA.

display(xbest);

xbest =

  Columns 1 through 7

    3.0000   60.0000    2.8504   57.0057    2.6114   50.6243    2.2132

  Columns 8 through 10

   44.2349    1.7543   35.0595

We can also ask ga to return the optimal volume of the beam.

fprintf('\nCost function returned by ga = %g\n', fbest);
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Cost function returned by ga = 63408.9

Add Discrete Non-Integer Variable Constraints

The engineers are now informed that the second and third steps of the cantilever can only have
widths and heights that are chosen from a standard set. In this section, we show how to add this
constraint to the optimization problem. Note that with the addition of this constraint, this problem is
identical to that solved in [1].

First, we state the extra constraints that will be added to the above optimization

• The width of the second and third steps of the beam must be chosen from the following set:- [2.4,
2.6, 2.8, 3.1] cm

• The height of the second and third steps of the beam must be chosen from the following set:- [45,
50, 55, 60] cm

To solve this problem, we need to be able to specify the variables , ,  and  as discrete
variables. To specify a component  as taking discrete values from the set , optimize
with  an integer variable taking values from 1 to , and use  as the discrete value. To specify
the range (1 to ), set 1 as the lower bound and  as the upper bound.

So, first we transform the bounds on the discrete variables. Each set has 4 members and we will map
the discrete variables to an integer in the range [1, 4]. So, to map these variables to be integer, we
set the lower bound to 1 and the upper bound to 4 for each of the variables.

lb = [1 30 1 1 1 1 1 30 1 30];
ub = [5 65 4 4 4 4 5 65 5 65];

Transformed (integer) versions of , ,  and  will now be passed to the fitness and constraint
functions when the ga solver is called. To evaluate these functions correctly, , ,  and  need to
be transformed to a member of the given discrete set in these functions. To see how this is done,
examine the MATLAB files cantileverVolumeWithDisc.m,
cantileverConstraintsWithDisc.m and cantileverMapVariables.m.

Now we can call ga to solve the problem with discrete variables. In this case  are integers.
This means that we pass the index vector 1:6 to ga to define the integer variables.

rng(0, 'twister');
[xbestDisc, fbestDisc, exitflagDisc] = ga(@cantileverVolumeWithDisc, ...
    10, [], [], [], [], lb, ub, @cantileverConstraintsWithDisc, 1:6, opts);

Optimization terminated: maximum number of generations exceeded.
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Analyze the Results

xbestDisc(3:6) are returned from ga as integers (i.e. in their transformed state). We need to
reverse the transform to retrieve the value in their engineering units.

xbestDisc = cantileverMapVariables(xbestDisc);
display(xbestDisc);

xbestDisc =

  Columns 1 through 7

    3.0000   60.0000    3.1000   55.0000    2.6000   50.0000    2.2430

  Columns 8 through 10

   44.8603    1.8279   36.5593

As before, the solution returned from ga honors the constraint that  and  are integers. We can
also see that ,  are chosen from the set [2.4, 2.6, 2.8, 3.1] cm and ,  are chosen from the set
[45, 50, 55, 60] cm.

Recall that we have added additional constraints on the variables x(3), x(4), x(5) and x(6). As
expected, when there are additional discrete constraints on these variables, the optimal solution has
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a higher minimum volume. Note further that the solution reported in [1] has a minimum volume of
 and that we find a solution which is approximately the same as that reported in [1].

fprintf('\nCost function returned by ga = %g\n', fbestDisc);

Cost function returned by ga = 64795

Summary

This example illustrates how to use the genetic algorithm solver, ga, to solve a constrained nonlinear
optimization problem which has integer constraints. The example also shows how to handle problems
that have discrete variables in the problem formulation.

References

[1] Thanedar, P. B., and G. N. Vanderplaats. "Survey of Discrete Variable Optimization for Structural
Design." Journal of Structural Engineering 121 (3), 1995, pp. 301–306.

See Also

More About
• “Mixed Integer ga Optimization” on page 8-38
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Nonlinear Constraint Solver Algorithms
In this section...
“Augmented Lagrangian Genetic Algorithm” on page 8-54
“Penalty Algorithm” on page 8-55

Augmented Lagrangian Genetic Algorithm
By default, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm (ALGA) to solve
nonlinear constraint problems without integer constraints. The optimization problem solved by the
ALGA algorithm is

min
x

f (x)

such that

ci(x) ≤ 0, i = 1…m
ceqi(x) = 0, i = m + 1…mt

A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub,

where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality constraints,
m is the number of nonlinear inequality constraints, and mt is the total number of nonlinear
constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a nonlinear optimization
problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and
linear constraints are handled separately from nonlinear constraints. A subproblem is formulated by
combining the fitness function and nonlinear constraint function using the Lagrangian and the
penalty parameters. A sequence of such optimization problems are approximately minimized using
the genetic algorithm such that the linear constraints and bounds are satisfied.

A subproblem formulation is defined as

Θ(x, λ, s, ρ) = f (x)− ∑
i = 1

m
λisilog(si− ci(x)) + ∑

i = m + 1

mt
λiceqi(x) + ρ

2 ∑
i = m + 1

mt
ceqi(x)2,

where

• The components λi of the vector λ are nonnegative and are known as Lagrange multiplier
estimates

• The elements si of the vector s are nonnegative shifts
• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The genetic algorithm minimizes a sequence of subproblems, each of which is an approximation of
the original problem. Each subproblem has a fixed value of λ, s, and ρ. When the subproblem is
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minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are
updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This
results in a new subproblem formulation and minimization problem. These steps are repeated until
the stopping criteria are met.

Each subproblem solution represents one generation. The number of function evaluations per
generation is therefore much higher when using nonlinear constraints than otherwise.

Choose the Augmented Lagrangian algorithm by setting the NonlinearConstraintAlgorithm
option to 'auglag' using optimoptions.

For a complete description of the algorithm, see the following references:

References
[1] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented Lagrangian

Algorithm for Optimization with General Constraints and Simple Bounds,” SIAM Journal on
Numerical Analysis, Volume 28, Number 2, pages 545–572, 1991.

[2] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented Lagrangian
Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds,”
Mathematics of Computation, Volume 66, Number 217, pages 261–288, 1997.

Penalty Algorithm
The penalty algorithm is similar to the “Integer ga Algorithm” on page 8-43. In its evaluation of the
fitness of an individual, ga computes a penalty value as follows:

• If the individual is feasible, the penalty function is the fitness function.
• If the individual is infeasible, the penalty function is the maximum fitness function among feasible

members of the population, plus a sum of the constraint violations of the (infeasible) individual.

For details of the penalty function, see Deb [1].

Choose the penalty algorithm by setting the NonlinearConstraintAlgorithm option to
'penalty' using optimoptions. When you make this choice, ga solves the constrained
optimization problem as follows.

1 ga defaults to the @gacreationnonlinearfeasible creation function. This function attempts
to create a feasible population with respect to all constraints. ga creates enough individuals to
match the PopulationSize option. For details, see “Penalty Algorithm” on page 17-38.

2 ga overrides your choice of selection function, and uses @selectiontournament with two
individuals per tournament.

3 ga proceeds according to “How the Genetic Algorithm Works” on page 8-13, using the penalty
function as the fitness measure.

References
[1] Deb, Kalyanmoy. An efficient constraint handling method for genetic algorithms. Computer

Methods in Applied Mechanics and Engineering, 186(2–4), pp. 311–338, 2000.
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See Also

More About
• “Genetic Algorithm Terminology” on page 8-11
• “How the Genetic Algorithm Works” on page 8-13
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Create Custom Plot Function
In this section...
“About Custom Plot Functions” on page 8-57
“Creating the Custom Plot Function” on page 8-57
“Using the Custom Plot Function” on page 8-57
“How the Plot Function Works” on page 8-58

About Custom Plot Functions
If none of the plot functions that come with the software is suitable for the output you want to plot,
you can write your own custom plot function, which the genetic algorithm calls at each generation to
create the plot. This example shows how to create a plot function that displays the change in the best
fitness value from the previous generation to the current generation.

Creating the Custom Plot Function
To create the plot function for this example, copy and paste the following code into a new file in the
MATLAB Editor.

function state = gaplotchange(options, state, flag)
% GAPLOTCHANGE Plots the logarithmic change in the best score from the 
% previous generation.
%   
persistent last_best % Best score in the previous generation

if(strcmp(flag,'init')) % Set up the plot
    xlim([1,options.MaxGenerations]);
    axx = gca;
    axx.YScale = 'log';
    hold on;
    xlabel Generation
    title('Log Absolute Change in Best Fitness Value')
end

best = min(state.Score); % Best score in the current generation
if state.Generation == 0 % Set last_best to best.
    last_best = best;
else
    change = last_best - best; % Change in best score 
    last_best = best;
    if change > 0 % Plot only when the fitness improves
        plot(state.Generation,change,'xr');
    end
end

Save the file as gaplotchange.m in a folder on the MATLAB path.

Using the Custom Plot Function
To use the custom plot function, include it in the options.
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rng(100) % For reproducibility
options = optimoptions('ga','PlotFcn',{@gaplotbestf,@gaplotchange});
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)

Optimization terminated: maximum number of generations exceeded.

x =

   -0.0003    0.0014

fval =

   4.2189e-04

The plot shows only changes that are greater than 0, which are improvements in best fitness. The
logarithmic scale enables you to see small changes in the best fitness function that the upper plot
does not reveal.

How the Plot Function Works
The plot function uses information contained in the following structures, which the genetic algorithm
passes to the function as input arguments:

• options — The current options settings
• state — Information about the current generation

8 Using the Genetic Algorithm

8-58



• flag — Current status of the algorithm

The most important lines of the plot function are the following:

• persistent last_best

Creates the persistent variable last_best—the best score in the previous generation. Persistent
variables are preserved over multiple calls to the plot function.

• xlim([1,options.MaxGenerations]);

axx = gca;

axx.YScale = 'log';

Sets up the plot before the algorithm starts. options.MaxGenerations is the maximum number
of generations.

• best = min(state.Score)

The field state.Score contains the scores of all individuals in the current population. The
variable best is the minimum score. For a complete description of the fields of the structure state,
see “Structure of the Plot Functions” on page 17-24.

• change = last_best - best

The variable change is the best score at the previous generation minus the best score in the
current generation.

• if change > 0

Plot only if there is a change in the best fitness.
• plot(state.Generation,change,'xr')

Plots the change at the current generation, whose number is contained in state.Generation.

The code for gaplotchange contains many of the same elements as the code for gaplotbestf, the
function that creates the best fitness plot.

See Also

Related Examples
• “Custom Output Function for Genetic Algorithm” on page 8-101
• “Plot Options” on page 17-23
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Resume ga
By default, ga creates a new initial population each time you run it. However, you might get better
results by using the final population from a previous run as the initial population for a new run. To do
so, you must have saved the final population from the previous run by calling ga with the syntax

[x,fval,exitflag,output,final_pop] = ga(@fitnessfcn,nvars);

The last output argument is the final population. To run ga using final_pop as the initial population,
enter

options = optimoptions('ga','InitialPop',final_pop);
[x,fval,exitflag,output,final_pop2] = ... 
        ga(@fitnessfcn,nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as the initial population for
a third run.

For example, minimize Ackley's function, a function of two variables.

rng(100) % For reproducibiliity
[x,fval,exitflag,output,final_pop] = ga(@ackleyfcn,2);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

Examine the best function value.

disp(fval)

    3.5527

Try to get a better solution by running ga from the final population.

options = optimoptions('ga','InitialPopulationMatrix',final_pop);
[x,fval2,exitflag2,output2,final_pop2] = ... 
        ga(@ackleyfcn,2,[],[],[],[],[],[],[],options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

disp(fval2)

    2.9886

The fitness function value improves significantly.

Try once again to improve the solution.

options.InitialPopulationMatrix = final_pop2;
[x,fval3,exitflag3,output3,final_pop3] = ... 
        ga(@ackleyfcn,2,[],[],[],[],[],[],[],options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

disp(fval3)

    2.9846

This time the improvement is insignificant.
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See Also

More About
• “How the Genetic Algorithm Works” on page 8-13
• “Reproduce Results” on page 8-65
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Options and Outputs
In this section...
“Running ga with the Default Options” on page 8-62
“Setting Options at the Command Line” on page 8-62
“Additional Output Arguments” on page 8-63

Running ga with the Default Options
To run the genetic algorithm with the default options, call ga with the syntax

[x,fval] = ga(@fitnessfun, nvars)

The input arguments to ga are

• @fitnessfun — A function handle to the file that computes the fitness function. “Compute
Objective Functions” on page 2-2 explains how to write this file.

• nvars — The number of independent variables for the fitness function.

The output arguments are

• x — The final point
• fval — The value of the fitness function at x

For a description of additional input and output arguments, see the reference page for ga.

You can run the example described in “Minimize Rastrigin's Function” on page 8-4 from the command
line by entering

rng(1,'twister') % for reproducibility
[x,fval] = ga(@rastriginsfcn,2)

This returns

Optimization terminated:
 average change in the fitness value less than options.FunctionTolerance.

x =
   -1.0421   -1.0018

fval =
    2.4385

Setting Options at the Command Line
You can specify any of the options that are available for ga by passing options as an input argument
to ga using the syntax

[x,fval] = ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

This syntax does not specify any linear equality, linear inequality, or nonlinear constraints.

You create options using the function optimoptions.
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options = optimoptions(@ga);

This returns options with the default values for its fields. ga uses these default values if you do not
pass in options as an input argument.

The value of each option is stored in a field of options, such as options.PopulationSize. You
can display any of these values by entering options followed by a period and the name of the field.
For example, to display the size of the population for the genetic algorithm, enter

options.PopulationSize

ans =

'50 when numberOfVariables <= 5, else 200'

To create options with a field value that is different from the default — for example to set
PopulationSize to 100 instead of its default value 50 — enter

options = optimoptions('ga','PopulationSize',100);

This creates options with all values set to their defaults except for PopulationSize, which is set
to 100.

If you now enter,

ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in options, such as setting PlotFcn to
@gaplotbestf, which plots the best fitness function value at each generation, call optimoptions
with the syntax

options = optimoptions(options,'PlotFcn',@plotbestf);

This preserves the current values of all fields of options except for PlotFcn, which is changed to
@plotbestf. Note that if you omit the input argument options, optimoptions resets
PopulationSize to its default value.

You can also set both PopulationSize and PlotFcn with the single command

options = optimoptions('ga','PopulationSize',100,'PlotFcn',@plotbestf);

Additional Output Arguments
To get more information about the performance of the genetic algorithm, you can call ga with the
syntax

[x,fval,exitflag,output,population,scores] = ga(@fitnessfcn, nvars)

Besides x and fval, this function returns the following additional output arguments:

• exitflag — Integer value corresponding to the reason the algorithm terminated
• output — Structure containing information about the performance of the algorithm at each

generation
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• population — Final population
• scores — Final scores

See the ga reference page for more information about these arguments.

See Also
ga

More About
• “Genetic Algorithm Options” on page 17-23
• “Population Diversity” on page 8-69
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Reproduce Results
Because the genetic algorithm is stochastic—that is, it makes random choices—you get slightly
different results each time you run the genetic algorithm. The algorithm uses the default MATLAB
pseudorandom number stream. For more information about random number streams, see
RandStream. Each time ga calls the stream, its state changes. So that the next time ga calls the
stream, it returns a different random number. This is why the output of ga differs each time you run
it.

If you need to reproduce your results exactly, you can call ga with an output argument that contains
the current state of the default stream, and then reset the state to this value before running ga again.
For example, to reproduce the output of ga applied to Rastrigin's function, call ga with the syntax

rng(1,'twister') % for reproducibility
[x,fval,exitflag,output] = ga(@rastriginsfcn, 2);

Suppose the results are

x,fval,exitflag

x =
   -1.0421   -1.0018

fval =
    2.4385

exitflag =
     1

The state of the stream is stored in output.rngstate. To reset the state, enter

stream = RandStream.getGlobalStream;
stream.State = output.rngstate.State;

If you now run ga a second time, you get the same results as before:

[x,fval,exitflag] = ga(@rastriginsfcn, 2)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x =
   -1.0421   -1.0018

fval =
    2.4385

exitflag =
     1

Note If you do not need to reproduce your results, it is better not to set the state of the stream, so
that you get the benefit of the randomness in the genetic algorithm.

 Reproduce Results

8-65



See Also

More About
• “Resume ga” on page 8-60
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Run ga from a File
The command-line interface enables you to run the genetic algorithm many times, with different
options settings, using a file. For example, you can run the genetic algorithm with different settings
for Crossover fraction to see which one gives the best results. The following code runs the function
ga 21 times, varying options.CrossoverFraction from 0 to 1 in increments of 0.05, and records
the results.

options = optimoptions('ga','MaxGenerations',300,'Display','none');
rng default % for reproducibility
record=[];
for n=0:.05:1
  options = optimoptions(options,'CrossoverFraction',n);
  [x,fval]=ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
  record = [record; fval];
end

You can plot the values of fval against the crossover fraction with the following commands:

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')

The following plot appears.

The plot suggests that you get the best results by setting options.CrossoverFraction to a value
somewhere between 0.4 and 0.8.
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You can get a smoother plot of fval as a function of the crossover fraction by running ga 20 times
and averaging the values of fval for each crossover fraction. The following figure shows the
resulting plot.

This plot also suggests the range of best choices for options.CrossoverFraction is 0.4 to 0.8.

See Also

More About
• “Constrained Minimization Using the Genetic Algorithm” on page 8-25
• “Coding and Minimizing a Fitness Function Using the Genetic Algorithm” on page 8-20
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Population Diversity

In this section...
“Importance of Population Diversity” on page 8-69
“Set Initial Range” on page 8-69
“Custom Plot Function and Linear Constraints in ga” on page 8-72
“Setting the Population Size” on page 8-76

Importance of Population Diversity
One of the most important factors that determines the performance of the genetic algorithm performs
is the diversity of the population. If the average distance between individuals is large, the diversity is
high; if the average distance is small, the diversity is low. Getting the right amount of diversity is a
matter of trial and error. If the diversity is too high or too low, the genetic algorithm might not
perform well.

This section explains how to control diversity by setting the initial range of the population. “Setting
the Amount of Mutation” on page 8-80 describes how the amount of mutation affects diversity.

This section also explains how to set the population size on page 8-76.

Set Initial Range
By default, ga creates a random initial population using a creation function. You can specify the range
of the vectors in the initial population in the InitialPopulationRange option.

Note: The initial range restricts the range of the points in the initial population by specifying the
lower and upper bounds. Subsequent generations can contain points whose entries do not lie in the
initial range. Set upper and lower bounds for all generations using the lb and ub input arguments.

If you know approximately where the solution to a problem lies, specify the initial range so that it
contains your guess for the solution. However, the genetic algorithm can find the solution even if it
does not lie in the initial range, if the population has enough diversity.

This example shows how the initial range affects the performance of the genetic algorithm. The
example uses Rastrigin's function, described in “Minimize Rastrigin's Function” on page 8-4. The
minimum value of the function is 0, which occurs at the origin.

rng(1) % For reproducibility
fun = @rastriginsfcn;
nvar = 2;
options = optimoptions('ga','PlotFcn',{'gaplotbestf','gaplotdistance'},...
    'InitialPopulationRange',[1;1.1]);
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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x = 1×2

    0.9942    0.9950

fval = 1.9900

The upper plot, which displays the best fitness at each generation, shows little progress in lowering
the fitness value. The lower plot shows the average distance between individuals at each generation,
which is a good measure of the diversity of a population. For this setting of initial range, there is too
little diversity for the algorithm to make progress.

Next, try setting the InitialPopulationRange to [1;100]. This time the results are more variable.
The current random number setting causes a fairly typical result.

options.InitialPopulationRange = [1;100];
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

8 Using the Genetic Algorithm

8-70



x = 1×2

    0.9344   -1.0792

fval = 4.0889

This time, the genetic algorithm makes progress, but because the average distance between
individuals is so large, the best individuals are far from the optimal solution.

Now set the InitialPopulationRange to [1;2]. This setting is well-suited to the problem.

options.InitialPopulationRange = [1;2];
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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x = 1×2

    0.0013    0.0020

fval = 0.0011

The suitable diversity usually causes ga to return a better result than in the previous two cases.

Custom Plot Function and Linear Constraints in ga
This example shows how @gacreationlinearfeasible, the default creation function for linearly
constrained problems, creates a population for ga. The population is well-dispersed, and is biased to
lie on the constraint boundaries. The example uses a custom plot function.

Fitness Function

The fitness function is lincontest6, included with your software. This is a quadratic function of two
variables:

Custom Plot Function

Save the following code to a file on your MATLAB® path named gaplotshowpopulation2.
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function state = gaplotshowpopulation2(~,state,flag,fcn)
%gaplotshowpopulation2 Plots the population and linear constraints in 2-d.
%   STATE = gaplotshowpopulation2(OPTIONS,STATE,FLAG) plots the population
%   in two dimensions.
%
%   Example:
%     fun = @lincontest6;
%     options = gaoptimset('PlotFcn',{{@gaplotshowpopulation2,fun}});
%     [x,fval,exitflag] = ga(fun,2,A,b,[],[],lb,[],[],options);

% This plot function works in 2-d only
if size(state.Population,2) > 2
    return;
end
if nargin < 4
    fcn = [];
end
% Dimensions to plot
dimensionsToPlot = [1 2];

switch flag
    % Plot initialization
    case 'init'
        pop = state.Population(:,dimensionsToPlot);
        plotHandle = plot(pop(:,1),pop(:,2),'*');
        set(plotHandle,'Tag','gaplotshowpopulation2')
        title('Population plot in two dimension','interp','none')
        xlabelStr = sprintf('%s %s','Variable ', num2str(dimensionsToPlot(1)));
        ylabelStr = sprintf('%s %s','Variable ', num2str(dimensionsToPlot(2)));
        xlabel(xlabelStr,'interp','none');
        ylabel(ylabelStr,'interp','none');
        hold on;
       
        % plot the inequalities
        plot([0 1.5],[2 0.5],'m-.') %  x1 + x2 <= 2
        plot([0 1.5],[1 3.5/2],'m-.'); % -x1 + 2*x2 <= 2
        plot([0 1.5],[3 0],'m-.'); % 2*x1 + x2 <= 3
        % plot lower bounds
        plot([0 0], [0 2],'m-.'); % lb = [ 0 0];
        plot([0 1.5], [0 0],'m-.'); % lb = [ 0 0];
        set(gca,'xlim',[-0.7,2.2])
        set(gca,'ylim',[-0.7,2.7])
        axx = gcf;
        % Contour plot the objective function
        if ~isempty(fcn)
            range = [-0.5,2;-0.5,2];
            pts = 100;
            span = diff(range')/(pts - 1);
            x = range(1,1): span(1) : range(1,2);
            y = range(2,1): span(2) : range(2,2);

            pop = zeros(pts * pts,2);
            values = zeros(pts,1);
            k = 1;
            for i = 1:pts
                for j = 1:pts
                    pop(k,:) = [x(i),y(j)];
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                    values(k) = fcn(pop(k,:));
                    k = k + 1;
                end
            end
            values = reshape(values,pts,pts);
            contour(x,y,values);
            colorbar
        end
        % Show the initial population
        ax = gca;
        fig = figure;
        copyobj(ax,fig);colorbar
        % Pause for three seconds to view the initial plot, then resume
        figure(axx)
        pause(3);
    case 'iter'
        pop = state.Population(:,dimensionsToPlot);
        plotHandle = findobj(get(gca,'Children'),'Tag','gaplotshowpopulation2');
        set(plotHandle,'Xdata',pop(:,1),'Ydata',pop(:,2));
end

The custom plot function plots the lines representing the linear inequalities and bound constraints,
plots level curves of the fitness function, and plots the population as it evolves. This plot function
expects to have not only the usual inputs (options,state,flag), but also a function handle to the
fitness function, @lincontest6 in this example. To generate level curves, the custom plot function
needs the fitness function.

Problem Constraints

Include bounds and linear constraints.

A = [1,1;-1,2;2,1];
b = [2;2;3];
lb = zeros(2,1);

Options to Include Plot Function

Set options to include the plot function when ga runs.

options = optimoptions('ga','PlotFcns',...
{{@gaplotshowpopulation2,@lincontest6}});

Run Problem and Observe Population

The initial population, in the first plot, has many members on the linear constraint boundaries. The
population is reasonably well-dispersed.

rng default % for reproducibility
[x,fval] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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ga converges quickly to a single point, the solution.

Setting the Population Size
The Population size field in Population options determines the size of the population at each
generation. Increasing the population size enables the genetic algorithm to search more points and
thereby obtain a better result. However, the larger the population size, the longer the genetic
algorithm takes to compute each generation.

Note You should set Population size to be at least the value of Number of variables, so that the
individuals in each population span the space being searched.

You can experiment with different settings for Population size that return good results without
taking a prohibitive amount of time to run.

See Also

More About
• “Options and Outputs” on page 8-62
• “Global vs. Local Optimization Using ga” on page 8-87
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Fitness Scaling
In this section...
“Scaling the Fitness Scores” on page 8-77
“Comparing Rank and Top Scaling” on page 8-78

Scaling the Fitness Scores
Fitness scaling converts the raw fitness scores that are returned by the fitness function to values in a
range that is suitable for the selection function. The selection function uses the scaled fitness values
to select the parents of the next generation. The selection function assigns a higher probability of
selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm. If the scaled values
vary too widely, the individuals with the highest scaled values reproduce too rapidly, taking over the
population gene pool too quickly, and preventing the genetic algorithm from searching other areas of
the solution space. On the other hand, if the scaled values vary only a little, all individuals have
approximately the same chance of reproduction and the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the rank of each individual
instead of its score. The rank of an individual is its position in the sorted scores: the rank of the most
fit individual is 1, the next most fit is 2, and so on. The rank scaling function assigns scaled values so
that

• The scaled value of an individual with rank n is proportional to 1/ n.
• The sum of the scaled values over the entire population equals the number of parents needed to

create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20 individuals, sorted in increasing
order.

The following plot shows the scaled values of the raw scores using rank scaling.
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Because the algorithm minimizes the fitness function, lower raw scores have higher scaled values.
Also, because rank scaling assigns values that depend only on an individual's rank, the scaled values
shown would be the same for any population of size 20 and number of parents equal to 32.

Comparing Rank and Top Scaling
To see the effect of scaling, you can compare the results of the genetic algorithm using rank scaling
with one of the other scaling options, such as Top. By default, top scaling assigns 40 percent of the
fittest individuals to the same scaled value and assigns the rest of the individuals to value 0. Using
the default selection function, only 40 percent of the fittest individuals can be selected as parents.

The following figure compares the scaled values of a population of size 20 with number of parents
equal to 32 using rank and top scaling.
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Because top scaling restricts parents to the fittest individuals, it creates less diverse populations than
rank scaling. The following plot compares the variances of distances between individuals at each
generation using rank and top scaling.

See Also

External Websites
• “How the Genetic Algorithm Works” on page 8-13

 Fitness Scaling

8-79



Vary Mutation and Crossover
In this section...
“Setting the Amount of Mutation” on page 8-80
“Setting the Crossover Fraction” on page 8-82
“Comparing Results for Varying Crossover Fractions” on page 8-85

Setting the Amount of Mutation
The genetic algorithm applies mutations using the MutationFcn option. The default mutation option,
@mutationgaussian, adds a random number, or mutation, chosen from a Gaussian distribution, to
each entry of the parent vector. Typically, the amount of mutation, which is proportional to the
standard deviation of the distribution, decreases at each new generation. You can control the average
amount of mutation that the algorithm applies to a parent in each generation through the Scale and
Shrink inputs that you include in a cell array:

options = optimoptions('ga',...
    'MutationFcn',{@mutationgaussian Scale Shrink});

Scale and Shrink are scalars with default values 1 each.

• Scale controls the standard deviation of the mutation at the first generation. This value is Scale
multiplied by the range of the initial population, which you specify by the
InitialPopulationRange option.

• Shrink controls the rate at which the average amount of mutation decreases. The standard
deviation decreases linearly so that its final value equals 1 – Shrink times its initial value at the
first generation. For example, if Shrink has the default value of 1, then the amount of mutation
decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot functions @gaplotdistance and
@gaplotrange, and then running the genetic algorithm on a problem such as the one described in
“Minimize Rastrigin's Function” on page 8-4. The following figure shows the plot after setting the
random number generator.

rng default % For reproducibility
options = optimoptions('ga','PlotFcn',{@gaplotdistance,@gaplotrange},...
    'MaxStallGenerations',200); % to get a long run
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
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The upper plot displays the average distance between points in each generation. As the amount of
mutation decreases, so does the average distance between individuals, which is approximately 0 at
the final generation. The lower plot displays a vertical line at each generation, showing the range
from the smallest to the largest fitness value, as well as mean fitness value. As the amount of
mutation decreases, so does the range. These plots show that reducing the amount of mutation
decreases the diversity of subsequent generations.

For comparison, the following figure shows the same plots when you set Shrink to 0.5.

options = optimoptions('ga',options,...
    'MutationFcn',{@mutationgaussian,1,.5});
[x,fval] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options);
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This time, the average amount of mutation decreases by a factor of 1/2 by the final generation. As a
result, the average distance between individuals decreases less than before.

Setting the Crossover Fraction
The CrossoverFraction option specifies the fraction of each population, other than elite children,
that are made up of crossover children. A crossover fraction of 1 means that all children other than
elite individuals are crossover children, while a crossover fraction of 0 means that all children are
mutation children. The following example show that neither of these extremes is an effective strategy
for optimizing a function.

The example uses the fitness function whose value at a point is the sum of the absolute values of the
coordinates at the points. That is,

f x1, x2, ..., xn = x1 + x2 +⋯+ xn .

You can define this function as an anonymous function by setting the fitness function to

@(x) sum(abs(x))

Run the example with the default value of 0.8 as the CrossoverFraction option.

fun = @(x) sum(abs(x));
nvar = 10;
options = optimoptions('ga',...
    'InitialPopulationRange',[-1;1],...
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    'PlotFcn',{@gaplotbestf,@gaplotdistance});
rng(14,'twister') % For reproducibility
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x =

   -0.0020   -0.0134   -0.0067   -0.0028   -0.0241   -0.0118    0.0021    0.0113   -0.0021   -0.0036

fval =

    0.0799

Crossover Without Mutation

To see how the genetic algorithm performs when there is no mutation, set the CrossoverFraction
option to 1.0 and rerun the solver.

options.CrossoverFraction = 1;
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)
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x =

   -0.0275   -0.0043    0.0372   -0.0118   -0.0377   -0.0444   -0.0258   -0.0520    0.0174    0.0533

fval =

    0.3114

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x =

    0.4014    0.0538    0.7824    0.1930    0.0513   -0.4801    0.9988   -0.0059    0.0875    0.0302

fval =

    3.0843

In this case, the algorithm selects genes from the individuals in the initial population and recombines
them. The algorithm cannot create any new genes because there is no mutation. The algorithm
generates the best individual that it can using these genes at generation number 8, where the best
fitness plot becomes level. After this, it creates new copies of the best individual, which are then are
selected for the next generation. By generation number 17, all individuals in the population are the
same, namely, the best individual. When this occurs, the average distance between individuals is 0.
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Since the algorithm cannot improve the best fitness value after generation 8, it stalls after 50 more
generations, because Stall generations is set to 50.

Mutation Without Crossover

To see how the genetic algorithm performs when there is no crossover, set the CrossoverFraction
option to 0.

options.CrossoverFraction = 0;
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

In this case, the random changes that the algorithm applies never improve the fitness value of the
best individual at the first generation. While it improves the individual genes of other individuals, as
you can see in the upper plot by the decrease in the mean value of the fitness function, these
improved genes are never combined with the genes of the best individual because there is no
crossover. As a result, the best fitness plot is level and the algorithm stalls at generation number 50.

Comparing Results for Varying Crossover Fractions
The example deterministicstudy.m, which is included in the software, compares the results of
applying the genetic algorithm to Rastrigin's function with the CrossoverFraction option set to
0, .2, .4, .6, .8, and 1. The example runs for 10 generations. At each generation, the example plots
the means and standard deviations of the best fitness values in all the preceding generations, for
each value of the CrossoverFraction option.

To run the example, enter
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deterministicstudy

at the MATLAB prompt. When the example is finished, the plots appear as in the following figure.

The lower plot shows the means and standard deviations of the best fitness values over 10
generations, for each of the values of the crossover fraction. The upper plot shows a color-coded
display of the best fitness values in each generation.

For this fitness function, setting Crossover fraction to 0.8 yields the best result. However, for
another fitness function, a different setting for Crossover fraction might yield the best result.

See Also

More About
• “How the Genetic Algorithm Works” on page 8-13
• “Custom Output Function for Genetic Algorithm” on page 8-101
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Global vs. Local Optimization Using ga
Searching for a Global Minimum

Sometimes the goal of an optimization is to find the global minimum or maximum of a function—a
point where the function value is smaller or larger at any other point in the search space. However,
optimization algorithms sometimes return a local minimum—a point where the function value is
smaller than at nearby points, but possibly greater than at a distant point in the search space. The
genetic algorithm can sometimes overcome this deficiency with the right settings.

As an example, consider the following function.

f (x) =
−exp − x

100
2

for x ≤ 100,

−exp(− 1) + (x− 100)(x− 102) for x > 100 .

Plot the function.

t = -10:.1:103;
for ii = 1:length(t)
    y(ii) = two_min(t(ii));
end
plot(t,y)
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The function has two local minima, one at x   =   0, where the function value is –1, and the other at
x   =   101, where the function value is – 1   –   1/e. Since the latter value is smaller, the global
minimum occurs at x   =   101.

Run ga Using Default Parameters

The code for the two_min helper function is at the end of this example on page 8-0 . Run ga with
default parameters to minimize the two_min function. Use the gaplot1drange helper function
(included at the end of this example on page 8-0 ) to plot the range of the ga population at each
iteration.

rng default % For reproducibility
options = optimoptions('ga','PlotFcn',@gaplot1drange);
[x,fval] = ga(@two_min,1,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = -0.0688

fval = -1.0000

The genetic algorithm returns a point very close to the local minimum at x   =   0. Note that all
individuals lie between –60 and 60. The population never explores points near the global minimum at
x   =   101.
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Increase Initial Range

One way to make the genetic algorithm explore a wider range of points—that is, to increase the
diversity of the populations—is to increase the initial range. The initial range does not have to include
the point x = 101, but it must be large enough so that the algorithm generates individuals near
x = 101. Set the InitialPopulationRange option to [-10;90] and rerun the solver.

options.InitialPopulationRange = [-10;90];
[x,fval] = ga(@two_min,1,[],[],[],[],[],[],[],options)

Optimization terminated: maximum number of generations exceeded.

x = 100.9783

fval = -1.3674

This time, the custom plot shows a much wider range of individuals. There are individuals near 101
from early on, and the population mean begins to converge to 101.

Helper Functions

This code creates the two_min helper function.

function y = two_min(x)
if x <= 100
    y = -exp(-(x/100)^2);
else
    y = -exp(-1) + (x-100)*(x-102);
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end
end

This code creates the gaplot1drange helper function.

function state = gaplot1drange(options,state,flag)
%gaplot1drange Plots the mean and the range of the population.
%   STATE = gaplot1drange(OPTIONS,STATE,FLAG) plots the mean and the range
%   (highest and the lowest) of individuals (1-D only).  
%
%   Example:
%   Create options that use gaplot1drange
%   as the plot function
%     options = optimoptions('ga','PlotFcn',@gaplot1drange);

%   Copyright 2012-2014 The MathWorks, Inc.

if isinf(options.MaxGenerations) || size(state.Population,2) > 1
    title('Plot Not Available','interp','none');
    return;
end
generation = state.Generation;
score = state.Population;
smean = mean(score);
Y = smean;
L = smean - min(score);
U = max(score) - smean;

switch flag

    case 'init'
        set(gca,'xlim',[1,options.MaxGenerations+1]);
        plotRange = errorbar(generation,Y,L,U);
        set(plotRange,'Tag','gaplot1drange');
        title('Range of Population, Mean','interp','none')
        xlabel('Generation','interp','none')
    case 'iter'
        plotRange = findobj(get(gca,'Children'),'Tag','gaplot1drange');
        newX = [get(plotRange,'Xdata') generation];
        newY = [get(plotRange,'Ydata') Y];
        newL = [get(plotRange,'Ldata') L];
        newU = [get(plotRange,'Udata') U];       
        set(plotRange,'Xdata',newX,'Ydata',newY,'Ldata',newL,'Udata',newU);
end
end

See Also

More About
• “What Is Global Optimization?” on page 1-25
• “Population Diversity” on page 8-69
• “Isolated Global Minimum” on page 4-85
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Hybrid Scheme in the Genetic Algorithm
This example shows how to use a hybrid scheme to optimize a function using the genetic algorithm
and another optimization method. ga can quickly reach a neighborhood of a local minimum, but it can
require many function evaluations to achieve convergence. To speed the solution process, first run ga
for a small number of generations to approach an optimum point. Then use the solution from ga as
the initial point for another optimization solver to perform a faster and more efficient local search.

Rosenbrock's Function

This example uses Rosenbrock's function (also known as Dejong's second function) as the fitness
function:

f (x) = 100(x(2)− x(1)2)2 + (1− x(1))2.

Rosenbrock's function is notorious in optimization because of the slow convergence most methods
exhibit when trying to minimize this function. Rosenbrock's function has a unique minimum at the
point x* = (1,1), where it has a function value f (x*) = 0.

The code for Rosenbrock's function is in the dejong2fcn file.

type dejong2fcn.m

function scores = dejong2fcn(pop)
%DEJONG2FCN Compute DeJongs second function.
%This function is also known as Rosenbrock's function

%   Copyright 2003-2004 The MathWorks, Inc.

scores = zeros(size(pop,1),1);
for i = 1:size(pop,1)
    p = pop(i,:);
    scores(i) = 100 * (p(1)^2 - p(2)) ^2 + (1 - p(1))^2;
end

Plot Rosenbrock's function over the range –2 <= x(1) <= 2; –2 <= x(2) <=2.

plotobjective(@dejong2fcn,[-2 2;-2 2]);
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Genetic Algorithm Solution

First, use ga alone to find the minimum of Rosenbrock's function.

FitnessFcn = @dejong2fcn;
numberOfVariables = 2;

Include plot functions to monitor the optimization process.

options = optimoptions(@ga,'PlotFcn',{@gaplotbestf,@gaplotstopping});

Set the random number stream for reproducibility, and run ga using the options.

rng default
[x,fval] = ga(FitnessFcn,numberOfVariables,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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x = 1×2

    0.3454    0.1444

fval = 0.4913

Using the default stopping criteria, ga does not provide a very accurate solution. You can change the
stopping criteria to try to find a more accurate solution, but ga requires many function evaluations to
approach the global optimum x* = (1,1).

Instead, perform a more efficient local search that starts where ga stops by using the hybrid function
option in ga.

Adding a Hybrid Function

A hybrid function begins from the point where ga stops. Hybrid function choices are fminsearch,
patternsearch, or fminunc. Because this optimization example is smooth and unconstrained, use
fminunc as the hybrid function. Provide fminunc with plot options as an additional argument when
specifying the hybrid function.

fminuncOptions = optimoptions(@fminunc,'PlotFcn',{'optimplotfval','optimplotx'});
options = optimoptions(options,'HybridFcn',{@fminunc, fminuncOptions});

Run ga again with fminunc as the hybrid function.

[x,fval,exitflag,output] = ga(FitnessFcn,numberOfVariables,[],[],[],[],[],[],[],options)
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Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.
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x = 1×2

    1.0000    1.0000

fval = 1.7215e-11

exitflag = 1

output = struct with fields:
      problemtype: 'unconstrained'
         rngstate: [1x1 struct]
      generations: 51
        funccount: 2534
          message: 'Optimization terminated: average change in the fitness value less than options.FunctionTolerance....'
    maxconstraint: []
       hybridflag: 1

The ga plot shows the best and mean values of the population in every generation. The plot title
identifies the best value found by ga when it stops. The hybrid function fminunc starts from the best
point found by ga. The fminunc plot shows the solution x and fval, which result from using ga and
fminunc together. In this case, using a hybrid function improves the accuracy and efficiency of the
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solution. The output.hybridflag field shows that fminunc stops with exit flag 1, indicating that x
is a true local minimum.

See Also

More About
• “Options and Outputs” on page 8-62
• “Global vs. Local Optimization Using ga” on page 8-87
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Set Maximum Number of Generations and Stall Generations
The MaxGenerations option determines the maximum number of generations the genetic algorithm
takes; see “Stopping Conditions for the Algorithm” on page 8-16. Increasing MaxGenerations can
improve the final result. The related MaxStallGenerations option controls the number of steps ga
looks over to see whether it is making progress. Increasing MaxStallGenerations can enable ga to
continue when the algorithm needs more function evaluations to find a better solution.

For example, optimize rastriginsfcn using 10 variables with default parameters. To observe the
solver's progress as it approaches the minimum value of 0, optimize the logarithm of the function.

rng default % For reproducibility
fun = @(x)log(rastriginsfcn(x));
nvar = 10;
options = optimoptions('ga','PlotFcn',"gaplotbestf");
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×10

   -0.0495   -0.0670   -0.0485    0.0174   -0.0087    0.0275   -0.0383    0.0620   -1.0047   -0.0298

fval = 1.4540
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As ga approaches the optimal point at the origin, it stalls. To obtain a better solution, set the stall
generation limit to 500 and the generation limit to 1000.

options = optimoptions(options,'MaxStallGenerations',500,'MaxGenerations',1000);
rng default % For reproducibility
[x,fval] = ga(fun,nvar,[],[],[],[],[],[],[],options)

Optimization terminated: maximum number of generations exceeded.

x = 1×10

    0.0025   -0.0039    0.0021   -0.0030   -0.0053    0.0033    0.0080    0.0012    0.0006    0.0088

fval = -3.1467

This time the solver approaches the true minimum much more closely.

See Also

More About
• “Options and Outputs” on page 8-62
• “Population Diversity” on page 8-69
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Vectorize the Fitness Function
In this section...
“Vectorize for Speed” on page 8-99
“Vectorized Constraints” on page 8-100

Vectorize for Speed
The genetic algorithm usually runs faster if you vectorize the fitness function. This means that the
genetic algorithm only calls the fitness function once, but expects the fitness function to compute the
fitness for all individuals in the current population at once. To vectorize the fitness function,

• Write the file that computes the function so that it accepts a matrix with arbitrarily many rows,
corresponding to the individuals in the population. For example, to vectorize the function

f (x1, x2) = x1
2− 2x1x2 + 6x1 + x2

2− 6x2

write the file using the following code:

z =x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1) is a vector. The .^
and .* operators perform elementwise operations on the vectors.

• At the command line, set the UseVectorized option to true using optimoptions.
• In the Optimize Live Editor task, ensure that the Algorithm settings > Evaluate functions

vectorized setting has a check mark.

Note The fitness function, and any nonlinear constraint function, must accept an arbitrary number of
rows to use the Vectorize option. ga sometimes evaluates a single row even during a vectorized
calculation.

The following comparison, run at the command line, shows the improvement in speed with
vectorization.

options = optimoptions('ga','PopulationSize',2000);
tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);toc
Optimization terminated: maximum number of generations exceeded.
Elapsed time is 12.054973 seconds.

options = optimoptions(options,'UseVectorized',true);
tic;
ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);
toc

Optimization terminated: maximum number of generations exceeded.
Elapsed time is 1.860655 seconds.

 Vectorize the Fitness Function

8-99



Vectorized Constraints
If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be
vectorized in order for the algorithm to compute in a vectorized manner.

“Vectorize the Objective and Constraint Functions” on page 6-79 contains an example of how to
vectorize both for the solver patternsearch. The syntax is nearly identical for ga. The only
difference is that patternsearch can have its patterns appear as either row or column vectors; the
corresponding vectors for ga are the population vectors, which are always rows.

See Also

More About
• “How to Use Parallel Processing in Global Optimization Toolbox” on page 16-11
• “Compute Objective Functions” on page 2-2
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Custom Output Function for Genetic Algorithm
This example shows the use of a custom output function in the genetic algorithm solver ga. The
custom output function performs the following tasks:

• Plot the range of the first two components of the population as a rectangle. The left and lower
sides of the rectangle are at the minima of x(1) and x(2) respectively, and the right and upper
sides are at the respective maxima.

• Halt the iterations when the best function value drops below 0.1 (the minimum value of the
objective function is 0).

• Record the entire population in a variable named gapopulationhistory in your MATLAB®
workspace every 10 generations.

• Modify the initial crossover fraction to the custom value 0.2, and then update it back to the
default 0.8 after 25 generations. The initial setting of 0.2 causes the first several iterations to
search primarily at random via mutation. The later setting of 0.8 causes the following iterations
to search primarily via combinations of existing population members.

Objective Function

The objective function is for four-dimensional x whose first two components are integer-valued.

function f = gaintobj(x)
f = rastriginsfcn([x(1)-6 x(2)-13]);
f = f + rastriginsfcn([x(3)-3*pi x(4)-5*pi]);

Output Function

The custom output function sets up the plot during initialization, and maintains the plot during
iterations. The output function also pauses the iterations for 0.1s so you can see the plot as it
develops.

function [state,options,optchanged] = gaoutfun(options,state,flag)
persistent h1 history r
optchanged = false;
switch flag
    case 'init'
        h1 = figure;
        ax = gca;
        ax.XLim = [0 21];
        ax.YLim = [0 21];
        l1 = min(state.Population(:,1));
        m1 = max(state.Population(:,1));
        l2 = min(state.Population(:,2));
        m2 = max(state.Population(:,2));
        r = rectangle(ax,'Position',[l1 l2 m1-l1 m2-l2]);
        history(:,:,1) = state.Population;
        assignin('base','gapopulationhistory',history);
    case 'iter'
        % Update the history every 10 generations.
        if rem(state.Generation,10) == 0
            ss = size(history,3);
            history(:,:,ss+1) = state.Population;
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            assignin('base','gapopulationhistory',history);
        end
        % Find the best objective function, and stop if it is low.
        ibest = state.Best(end);
        ibest = find(state.Score == ibest,1,'last');
        bestx = state.Population(ibest,:);
        bestf = gaintobj(bestx);
        if bestf <= 0.1
            state.StopFlag = 'y';
            disp('Got below 0.1')
        end
        % Update the plot.
        figure(h1)
        l1 = min(state.Population(:,1));
        m1 = max(state.Population(:,1));
        l2 = min(state.Population(:,2));
        m2 = max(state.Population(:,2));
        r.Position = [l1 l2 m1-l1 m2-l2];
        pause(0.1)
        % Update the fraction of mutation and crossover after 25 generations.
        if state.Generation == 25
            options.CrossoverFraction = 0.8;
            optchanged = true;
        end
    case 'done'
        % Include the final population in the history.
        ss = size(history,3);
        history(:,:,ss+1) = state.Population;
        assignin('base','gapopulationhistory',history);
end

Problem Setup and Solution

Set the lower and upper bounds.

lb = [1 1 -30 -30];
ub = [20 20 70 70];

Set the integer variables and number of variables.

intcon = [1 2];
nvar = 4;

Set options to call the custom output function, and to initially have little crossover.

options = optimoptions('ga','OutputFcn',@gaoutfun,'CrossoverFraction',0.2);

For reproducibility, set the random number generator.

rng default

Set the objective function and call the solver.

fun = @gaintobj;
[x,fval] = ga(fun,nvar,[],[],[],[],lb,ub,[],intcon,options)

Got below 0.1
Optimization terminated: y
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x =

    6.0000   13.0000    9.4201   15.7052

fval =

    0.0059

The output function halted the solver.

View the size of the recorded history.

disp(size(gapopulationhistory))

    40     4     6
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There are six records of the 40-by-4 population matrix (40 individuals, each a 4-element row vector).

See Also

Related Examples
• “Create Custom Plot Function” on page 8-57
• “Output Function Options” on page 17-41
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Custom Data Type Optimization Using the Genetic Algorithm
This example shows how to use the genetic algorithm to minimize a function using a custom data
type. The genetic algorithm is customized to solve the traveling salesman problem.

Traveling Salesman Problem

The traveling salesman problem is an optimization problem where there is a finite number of cities,
and the cost of travel between each city is known. The goal is to find an ordered set of all the cities
for the salesman to visit such that the cost is minimized. To solve the traveling salesman problem, we
need a list of city locations and distances, or cost, between each of them.

Our salesman is visiting cities in the United States. The file usborder.mat contains a map of the
United States in the variables x and y, and a geometrically simplified version of the same map in the
variables xx and yy.

load('usborder.mat','x','y','xx','yy');
plot(x,y,'Color','red'); hold on;

We will generate random locations of cities inside the border of the United States. We can use the
inpolygon function to make sure that all the cities are inside or very close to the US boundary.

cities = 40;
locations = zeros(cities,2);
n = 1;
while (n <= cities)
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    xp = rand*1.5;
    yp = rand;
    if inpolygon(xp,yp,xx,yy)
        locations(n,1) = xp;
        locations(n,2) = yp;
        n = n+1;
    end
end
plot(locations(:,1),locations(:,2),'bo');

Blue circles represent the locations of the cities where the salesman needs to travel and deliver or
pickup goods. Given the list of city locations, we can calculate the distance matrix for all the cities.

distances = zeros(cities);
for count1=1:cities,
    for count2=1:count1,
        x1 = locations(count1,1);
        y1 = locations(count1,2);
        x2 = locations(count2,1);
        y2 = locations(count2,2);
        distances(count1,count2)=sqrt((x1-x2)^2+(y1-y2)^2);
        distances(count2,count1)=distances(count1,count2);
    end;
end;
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Customizing the Genetic Algorithm for a Custom Data Type

By default, the genetic algorithm solver solves optimization problems based on double and binary
string data types. The functions for creation, crossover, and mutation assume the population is a
matrix of type double, or logical in the case of binary strings. The genetic algorithm solver can also
work on optimization problems involving arbitrary data types. You can use any data structure you like
for your population. For example, a custom data type can be specified using a MATLAB® cell array. In
order to use ga with a population of type cell array you must provide a creation function, a crossover
function, and a mutation function that will work on your data type, e.g., a cell array.

Required Functions for the Traveling Salesman Problem

This section shows how to create and register the three required functions. An individual in the
population for the traveling salesman problem is an ordered set, and so the population can easily be
represented using a cell array. The custom creation function for the traveling salesman problem will
create a cell array, say P, where each element represents an ordered set of cities as a permutation
vector. That is, the salesman will travel in the order specified in P{i}. The creation function will
return a cell array of size PopulationSize.

type create_permutations.m

function pop = create_permutations(NVARS,FitnessFcn,options)
%CREATE_PERMUTATIONS Creates a population of permutations.
%   POP = CREATE_PERMUTATION(NVARS,FITNESSFCN,OPTIONS) creates a population
%  of permutations POP each with a length of NVARS. 
%
%   The arguments to the function are 
%     NVARS: Number of variables 
%     FITNESSFCN: Fitness function 
%     OPTIONS: Options structure used by the GA

%   Copyright 2004-2007 The MathWorks, Inc.

totalPopulationSize = sum(options.PopulationSize);
n = NVARS;
pop = cell(totalPopulationSize,1);
for i = 1:totalPopulationSize
    pop{i} = randperm(n); 
end

The custom crossover function takes a cell array, the population, and returns a cell array, the children
that result from the crossover.

type crossover_permutation.m

function xoverKids  = crossover_permutation(parents,options,NVARS, ...
    FitnessFcn,thisScore,thisPopulation)
%   CROSSOVER_PERMUTATION Custom crossover function for traveling salesman.
%   XOVERKIDS = CROSSOVER_PERMUTATION(PARENTS,OPTIONS,NVARS, ...
%   FITNESSFCN,THISSCORE,THISPOPULATION) crossovers PARENTS to produce
%   the children XOVERKIDS.
%
%   The arguments to the function are 
%     PARENTS: Parents chosen by the selection function
%     OPTIONS: Options created from OPTIMOPTIONS
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%     NVARS: Number of variables 
%     FITNESSFCN: Fitness function 
%     STATE: State structure used by the GA solver 
%     THISSCORE: Vector of scores of the current population 
%     THISPOPULATION: Matrix of individuals in the current population

%   Copyright 2004-2015 The MathWorks, Inc. 

nKids = length(parents)/2;
xoverKids = cell(nKids,1); % Normally zeros(nKids,NVARS);
index = 1;

for i=1:nKids
    % here is where the special knowledge that the population is a cell
    % array is used. Normally, this would be thisPopulation(parents(index),:);
    parent = thisPopulation{parents(index)};
    index = index + 2;

    % Flip a section of parent1.
    p1 = ceil((length(parent) -1) * rand);
    p2 = p1 + ceil((length(parent) - p1- 1) * rand);
    child = parent;
    child(p1:p2) = fliplr(child(p1:p2));
    xoverKids{i} = child; % Normally, xoverKids(i,:);
end

The custom mutation function takes an individual, which is an ordered set of cities, and returns a
mutated ordered set.

type mutate_permutation.m

function mutationChildren = mutate_permutation(parents ,options,NVARS, ...
    FitnessFcn, state, thisScore,thisPopulation,mutationRate)
%   MUTATE_PERMUTATION Custom mutation function for traveling salesman.
%   MUTATIONCHILDREN = MUTATE_PERMUTATION(PARENTS,OPTIONS,NVARS, ...
%   FITNESSFCN,STATE,THISSCORE,THISPOPULATION,MUTATIONRATE) mutate the
%   PARENTS to produce mutated children MUTATIONCHILDREN.
%
%   The arguments to the function are 
%     PARENTS: Parents chosen by the selection function
%     OPTIONS: Options created from OPTIMOPTIONS
%     NVARS: Number of variables 
%     FITNESSFCN: Fitness function 
%     STATE: State structure used by the GA solver 
%     THISSCORE: Vector of scores of the current population 
%     THISPOPULATION: Matrix of individuals in the current population
%     MUTATIONRATE: Rate of mutation

%   Copyright 2004-2015 The MathWorks, Inc.

% Here we swap two elements of the permutation
mutationChildren = cell(length(parents),1);% Normally zeros(length(parents),NVARS);
for i=1:length(parents)
    parent = thisPopulation{parents(i)}; % Normally thisPopulation(parents(i),:)
    p = ceil(length(parent) * rand(1,2));
    child = parent;
    child(p(1)) = parent(p(2));
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    child(p(2)) = parent(p(1));
    mutationChildren{i} = child; % Normally mutationChildren(i,:)
end

We also need a fitness function for the traveling salesman problem. The fitness of an individual is the
total distance traveled for an ordered set of cities. The fitness function also needs the distance matrix
to calculate the total distance.

type traveling_salesman_fitness.m

function scores = traveling_salesman_fitness(x,distances)
%TRAVELING_SALESMAN_FITNESS  Custom fitness function for TSP. 
%   SCORES = TRAVELING_SALESMAN_FITNESS(X,DISTANCES) Calculate the fitness 
%   of an individual. The fitness is the total distance traveled for an
%   ordered set of cities in X. DISTANCE(A,B) is the distance from the city
%   A to the city B.

%   Copyright 2004-2007 The MathWorks, Inc.

scores = zeros(size(x,1),1);
for j = 1:size(x,1)
    % here is where the special knowledge that the population is a cell
    % array is used. Normally, this would be pop(j,:);
    p = x{j}; 
    f = distances(p(end),p(1));
    for i = 2:length(p)
        f = f + distances(p(i-1),p(i));
    end
    scores(j) = f;
end

ga will call our fitness function with just one argument x, but our fitness function has two arguments:
x, distances. We can use an anonymous function to capture the values of the additional argument,
the distances matrix. We create a function handle FitnessFcn to an anonymous function that takes
one input x, but calls traveling_salesman_fitness with x, and distances. The variable, distances
has a value when the function handle FitnessFcn is created, so these values are captured by the
anonymous function.

%distances defined earlier
FitnessFcn = @(x) traveling_salesman_fitness(x,distances);

We can add a custom plot function to plot the location of the cities and the current best route. A red
circle represents a city and the blue lines represent a valid path between two cities.

type traveling_salesman_plot.m

function state = traveling_salesman_plot(options,state,flag,locations)
%   TRAVELING_SALESMAN_PLOT Custom plot function for traveling salesman.
%   STATE = TRAVELING_SALESMAN_PLOT(OPTIONS,STATE,FLAG,LOCATIONS) Plot city
%   LOCATIONS and connecting route between them. This function is specific
%   to the traveling salesman problem.

%   Copyright 2004-2006 The MathWorks, Inc.
persistent x y xx yy
if strcmpi(flag,'init')
  load('usborder.mat','x','y','xx','yy');
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end
plot(x,y,'Color','red');
axis([-0.1 1.5 -0.2 1.2]);

hold on;
[unused,i] = min(state.Score);
genotype = state.Population{i};

plot(locations(:,1),locations(:,2),'bo');
plot(locations(genotype,1),locations(genotype,2));
hold off

Once again we will use an anonymous function to create a function handle to an anonymous function
which calls traveling_salesman_plot with the additional argument locations.

%locations defined earlier
my_plot = @(options,state,flag) traveling_salesman_plot(options, ...
    state,flag,locations);

Genetic Algorithm Options Setup

First, we will create an options container to indicate a custom data type and the population range.

options = optimoptions(@ga, 'PopulationType', 'custom','InitialPopulationRange', ...
                            [1;cities]);

We choose the custom creation, crossover, mutation, and plot functions that we have created, as well
as setting some stopping conditions.

options = optimoptions(options,'CreationFcn',@create_permutations, ...
                        'CrossoverFcn',@crossover_permutation, ...
                        'MutationFcn',@mutate_permutation, ...
                        'PlotFcn', my_plot, ...
                        'MaxGenerations',500,'PopulationSize',60, ...
                        'MaxStallGenerations',200,'UseVectorized',true);

Finally, we call the genetic algorithm with our problem information.

numberOfVariables = cities;
[x,fval,reason,output] = ...
    ga(FitnessFcn,numberOfVariables,[],[],[],[],[],[],[],options)

Optimization terminated: maximum number of generations exceeded.

x =

  1x1 cell array

    {[14 12 36 3 5 11 40 25 38 37 7 30 28 10 23 21 27 4 1 29 26 31 9 24 ... ]}

fval =

    5.3846

reason =

     0
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output = 

  struct with fields:

      problemtype: 'unconstrained'
         rngstate: [1x1 struct]
      generations: 500
        funccount: 28563
          message: 'Optimization terminated: maximum number of generations exceeded.'
    maxconstraint: []
       hybridflag: []

The plot shows the location of the cities in blue circles as well as the path found by the genetic
algorithm that the salesman will travel. The salesman can start at either end of the route and at the
end, return to the starting city to get back home.

See Also

More About
• “Traveling Salesman Problem: Solver-Based”
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When to Use a Hybrid Function
A hybrid function is a function that continues the optimization after the original solver terminates.

These Global Optimization Toolbox solvers can automatically run a hybrid function, or second solver,
after they finish:

• ga
• gamultiobj
• particleswarm
• simulannealbnd

To run a hybrid function, set the HybridFcn option to the second solver.

A hybrid function can obtain a more accurate solution, starting from the relatively rough solution
found by the first solver, in the following circumstances:

• Whether or not the objective function has nonsmooth regions, if the solution is in a smooth region
with smooth constraints, then use a hybrid function from Optimization Toolbox, such as fmincon.

• If the objective function or a constraint is nonsmooth near the solution, then use patternsearch
as a hybrid function.

• Suppose that the problem has multiple local minima, and you want to obtain an accurate global
solution. The single-objective solvers can search for the vicinity of a global solution, but do not
necessarily obtain an extremely accurate result. If the objective function is smooth, then use a
hybrid function from Optimization Toolbox, such as fminunc.

• For smooth multiobjective problems, a hybrid function usually improves on solutions from
gamultiobj.

To see which solvers are available as hybrid functions, refer to the options input argument on the
reference page for the original solver. To tune the hybrid function, you can include a separate set of
options for the hybrid function. For example, if the hybrid function is fmincon:

hybridopts = optimoptions('fmincon','OptimalityTolerance',1e-10);
options = optimoptions('ga','HybridFcn',{'fmincon',hybridopts});
[x,fval] = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)

See Also
ga | gamultiobj | particleswarm | simulannealbnd

More About
• “Hybrid Scheme in the Genetic Algorithm” on page 8-91
• “Tune Particle Swarm Optimization Process” on page 10-14
• “Design Optimization of a Welded Beam” on page 14-62
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Problem-Based Genetic Algorithm

• “Minimize Rastrigins' Function Using ga, Problem-Based” on page 9-2
• “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm, Problem-Based”

on page 9-5
• “Set Options in Problem-Based Approach Using varindex” on page 9-17
• “Constrained Minimization Using ga, Problem-Based” on page 9-19
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Minimize Rastrigins' Function Using ga, Problem-Based
This example shows how to minimize a function with multiple minima using the genetic algorithm in
the problem-based approach. For two variables x and y, Rastrigin's function is defined as follows.

ras = @(x, y) 20 + x.^2 + y.^2 - 10*(cos(2*pi*x) + cos(2*pi*y));

Plot the function scaled by 10 in each direction.

rf3 = @(x, y) ras(x/10, y/10);
fsurf(rf3,[-30 30],"ShowContours","on")
title("rastriginsfcn([x/10,y/10])")
xlabel("x")
ylabel("y")

The function has many local minima and a global minimum value of 0 that is attained at x = 0, y = 0.
See “What Is Global Optimization?” on page 1-25

Create optimization variables x and y. Specify that the variables are bounded by ±100.

x = optimvar("x","LowerBound",-100,"UpperBound",100);
y = optimvar("y","LowerBound",-100,"UpperBound",100);

Create an optimization problem with the objective function rastriginsfcn(x).

prob = optimproblem("Objective",ras(x,y));

9 Problem-Based Genetic Algorithm

9-2



Note: If you have a nonlinear function that is not composed of polynomials, rational expressions, and
elementary functions such as exp, then convert the function to an optimization expression by using
fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” and “Supported
Operations for Optimization Variables and Expressions”.

Create ga options to use the gaplotbestf plot function.

options = optimoptions("ga","PlotFcn","gaplotbestf");

Solve the problem using ga as the solver.

rng default % For reproducibility
[sol,fval] = solve(prob,"Solver","ga","Options",options)

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

sol = struct with fields:
    x: 0.9950
    y: 0.9950

fval = 1.9899

Is the resulting function value the lowest minimum? Perform the search again. Because ga is a
stochastic algorithm, the results can differ.

[sol2,fval2] = solve(prob,"Solver","ga","Options",options)
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Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

sol2 = struct with fields:
    x: 0.9950
    y: -4.9289e-06

fval2 = 0.9950

The second solution is better because it has a lower function value. A solution returned by ga is not
guaranteed to be a global solution.

See Also
ga | fcn2optimexpr | solve

Related Examples
• “Genetic Algorithm”
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Solve a Mixed-Integer Engineering Design Problem Using the
Genetic Algorithm, Problem-Based

This example shows how to solve a mixed-integer engineering design problem using the genetic
algorithm (ga) solver in Global Optimization Toolbox. The example uses the problem-based approach.
For a version using the solver-based approach, see “Solve a Mixed-Integer Engineering Design
Problem Using the Genetic Algorithm” on page 8-45.

The problem illustrated in this example involves the design of a stepped cantilever beam. In
particular, the beam must be able to carry a prescribed end load. The optimization problem is to
minimize the beam volume subject to various engineering design constraints.

This problem is described in Thanedar and Vanderplaats [1] on page 9-0 .

Stepped Cantilever Beam Design Problem

A stepped cantilever beam is supported at one end, and a load is applied at the free end, as shown in
the following figure. The beam must be able to support the given load P at a fixed distance L from the
support. Designers of the beam can vary the width (bi) and height (hi) of each step, or section. Each
section of the cantilever has the same length, l = L1.

Volume of the Beam

The volume of the beam V is the sum of the volume of the individual sections.

V = l(b1h1 + b2h2 + b3h3 + b4h4 + b5h5).
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Constraints on the Design: Bending Stress

Consider a single cantilever beam, with the center of coordinates at the center of its cross section at
the free end of the beam. The bending stress at a point (x, y, z) in the beam is given by the equation

σb = M(x)y/I,

where M(x) is the bending moment at x, x is the distance from the end load, and I is the area moment
of inertia of the beam.

In the stepped cantilever beam shown in the figure, the maximum moment of each section of the
beam is PDi, where Di is the maximum distance from the end load P for each section of the beam.
Therefore, the maximum stress for the ith section of the beam σi is given by

σi = PDi(hi/2)/Ii,

where the maximum stress occurs at the edge of the beam, y = hi/2. The area moment of inertia of
the ith section of the beam is given by

Ii = bihi
3/12.

Substituting this expression into the equation for σi gives

σi = 6PDi/bihi
2.

The bending stress in each part of the cantilever must not exceed the maximum allowable stress
σmax. Therefore, the five bending stress constraints (one for each step of the cantilever) are:

6Pl
b5h5

2 ≤ σmax

6P(2l)
b4h4

2 ≤ σmax

6P(3l)
b3h3

2 ≤ σmax

6P(4l)
b2h2

2 ≤ σmax

6P(5l)
b1h1

2 ≤ σmax

Constraints on the Design: End Deflection

You can calculate the end deflection of the cantilever using Castigliano's second theorem, which
states that

δ = ∂U
∂P ,
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where δ is the deflection of the beam, and U is the energy stored in the beam due to the applied force
P.

The energy stored in a cantilever beam is given by

U =∫0 L
M2/2EI dx,

where M is the moment of the applied force at x.

Given that M = Px for a cantilever beam, you can write the preceding equation as

U = P2/2E∫0 l
[(x + 4l)2/I1 + (x + 3l)2/I2 + (x + 2l)2/I3 + (x + l)2/I4 + x2/I5] dx,

where In is the area moment of inertia of the nth part of the cantilever. Evaluating the integral gives
this expression for U

U = (P2/2)(l3/3E)(61/I1 + 37/I2 + 19/I3 + 7/I4 + 1/I5).

Applying Castigliano's theorem, the end deflection of the beam is given by

δ = Pl3/3E(61/I1 + 37/I2 + 19/I3 + 7/I4 + 1/I5).

The end deflection of the cantilever δ must be less than the maximum allowable deflection δmax,
which gives the constraint

Pl3/3E(61/I1 + 37/I2 + 19/I3 + 7/I4 + 1/I5) ≤ δmax.

Constraints on the Design: Aspect Ratio

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable aspect ratio
amax. That is,

hi/bi ≤ amax for i = 1, . . . , 5.

Constraints on the Design: Bounds and Integer Constraints

The first step of the beam can be machined to the nearest centimeter only. That is, b1 and h1 must be
integers. The remaining variables are continuous. The bounds on the variables are:

1 ≤ b1 ≤ 5

30 ≤ h1 ≤ 65

2 . 4 ≤ b2, b3 ≤ 3 . 1

45 ≤ h2, h3 ≤ 60

1 ≤ b4, b5 ≤ 5

30 ≤ h4, h5 ≤ 65
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Design Parameters for This Problem

For the problem in this example, the end load that the beam must support is P = 50000N.

The beam lengths and maximum end deflection are:

• Total beam length, L = 500cm
• Length of an individual section of the beam, l = L1 = 100cm
• Maximum beam end deflection, δmax = 2 . 7cm

The maximum allowed stress in each step of the beam is σmax = 14000N/cm2.

Young's modulus of each step of the beam is E = 2 × 107N/cm2.

Problem-Based Setup

Create optimization variables for this problem. The width and height variables for the first section of
the beam are of type integer, so you must create them separately from the other four variables, which
are continuous.

b1 = optimvar("b1","Type","integer","LowerBound",1,"UpperBound",5);
h1 = optimvar("h1","Type","integer","LowerBound",30,"UpperBound",65);
bc = optimvar("bc",4,"LowerBound",[2.4 2.4 1 1],"UpperBound",[3.1 3.1 5 5]);
hc = optimvar("hc",4,"LowerBound",[45 45 30 30],"UpperBound",[60 60 65 65]);

For convenience, put the height and width variables into single variables. You can then express the
objective and constraints easily in terms of these variables.

h = [h1;hc];
b = [b1;bc];

Create an optimization problem with the volume of the beam as the objective function, where each
step (or section) of the beam is L1 = 100 cm long: volume = L1∑hiwi.

L_1 = 100; % Length of each step of the cantilever
prob = optimproblem("Objective",L_1*dot(h,b));

Create the constraints on the stress.

P = 50000; % End load
E = 2e7; % Young's modulus in N/cm^2
deltaMax = 2.7; % Maximum end deflection
sigmaMax = 14000; % Maximum stress in each section of the beam
aMax = 20; % Maximum aspect ratio in each section of the beam

stress = 6*P*L_1./(b.*(h.^2));
stepnum = (5:-1:1)';
stress = stress.*stepnum;
prob.Constraints.stress = stress <= sigmaMax;

Create the constraint on the deflection.

deflectionMultiplier = (P*L_1^3/E)*[244 148 76 28 4];
bh3 = 1./(b.*(h.^3));
prob.Constraints.deflection = deflectionMultiplier*bh3 <= deltaMax;

9 Problem-Based Genetic Algorithm

9-8



Create the constraints on the aspect ratio.

prob.Constraints.aspect = h <= aMax*b;

Review the problem setup.

show(prob)

  OptimizationProblem : 

    Solve for:
       b1, bc, h1, hc
    where:
       b1, h1 integer

    minimize :
       100*h1*b1 + 100*hc(1)*bc(1) + 100*hc(2)*bc(2) + 100*hc(3)*bc(3)
     + 100*hc(4)*bc(4)

    subject to stress:
       arg_LHS <= arg_RHS

       where:

         arg2 = zeros(5, 1);
         arg1 = zeros(5, 1);
         arg1(1) = h1;
         arg1(2:5) = hc;
         arg2(1) = b1;
         arg2(2:5) = bc;
         arg_LHS = ((30000000 ./ (arg2(:) .* arg1(:).^2)) .* extraParams{1});
         arg2 = 14000;
         arg1 = arg2(ones(1,5));
         arg_RHS = arg1(:);

         extraParams{1}:

          5
          4
          3
          2
          1

    subject to deflection:
       arg_LHS <= 2.7

       where:

         arg2 = zeros(5, 1);
         arg1 = zeros(5, 1);
         arg1(1) = h1;
         arg1(2:5) = hc;
         arg2(1) = b1;
         arg2(2:5) = bc;
         arg_LHS = (extraParams{1} * (1 ./ (arg2(:) .* arg1(:).^3)));
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         extraParams{1}:

           610000      370000      190000       70000       10000

    subject to aspect:
       -20*b1 + h1 <= 0
       -20*bc(1) + hc(1) <= 0
       -20*bc(2) + hc(2) <= 0
       -20*bc(3) + hc(3) <= 0
       -20*bc(4) + hc(4) <= 0

    variable bounds:
       1 <= b1 <= 5

       2.4 <= bc(1) <= 3.1
       2.4 <= bc(2) <= 3.1
         1 <= bc(3) <= 5
         1 <= bc(4) <= 5

       30 <= h1 <= 65

       45 <= hc(1) <= 60
       45 <= hc(2) <= 60
       30 <= hc(3) <= 65
       30 <= hc(4) <= 65

Solve the Problem

Set options to use a moderate population size of 150, a moderate maximum number of generations of
400, a slightly larger than default elite count of 10, a small function tolerance of 1e-8, and a plot
function showing the function value during the iterations.

opts = optimoptions(@ga, ...
                    'PopulationSize', 150, ...
                    'MaxGenerations', 400, ...
                    'EliteCount', 10, ...
                    'FunctionTolerance', 1e-8, ...
                    'PlotFcn', @gaplotbestf);

Solve the problem, specifying the ga solver and the options.

rng default % For reproducibility
[sol,fval,exitflag] = solve(prob,"Solver","ga","Options",opts)

Solving problem using ga.
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Optimization terminated: maximum number of generations exceeded.

sol = struct with fields:
    b1: 3.0000
    bc: [4x1 double]
    h1: 60.0000
    hc: [4x1 double]

fval = 6.3558e+04

exitflag = 
    SolverLimitExceeded

View the solution variables and their bounds.

widths = [sol.b1;sol.bc];
heights = [sol.h1;sol.hc];
widthbounds = [b1.LowerBound b1.UpperBound;
    bc.LowerBound bc.UpperBound];
heightbounds = [h1.LowerBound h1.UpperBound;
    hc.LowerBound hc.UpperBound];
T = table(widths,heights,widthbounds,heightbounds,...
    'VariableNames',["Width" "Height" "Width Bounds" "Height Bounds"])

T=5×4 table
    Width     Height    Width Bounds    Height Bounds
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    ______    ______    ____________    _____________

         3        60       1      5       30    65   
    2.8369    56.632     2.4    3.1       45    60   
    2.6483    50.739     2.4    3.1       45    60   
    2.2205    44.293       1      5       30    65   
    1.7652    35.231       1      5       30    65   

The solution is not at any of the bounds. The first solution variables are integer valued, as specified.

Add Discrete Noninteger Variable Constraints

Suppose the engineers learn that the second and third steps of the cantilever can have widths and
heights selected from a standard set only. With the addition of this constraint, the problem is identical
to the one solved in [1].

First, delineate the extra constraints to add to the optimization:

• The width of the second and third steps of the beam must be selected from the set [2.4, 2.6, 2.8,
3.1] cm.

• The height of the second and third steps of the beam must be selected from the set [45, 50, 55,
60] cm.

To solve this problem, you need to specify the variables wc(1), wc(2), hc(1), and hc(2) as discrete
variables. Ideally, you would use S(x j) as the discrete value, where S represents the allowable set of
values and x j represents a problem variable. However, you cannot use an optimization variable as an
index. You can get around this problem by calling fcn2optimexpr.

widthlist = [2.4,2.6,2.8,3.1];
heightlist = [45 50 55 60];
b23 = optimvar("w23",2,"Type","integer",...
    "LowerBound",1,"UpperBound",length(widthlist));
h23 = optimvar("h23",2,"Type","integer",...
    "LowerBound",1,"UpperBound",length(heightlist));
b45 = optimvar("b45",2,"LowerBound",1,"UpperBound",5);
h45 = optimvar("h45",2,"LowerBound",30,"UpperBound",65);
% Preferred syntax is we = [widthlist(b23(1));widthlist(b23(2))];
% However, this syntax is illegal.
% Instead call fcn2optimexpr.
we = fcn2optimexpr(@(x)[widthlist(x(1));widthlist(x(2))],b23);
he = fcn2optimexpr(@(x)[heightlist(x(1));heightlist(x(2))],h23);

As you did earlier, create the expressions b and h to represent the variables.

b = [b1;we;b45];
h = [h1;he;h45];

The remainder of the problem formulation is the same as earlier.

prob2 = optimproblem("Objective",L_1*dot(h,b));

Create the constraints on the stress.

stress = 6*P*L_1./(b.*(h.^2));
stepnum = (5:-1:1)';
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stress = stress.*stepnum;
prob2.Constraints.stress = stress <= sigmaMax;

Create the constraint on the deflection.

deflectionMultiplier = (P*L_1^3/E)*[244 148 76 28 4];
bh3 = 1./(b.*(h.^3));
prob2.Constraints.deflection = deflectionMultiplier*bh3 <= deltaMax;

Create the constraints on the aspect ratio.

prob2.Constraints.aspect = h <= aMax*b;

Review the problem setup.

show(prob2)

  OptimizationProblem : 

    Solve for:
       b1, b45, h1, h23, h45, w23
    where:
       b1, h1, h23, w23 integer

    minimize :
       (100 .* (arg1(:).' * arg2(:)))

       where:

         arg2 = zeros(5, 1);
         arg1 = zeros(5, 1);
         anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];
         arg1(1) = h1;
         arg1(2:3) = anonymousFunction2(h23);
         arg1(4:5) = h45;
         anonymousFunction1 = @(x)[widthlist(x(1));widthlist(x(2))];
         arg2(1) = b1;
         arg2(2:3) = anonymousFunction1(w23);
         arg2(4:5) = b45;

    subject to stress:
       arg_LHS <= arg_RHS

       where:

         arg2 = zeros(5, 1);
         arg1 = zeros(5, 1);
         anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];
         arg1(1) = h1;
         arg1(2:3) = anonymousFunction2(h23);
         arg1(4:5) = h45;
         anonymousFunction1 = @(x)[widthlist(x(1));widthlist(x(2))];
         arg2(1) = b1;
         arg2(2:3) = anonymousFunction1(w23);
         arg2(4:5) = b45;
         arg_LHS = ((30000000 ./ (arg2(:) .* arg1(:).^2)) .* extraParams{1});
         arg2 = 14000;
         arg1 = arg2(ones(1,5));
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         arg_RHS = arg1(:);

         extraParams{1}:

          5
          4
          3
          2
          1

    subject to deflection:
       arg_LHS <= 2.7

       where:

         arg2 = zeros(5, 1);
         arg1 = zeros(5, 1);
         anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];
         arg1(1) = h1;
         arg1(2:3) = anonymousFunction2(h23);
         arg1(4:5) = h45;
         anonymousFunction1 = @(x)[widthlist(x(1));widthlist(x(2))];
         arg2(1) = b1;
         arg2(2:3) = anonymousFunction1(w23);
         arg2(4:5) = b45;
         arg_LHS = (extraParams{1} * (1 ./ (arg2(:) .* arg1(:).^3)));

         extraParams{1}:

           610000      370000      190000       70000       10000

    subject to aspect:
       arg_LHS <= arg_RHS

       where:

         arg1 = zeros(5, 1);
         arg1(1) = h1;
         anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];
         arg1(2:3) = anonymousFunction2(h23);
         arg1(4:5) = h45;
         arg_LHS = arg1(:);
         arg1 = zeros(5, 1);
         anonymousFunction1 = @(x)[widthlist(x(1));widthlist(x(2))];
         arg1(1) = b1;
         arg1(2:3) = anonymousFunction1(w23);
         arg1(4:5) = b45;
         arg_RHS = (20 .* arg1(:));

    variable bounds:
       1 <= b1 <= 5

       1 <= b45(1) <= 5
       1 <= b45(2) <= 5
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       30 <= h1 <= 65

       1 <= h23(1) <= 4
       1 <= h23(2) <= 4

       30 <= h45(1) <= 65
       30 <= h45(2) <= 65

       1 <= w23(1) <= 4
       1 <= w23(2) <= 4

Solve the Problem with Discrete Variable Constraints

Solve the problem, specifying the ga solver and the options.

rng default % For reproducibility
[sol2,fval2,exitflag2] = solve(prob2,"Solver","ga","Options",opts)

Solving problem using ga.

Optimization terminated: maximum number of generations exceeded.

sol2 = struct with fields:
     b1: 3
    b45: [2x1 double]
     h1: 60
    h23: [2x1 double]
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    h45: [2x1 double]
    w23: [2x1 double]

fval2 = 6.4803e+04

exitflag2 = 
    SolverLimitExceeded

The objective value increases, because adding constraints can only increase the objective.

View the solution and compare it to its bounds.

widths = [sol2.b1;widthlist(sol2.w23(1));widthlist(sol2.w23(2));sol2.b45];
heights = [sol2.h1;heightlist(sol2.h23(1));heightlist(sol2.h23(2));sol2.h45];
widthbounds = [b1.LowerBound b1.UpperBound;
    widthlist(1) widthlist(end);
     widthlist(1) widthlist(end);
    b45.LowerBound b45.UpperBound];
heightbounds = [h1.LowerBound h1.UpperBound;
     heightlist(1) heightlist(end);
     heightlist(1) heightlist(end);
    h45.LowerBound h45.UpperBound];
T = table(widths,heights,widthbounds,heightbounds,...
    'VariableNames',["Width" "Height" "Width Bounds" "Height Bounds"])

T=5×4 table
    Width     Height    Width Bounds    Height Bounds
    ______    ______    ____________    _____________

         3        60       1      5       30    65   
       3.1        55     2.4    3.1       45    60   
       2.6        50     2.4    3.1       45    60   
     2.286     45.72       1      5       30    65   
    1.8532    34.004       1      5       30    65   

The only solution variable that is at a bound is the width of the second section, which is 3.1, its
maximum.

References

[1] Thanedar, P. B., and G. N. Vanderplaats. "Survey of Discrete Variable Optimization for Structural
Design." Journal of Structural Engineering 121 (3), 1995, pp. 301–306.

See Also
ga | fcn2optimexpr | solve

Related Examples
• “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm” on page 8-45
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Set Options in Problem-Based Approach Using varindex
To set certain options when using the problem-based approach, you must convert problem variables
to indices by calling varindex. For example, the ga solver accepts an option named
InitialPopulationRange that is a two-row matrix. The first row represents the lower limit and
the second row represents the upper limit of the problem variables. The columns of the matrix
represent individuals in the population, which are the problem variables. To match the column indices
to the problem variables, use varindex.

For example, set the objective function to the helper function mrosenbrock, given at the end of this
example on page 9-0 . This objective function is close to 0 near the point xi = yi = 1 for all i. Create
3-D problem variables x and y in row form, which is the form ga expects.

x = optimvar("x",1,3);
y = optimvar("y",1,3);

Create an optimization problem with the objective function mrosenbrock(x,y).

prob = optimproblem("Objective",mrosenbrock(x,y));

Set the initial range of the x variables to [-1 2], and the range of the y variables to [0 3]. To do so,
find the indices for the variables.

xidx = varindex(prob,"x")

xidx = 1×3

     1     2     3

yidx = varindex(prob,"y")

yidx = 1×3

     4     5     6

Set the initial range as a two-row matrix with the first row containing the lower bounds, and the
second row containing the upper bounds.

poprange = zeros(2,max([xidx,yidx]));
poprange(1,xidx) = -1;
poprange(2,xidx) = 2;
poprange(1,yidx) = 0;
poprange(2,yidx) = 3;
disp(poprange)

    -1    -1    -1     0     0     0
     2     2     2     3     3     3

Set the random number generator, and solve the problem using the initial range matrix.

rng default % For reproducibility
opts = optimoptions("ga","InitialPopulationRange",poprange);
[sol,fval] = solve(prob,"Solver","ga","Options",opts)

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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sol = struct with fields:
    x: [1.2583 0.7522 1.2317]
    y: [1.5830 0.5653 1.5167]

fval = 0.1818

The returned solution has a fairly small objective function value.

Helper Function

This code creates the mrosenbrock helper function.

function F = mrosenbrock(x,y)
F = [10*(y - x.^2),1 - x];
F = sum(F.^2,2);
end

See Also
varindex

Related Examples
• “Genetic Algorithm”
• “Problem-Based Optimization Setup”
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Constrained Minimization Using ga, Problem-Based
This example shows how to minimize an objective function, subject to nonlinear inequality constraints
and bounds, using ga in the problem-based approach. For a solver-based version of this problem, see
“Constrained Minimization Using the Genetic Algorithm” on page 8-25.

Constrained Minimization Problem

For this problem, the fitness function to minimize is a simple function of 2-D variables X and Y.

camxy = @(X,Y)(4 - 2.1.*X.^2 + X.^4./3).*X.^2 + X.*Y + (-4 + 4.*Y.^2).*Y.^2;

This function is described in Dixon and Szego [1] on page 9-0 .

Additionally, the problem has nonlinear constraints and bounds.

   x*y + x - y + 1.5 <= 0  (nonlinear constraint)
   10 - x*y <= 0           (nonlinear constraint)
   0 <= x <= 1             (bound)
   0 <= y <= 13            (bound)

Plot the nonlinear constraint region on a surface plot of the fitness function. The constraints limit the
solution to the small region above both red curves.

x1 = linspace(0,1);
y1 = (-x1 - 1.5)./(x1 - 1);
y2 = 10./x1;
[X,Y] = meshgrid(x1,linspace(0,13));
Z = camxy(X,Y);
surf(X,Y,Z,"LineStyle","none")
hold on
z1 = camxy(x1,y1);
z2 = camxy(x1,y2);
plot3(x1,y1,z1,'r-',x1,y2,z2,'r-')
xlim([0 1])
ylim([0 13])
zlim([0,max(Z,[],"all")])
hold off
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Create Optimization Variables, Problem, and Constraints

To set up this problem, create optimization variables x and y. Set the bounds when you create the
variables.

x = optimvar("x","LowerBound",0,"UpperBound",1);
y = optimvar("y","LowerBound",0,"UpperBound",13);

Create the objective as an optimization expression.

cam = camxy(x,y);

Create an optimization problem with this objective function.

prob = optimproblem("Objective",cam);

Create the two nonlinear inequality constraints, and include them in the problem.

prob.Constraints.cons1 = x*y + x - y + 1.5 <= 0;
prob.Constraints.cons2 = 10 - x*y <= 0;

Review the problem.

show(prob)

  OptimizationProblem : 

    Solve for:
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       x, y

    minimize :
       (((((4 - (2.1 .* x.^2)) + (x.^4 ./ 3)) .* x.^2) + (x .* y)) + (((-4)
     + (4 .* y.^2)) .* y.^2))

    subject to cons1:
       ((((x .* y) + x) - y) + 1.5) <= 0

    subject to cons2:
       (10 - (x .* y)) <= 0

    variable bounds:
       0 <= x <= 1

       0 <= y <= 13

Solve Problem

Solve the problem, specifying the ga solver.

[sol,fval] = solve(prob,"Solver","ga")

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.

sol = struct with fields:
    x: 0.8122
    y: 12.3103

fval = 9.1268e+04

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
gaplotbestf plots the best objective function value at every iteration, and the plot function
gaplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter'.

options = optimoptions(@ga,...
    'PlotFcn',{@gaplotbestf,@gaplotmaxconstr},...
    'Display','iter');

Run the solver, including the options argument.

[sol,fval] = solve(prob,"Solver","ga","Options",options)

Solving problem using ga.

Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)

Options:
CreationFcn:       @gacreationuniform
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CrossoverFcn:      @crossoverscattered
SelectionFcn:      @selectionstochunif
MutationFcn:       @mutationadaptfeasible

                              Best       Max        Stall
Generation  Func-count        f(x)     Constraint  Generations
    1           2520       91357.8            0      0
    2           4982       91324.1     4.55e-05      0
    3           7914       97166.6            0      0
    4          16145       91268.4    0.0009997      0
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.

sol = struct with fields:
    x: 0.8123
    y: 12.3103

fval = 9.1268e+04

Nonlinear constraints cause ga to solve many subproblems at each iteration. As shown in both the
plots and the iterative display, the solution process has few iterations. However, the Func-count
column in the iterative display shows many function evaluations per iteration.

Unsupported Functions

If your objective or nonlinear constraint functions are not supported (see “Supported Operations for
Optimization Variables and Expressions”), use fcn2optimexpr to convert them to a form suitable for
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the problem-based approach. For example, suppose that instead of the constraint xy ≥ 10, you have
the constraint I1(x) + I1(y) ≥ 10, where I1(x) is the modified Bessel function besseli(1,x). (The
Bessel functions are not supported functions.) Create this constraint using fcn2optimexpr. First,
create an optimization expression for I1(x) + I1(y).

bfun = fcn2optimexpr(@(t,u)besseli(1,t) + besseli(1,u),x,y);

Next, replace the constraint cons2 with the constraint bfun >= 10.

prob.Constraints.cons2 = bfun >= 10;

Solve the problem. The solution is different because the constraint region is different.

[sol2,fval2] = solve(prob,"Solver","ga","Options",options)

Solving problem using ga.

Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)

Options:
CreationFcn:       @gacreationuniform
CrossoverFcn:      @crossoverscattered
SelectionFcn:      @selectionstochunif
MutationFcn:       @mutationadaptfeasible

                              Best       Max        Stall
Generation  Func-count        f(x)     Constraint  Generations
    1           2512       974.044            0      0
    2           4974       960.998            0      0
    3           7436        963.12            0      0
    4          12001        960.83    0.0009335      0
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.
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sol2 = struct with fields:
    x: 0.4999
    y: 3.9979

fval2 = 960.8300

References

[1] Dixon, L. C. W., and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also
ga | solve | fcn2optimexpr

Related Examples
• “Genetic Algorithm”
• “Constrained Minimization Using Pattern Search, Problem-Based” on page 7-4
• “Minimize Rastrigin's Function” on page 8-4
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Particle Swarm Optimization

• “What Is Particle Swarm Optimization?” on page 10-2
• “Optimize Function Using particleswarm, Problem-Based” on page 10-3
• “Optimize Using Particle Swarm” on page 10-5
• “Particle Swarm Output Function” on page 10-8
• “Particle Swarm Optimization Algorithm” on page 10-11
• “Tune Particle Swarm Optimization Process” on page 10-14
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What Is Particle Swarm Optimization?
Particle swarm is a population-based algorithm. In this respect it is similar to the genetic algorithm. A
collection of individuals called particles move in steps throughout a region. At each step, the
algorithm evaluates the objective function at each particle. After this evaluation, the algorithm
decides on the new velocity of each particle. The particles move, then the algorithm reevaluates.

The inspiration for the algorithm is flocks of birds or insects swarming. Each particle is attracted to
some degree to the best location it has found so far, and also to the best location any member of the
swarm has found. After some steps, the population can coalesce around one location, or can coalesce
around a few locations, or can continue to move.

The particleswarm function attempts to optimize using a “Particle Swarm Optimization Algorithm”
on page 10-11.

See Also

Related Examples
• “Optimize Using Particle Swarm” on page 10-5

More About
• “Particle Swarm Optimization Algorithm” on page 10-11
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Optimize Function Using particleswarm, Problem-Based
This example shows how to minimize a function using particle swarm in the problem-based approach
when the objective is a function file, possibly of unknown content (a "black box" function). The
function to minimize, dejong5fcn(x), is included with Global Optimization Toolbox. Plot the
function.

dejong5fcn

Create a 2-D optimization variable x. The dejong5fcn function expects the variable to be a row
vector, so specify x as a 2-element row vector.

x = optimvar("x",1,2);

To use dejong5fcn as the objective function, convert the function to an optimization expression
using fcn2optimexpr.

fun = fcn2optimexpr(@dejong5fcn,x);

Create an optimization problem with the objective function fun.

prob = optimproblem("Objective",fun);

Set variable bounds from –50 to 50 in all components. When you specify scalar bounds, the software
expands the bounds to all variables.
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x.LowerBound = -50;
x.UpperBound = 50;

Solve the problem, specifying the particleswarm solver.

rng default % For reproducibility
[sol,fval] = solve(prob,"Solver","particleswarm")

Solving problem using particleswarm.
Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

sol = struct with fields:
    x: [-31.9751 -31.9719]

fval = 0.9980

See Also
particleswarm | fcn2optimexpr | solve

Related Examples
• “Particle Swarm”

10 Particle Swarm Optimization

10-4



Optimize Using Particle Swarm
This example shows how to optimize using the particleswarm solver.

The objective function in this example is De Jong’s fifth function, which is included with Global
Optimization Toolbox software.

dejong5fcn

This function has 25 local minima.

Try to find the minimum of the function using the default particleswarm settings.

fun = @dejong5fcn;
nvars = 2;
rng default % For reproducibility
[x,fval,exitflag] = particleswarm(fun,nvars)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

  -31.9521  -16.0176

fval = 5.9288
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exitflag = 1

Is the solution x the global optimum? It is unclear at this point. Looking at the function plot shows
that the function has local minima for components in the range [-50,50]. So restricting the range of
the variables to [-50,50] helps the solver locate a global minimum.

lb = [-50;-50];
ub = -lb;
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

  -16.0079  -31.9697

fval = 1.9920

exitflag = 1

This looks promising: the new solution has lower fval than the previous one. But is x truly a global
solution? Try minimizing again with more particles, to better search the region.

options = optimoptions('particleswarm','SwarmSize',100);
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

  -31.9781  -31.9784

fval = 0.9980

exitflag = 1

This looks even more promising. But is this answer a global solution, and how accurate is it? Rerun
the solver with a hybrid function. particleswarm calls the hybrid function after particleswarm
finishes its iterations.

options.HybridFcn = @fmincon;
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

  -31.9783  -31.9784

fval = 0.9980

exitflag = 1
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particleswarm found essentially the same solution as before. This gives you some confidence that
particleswarm reports a local minimum and that the final x is the global solution.

See Also

More About
• “What Is Particle Swarm Optimization?” on page 10-2
• “Particle Swarm Optimization Algorithm” on page 10-11
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Particle Swarm Output Function
This example shows how to use an output function for particleswarm. The output function plots the
range that the particles occupy in each dimension.

An output function runs after each iteration of the solver. For syntax details, and for the data
available to an output function, see the particleswarm options reference pages.

Custom Plot Function

This output function draws a plot with one line per dimension. Each line represents the range of the
particles in the swarm in that dimension. The plot is log-scaled to accommodate wide ranges. If the
swarm converges to a single point, then the range of each dimension goes to zero. But if the swarm
does not converge to a single point, then the range stays away from zero in some dimensions.

Copy the following code into a file named pswplotranges.m on your MATLAB® path. The code sets
up nplot subplots, where nplot is the number of dimensions in the problem.

function stop = pswplotranges(optimValues,state)

stop = false; % This function does not stop the solver
switch state
    case 'init'
        nplot = size(optimValues.swarm,2); % Number of dimensions
        for i = 1:nplot % Set up axes for plot
            subplot(nplot,1,i);
            tag = sprintf('psoplotrange_var_%g',i); % Set a tag for the subplot
            semilogy(optimValues.iteration,0,'-k','Tag',tag); % Log-scaled plot
            ylabel(num2str(i))
        end
        xlabel('Iteration','interp','none'); % Iteration number at the bottom
        subplot(nplot,1,1) % Title at the top
        title('Log range of particles by component')
        setappdata(gcf,'t0',tic); % Set up a timer to plot only when needed
    case 'iter'
        nplot = size(optimValues.swarm,2); % Number of dimensions
        for i = 1:nplot
            subplot(nplot,1,i);
            % Calculate the range of the particles at dimension i
            irange = max(optimValues.swarm(:,i)) - min(optimValues.swarm(:,i));
            tag = sprintf('psoplotrange_var_%g',i);
            plotHandle = findobj(get(gca,'Children'),'Tag',tag); % Get the subplot
            xdata = plotHandle.XData; % Get the X data from the plot
            newX = [xdata optimValues.iteration]; % Add the new iteration
            plotHandle.XData = newX; % Put the X data into the plot
            ydata = plotHandle.YData; % Get the Y data from the plot
            newY = [ydata irange]; % Add the new value
            plotHandle.YData = newY; % Put the Y data into the plot
        end
        if toc(getappdata(gcf,'t0')) > 1/30 % If 1/30 s has passed
          drawnow % Show the plot
          setappdata(gcf,'t0',tic); % Reset the timer
        end
    case 'done'
        % No cleanup necessary
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end

Objective Function

The multirosenbrock function is a generalization of Rosenbrock's function to any even number of
dimensions. It has a global minimum of 0 at the point [1,1,1,1,...].

function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.

% Copyright 2014 by The MathWorks, Inc.

N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
    error('Input rows must have an even number of elements')
end

odds  = 1:2:N-1;
evens = 2:2:N;
F = zeros(size(x));
F(:,odds)  = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);

Set Up and Run Problem

Set the multirosenbrock function as the objective function. Use four variables. Set a lower bound
of -10 and an upper bound of 10 on each variable.

fun = @multirosenbrock;
nvar = 4; % A 4-D problem
lb = -10*ones(nvar,1); % Bounds to help the solver converge
ub = -lb;

Set options to use the output function.

options = optimoptions(@particleswarm,'OutputFcn',@pswplotranges);

Set the random number generator to get reproducible output. Then call the solver.

rng default % For reproducibility
[x,fval,eflag] = particleswarm(fun,nvar,lb,ub,options)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x =

    0.9964    0.9930    0.9835    0.9681

fval =

   3.4935e-04
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eflag =

     1

Results

The solver returned a point near the optimum [1,1,1,1]. But the span of the swarm did not
converge to zero.

See Also

More About
• “Output Function and Plot Function” on page 17-47
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Particle Swarm Optimization Algorithm
In this section...
“Algorithm Outline” on page 10-11
“Initialization” on page 10-11
“Iteration Steps” on page 10-12
“Stopping Criteria” on page 10-13

Algorithm Outline
particleswarm is based on the algorithm described in Kennedy and Eberhart [1], using
modifications suggested in Mezura-Montes and Coello Coello [2] and in Pedersen [3].

The particle swarm algorithm begins by creating the initial particles, and assigning them initial
velocities.

It evaluates the objective function at each particle location, and determines the best (lowest) function
value and the best location.

It chooses new velocities, based on the current velocity, the particles’ individual best locations, and
the best locations of their neighbors.

It then iteratively updates the particle locations (the new location is the old one plus the velocity,
modified to keep particles within bounds), velocities, and neighbors.

Iterations proceed until the algorithm reaches a stopping criterion.

Here are the details of the steps.

Initialization
By default, particleswarm creates particles at random uniformly within bounds. If there is an
unbounded component, particleswarm creates particles with a random uniform distribution from –
1000 to 1000. If you have only one bound, particleswarm shifts the creation to have the bound as
an endpoint, and a creation interval 2000 wide. Particle i has position x(i), which is a row vector
with nvars elements. Control the span of the initial swarm using the InitialSwarmSpan option.

Similarly, particleswarm creates initial particle velocities v at random uniformly within the range
[-r,r], where r is the vector of initial ranges. The range of component k is min(ub(k) -
 lb(k),InitialSwarmSpan(k)).

particleswarm evaluates the objective function at all particles. It records the current position p(i)
of each particle i. In subsequent iterations, p(i) will be the location of the best objective function
that particle i has found. And b is the best over all particles: b = min(fun(p(i))). d is the
location such that b = fun(d).

particleswarm initializes the neighborhood size N to minNeighborhoodSize =
max(2,floor(SwarmSize*MinNeighborsFraction)).

particleswarm initializes the inertia W = max(InertiaRange), or if InertiaRange is negative,
it sets W = min(InertiaRange).
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particleswarm initializes the stall counter c = 0.

For convenience of notation, set the variable y1 = SelfAdjustmentWeight, and y2 =
SocialAdjustmentWeight, where SelfAdjustmentWeight and SocialAdjustmentWeight are
options.

Iteration Steps
The algorithm updates the swarm as follows. For particle i, which is at position x(i):

1 Choose a random subset S of N particles other than i.
2 Find fbest(S), the best objective function among the neighbors, and g(S), the position of the

neighbor with the best objective function.
3 For u1 and u2 uniformly (0,1) distributed random vectors of length nvars, update the velocity

v = W*v + y1*u1.*(p-x) + y2*u2.*(g-x).

This update uses a weighted sum of:

• The previous velocity v
• The difference between the current position and the best position the particle has seen p-x
• The difference between the current position and the best position in the current neighborhood

g-x
4 Update the position x = x + v.
5 Enforce the bounds. If any component of x is outside a bound, set it equal to that bound. For

those components that were just set to a bound, if the velocity v of that component points outside
the bound, set that velocity component to zero.

6 Evaluate the objective function f = fun(x).
7 If f < fun(p), then set p = x. This step ensures p has the best position the particle has seen.
8 The next steps of the algorithm apply to parameters of the entire swarm, not the individual

particles. Consider the smallest f = min(f(j)) among the particles j in the swarm.

If f < b, then set b = f and d = x. This step ensures b has the best objective function in the
swarm, and d has the best location.

9 If, in the previous step, the best function value was lowered, then set flag = true. Otherwise,
flag = false. The value of flag is used in the next step.

10 Update the neighborhood. If flag = true:

a Set c = max(0,c-1).
b Set N to minNeighborhoodSize.
c If c < 2, then set W = 2*W.
d If c > 5, then set W = W/2.
e Ensure that W is in the bounds of the InertiaRange option.

If flag = false:

a Set c = c+1.
b Set N = min(N + minNeighborhoodSize,SwarmSize).
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Stopping Criteria
particleswarm iterates until it reaches a stopping criterion.

Stopping Option Stopping Test Exit Flag
MaxStallIterations and
FunctionTolerance

Relative change in the best
objective function value g over
the last MaxStallIterations
iterations is less than
FunctionTolerance.

1

MaxIterations Number of iterations reaches
MaxIterations.

0

OutputFcn or PlotFcn OutputFcn or PlotFcn can
halt the iterations.

-1

ObjectiveLimit Best objective function value g
is less than ObjectiveLimit.

-3

MaxStallTime Best objective function value g
did not change in the last
MaxStallTime seconds.

-4

MaxTime Function run time exceeds
MaxTime seconds.

-5

If particleswarm stops with exit flag 1, it optionally calls a hybrid function after it exits.

References
[1] Kennedy, J., and R. Eberhart. "Particle Swarm Optimization." Proceedings of the IEEE

International Conference on Neural Networks. Perth, Australia, 1995, pp. 1942–1945.

[2] Mezura-Montes, E., and C. A. Coello Coello. "Constraint-handling in nature-inspired numerical
optimization: Past, present and future." Swarm and Evolutionary Computation. 2011, pp. 173–
194.

[3] Pedersen, M. E. "Good Parameters for Particle Swarm Optimization." Luxembourg: Hvass
Laboratories, 2010.

See Also

More About
• “What Is Particle Swarm Optimization?” on page 10-2
• “Optimize Using Particle Swarm” on page 10-5
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Tune Particle Swarm Optimization Process
This example shows how to optimize using the particleswarm solver. The particle swarm algorithm
moves a population of particles called a swarm toward a minimum of an objective function. The
velocity of each particle in the swarm changes according to three factors:

• The effect of inertia (InertiaRange option)
• An attraction to the best location the particle has visited (SelfAdjustmentWeight option)
• An attraction to the best location among neighboring particles (SocialAdjustmentWeight

option)

This example shows some effects of changing particle swarm options.

When to Modify Options

Often, particleswarm finds a good solution when using its default options. For example, it
optimizes rastriginsfcn well with the default options. This function has many local minima, and a
global minimum of 0 at the point [0,0].

rng default % for reproducibility
[x,fval,exitflag,output] = particleswarm(@rastriginsfcn,2);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

formatstring = 'particleswarm reached the value %f using %d function evaluations.\n';
fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 0.000000 using 2560 function evaluations.

For this function, you know the optimal objective value, so you know that the solver found it. But what
if you do not know the solution? One way to evaluate the solution quality is to rerun the solver.

[x,fval,exitflag,output] = particleswarm(@rastriginsfcn,2);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 0.000000 using 1480 function evaluations.

Both the solution and the number of function evaluations are similar to the previous run. This
suggests that the solver is not having difficulty arriving at a solution.

Difficult Objective Function Using Default Parameters

The Rosenbrock function is well known to be a difficult function to optimize. This example uses a
multidimensional version of the Rosenbrock function. The function has a minimum value of 0 at the
point [1,1,1,...].

rng default % for reproducibility
nvars = 6; % choose any even value for nvars
fun = @multirosenbrock;
[x,fval,exitflag,output] = particleswarm(fun,nvars);

10 Particle Swarm Optimization

10-14



Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 3106.436648 using 12960 function evaluations.

The solver did not find a very good solution.

Bound the Search Space

Try bounding the space to help the solver locate a good point.

lb = -10*ones(1,nvars);
ub = -lb;
[xbounded,fvalbounded,exitflagbounded,outputbounded] = particleswarm(fun,nvars,lb,ub);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvalbounded,outputbounded.funccount)

particleswarm reached the value 0.000006 using 71160 function evaluations.

The solver found a much better solution. But it took a very large number of function evaluations to do
so.

Change Options

Perhaps the solver would converge faster if it paid more attention to the best neighbor in the entire
space, rather than some smaller neighborhood.

options = optimoptions('particleswarm','MinNeighborsFraction',1);
[xn,fvaln,exitflagn,outputn] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln,outputn.funccount)

particleswarm reached the value 0.000462 using 30180 function evaluations.

While the solver took fewer function evaluations, it is unclear if this was due to randomness or to a
better option setting.

Perhaps you should raise the SelfAdjustmentWeight option.

options.SelfAdjustmentWeight = 1.9;
[xn2,fvaln2,exitflagn2,outputn2] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln2,outputn2.funccount)

particleswarm reached the value 0.000074 using 18780 function evaluations.

This time particleswarm took even fewer function evaluations. Is this improvement due to
randomness, or are the option settings really worthwhile? Rerun the solver and look at the number of
function evaluations.

 Tune Particle Swarm Optimization Process

10-15



[xn3,fvaln3,exitflagn3,outputn3] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln3,outputn3.funccount)

particleswarm reached the value 0.157026 using 53040 function evaluations.

This time the number of function evaluations increased. Apparently, this SelfAdjustmentWeight
setting does not necessarily improve performance.

Provide an Initial Point

Perhaps particleswarm would do better if it started from a known point that is not too far from the
solution. Try the origin. Give a few individuals at the same initial point. Their random velocities
ensure that they do not remain together.

x0 = zeros(20,6); % set 20 individuals as row vectors
options.InitialSwarmMatrix = x0; % the rest of the swarm is random
[xn3,fvaln3,exitflagn3,outputn3] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fvaln3,outputn3.funccount)

particleswarm reached the value 0.039015 using 32100 function evaluations.

The number of function evaluations decreased again.

Vectorize for Speed

The multirosenbrock function allows for vectorized function evaluation. This means that it can
simultaneously evaluate the objective function for all particles in the swarm. This usually speeds up
the solver considerably.

rng default % do a fair comparison
options.UseVectorized = true;
tic
[xv,fvalv,exitflagv,outputv] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

toc

Elapsed time is 0.266853 seconds.

options.UseVectorized = false;
rng default
tic
[xnv,fvalnv,exitflagnv,outputnv] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

toc

Elapsed time is 0.569539 seconds.

10 Particle Swarm Optimization

10-16



The vectorized calculation took about half the time of the serial calculation.

Plot Function

You can view the progress of the solver using a plot function.

options = optimoptions(options,'PlotFcn',@pswplotbestf);
rng default
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 0.079755 using 24960 function evaluations.

Use More Particles

Frequently, using more particles obtains a more accurate solution.

rng default
options.SwarmSize = 200;
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.
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fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 0.000424 using 169400 function evaluations.

Hybrid Function

particleswarm can search through several basins of attraction to arrive at a good local solution.
Sometimes, though, it does not arrive at a sufficiently accurate local minimum. Try improving the
final answer by specifying a hybrid function that runs after the particle swarm algorithm stops. Reset
the number of particles to their original value, 60, to see the difference the hybrid function makes.

rng default
options.HybridFcn = @fmincon;
options.SwarmSize = 60;
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.
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fprintf(formatstring,fval,output.funccount)

particleswarm reached the value 0.000000 using 25191 function evaluations.

disp(output.hybridflag)

     1

While the hybrid function improved the result, the plot function shows the same final value as before.
This is because the plot function shows only the particle swarm algorithm iterations, and not the
hybrid function calculations. The hybrid function caused the final function value to be very close to
the true minimum value of 0. The output.hybridflag field shows that fmincon stops with exit flag
1, indicating that x is a true local minimum.

See Also

More About
• “Particle Swarm Options” on page 17-44
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What Is Surrogate Optimization?
A surrogate is a function that approximates another function. The surrogate is useful because it takes
little time to evaluate. So, for example, to search for a point that minimizes an objective function,
simply evaluate its surrogate on thousands of points, and take the best value as an approximation to
the minimizer of the objective function.

Surrogate optimization is best suited to time-consuming objective functions. The objective function
need not be smooth, but the algorithm works best when the objective function is continuous.

Surrogate optimization attempts to find a global minimum of an objective function using few objective
function evaluations. To do so, the algorithm tries to balance the optimization process between two
goals: exploration and speed.

• Exploration to search for a global minimum.
• Speed to obtain a good solution in few objective function evaluations.

The algorithm has been proven to converge to a global solution for continuous objective functions on
bounded domains. See Gutmann [1]. However, this convergence is not fast.

In general, there is no useful stopping criterion that stops the solver when it is near a global solution.
Typically, you set a stopping criterion of a number of function evaluations or an amount of time, and
take the best solution found within this computational budget.

For details of the surrogateopt algorithm, see “Surrogate Optimization Algorithm” on page 11-3.

References
[1] Gutmann, H.-M. A radial basis function method for global optimization. Journal of Global

Optimization 19, Issue 3, 2001, pp. 201–227. https://doi.org/10.1023/A:1011255519438

See Also
surrogateopt

More About
• “Surrogate Optimization Algorithm” on page 11-3
• “Compare Surrogate Optimization with Other Solvers” on page 11-31
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Surrogate Optimization Algorithm
In this section...
“Serial surrogateopt Algorithm” on page 11-3
“Mixed-Integer surrogateopt Algorithm” on page 11-8
“Linear Constraint Handling” on page 11-9
“surrogateopt Algorithm with Nonlinear Constraints” on page 11-9
“Parallel surrogateopt Algorithm” on page 11-10
“Parallel Mixed-Integer surrogateopt Algorithm” on page 11-10

Serial surrogateopt Algorithm
• “Serial surrogateopt Algorithm Overview” on page 11-3
• “Definitions for Surrogate Optimization” on page 11-3
• “Construct Surrogate Details” on page 11-4
• “Search for Minimum Details” on page 11-5
• “Merit Function Definition” on page 11-7

Serial surrogateopt Algorithm Overview

The surrogate optimization algorithm alternates between two phases.

• Construct Surrogate — Create options.MinSurrogatePoints random points within the
bounds. Evaluate the (expensive) objective function at these points. Construct a surrogate of the
objective function by interpolating a radial basis function through these points.

• Search for Minimum — Search for a minimum of the objective function by sampling several
thousand random points within the bounds. Evaluate a merit function based on the surrogate
value at these points and on the distances between them and points where the (expensive)
objective function has been evaluated. Choose the best point as a candidate, as measured by the
merit function. Evaluate the objective function at the best candidate point. This point is called an
adaptive point. Update the surrogate using this value and search again.

During the Construct Surrogate phase, the algorithm constructs sample points from a quasirandom
sequence. Constructing an interpolating radial basis function takes at least nvars + 1 sample points,
where nvars is the number of problem variables. The default value of
options.MinSurrogatePoints is 2*nvars or 20, whichever is larger.

The algorithm stops the Search for Minimum phase when all the search points are too close (less than
the option MinSampleDistance) to points where the objective function was previously evaluated.
See “Search for Minimum Details” on page 11-5. This switch from the Search for Minimum phase
is called surrogate reset.

Definitions for Surrogate Optimization

The surrogate optimization algorithm description uses the following definitions.

• Current — The point where the objective function was evaluated most recently.
• Incumbent — The point with the smallest objective function value among all evaluated since the

most recent surrogate reset.
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• Best — The point with the smallest objective function value among all evaluated so far.
• Initial — The points, if any, that you pass to the solver in the InitialPoints option.
• Random points — Points in the Construct Surrogate phase where the solver evaluates the

objective function. Generally, the solver takes these points from a quasirandom sequence, scaled
and shifted to remain within the bounds. A quasirandom sequence is similar to a pseudorandom
sequence such as rand returns, but is more evenly spaced. See https://en.wikipedia.org/wiki/Low-
discrepancy_sequence. However, when the number of variables is above 500, the solver takes
points from a Latin hypercube sequence. See https://en.wikipedia.org/wiki/
Latin_hypercube_sampling.

• Adaptive points — Points in the Search for Minimum phase where the solver evaluates the
objective function.

• Merit function — See “Merit Function Definition” on page 11-7.
• Evaluated points — All points at which the objective function value is known. These points include

initial points, Construct Surrogate points, and Search for Minimum points at which the solver
evaluates the objective function.

• Sample points. Pseudorandom points where the solver evaluates the merit function during the
Search for Minimum phase. These points are not points at which the solver evaluates the objective
function, except as described in “Search for Minimum Details” on page 11-5.

Construct Surrogate Details

To construct the surrogate, the algorithm chooses quasirandom points within the bounds. If you pass
an initial set of points in the InitialPoints option, the algorithm uses those points and new
quasirandom points (if necessary) to reach a total of options.MinSurrogatePoints.

When BatchUpdateInterval > 1, the minimum number of random sample points used to create a
surrogate is the larger of MinSurrogatePoints and BatchUpdateInterval.

Note If some upper bounds and lower bounds are equal, surrogateopt removes those "fixed"
variables from the problem before constructing a surrogate. surrogateopt manages the variables
seamlessly. So, for example, if you pass initial points, pass the full set, including any fixed variables.

On subsequent Construct Surrogate phases, the algorithm uses options.MinSurrogatePoints
quasirandom points. The algorithm evaluates the objective function at these points.

The algorithm constructs a surrogate as an interpolation of the objective function by using a radial
basis function (RBF) interpolator. RBF interpolation has several convenient properties that make it
suitable for constructing a surrogate:

• An RBF interpolator is defined using the same formula in any number of dimensions and with any
number of points.

• An RBF interpolator takes the prescribed values at the evaluated points.
• Evaluating an RBF interpolator takes little time.
• Adding a point to an existing interpolation takes relatively little time.
• Constructing an RBF interpolator involves solving an N-by-N linear system of equations, where N

is the number of surrogate points. As Powell [1] showed, this system has a unique solution for
many RBFs.

• surrogateopt uses a cubic RBF with a linear tail. This RBF minimizes a measure of bumpiness.
See Gutmann [4].
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The algorithm uses only initial points and random points in the first Construct Surrogate phase, and
uses only random points in subsequent Construct Surrogate phases. In particular, the algorithm does
not use any adaptive points from the Search for Minimum phase in this surrogate.

Search for Minimum Details

The solver searches for a minimum of the objective function by following a procedure that is related
to local search. The solver initializes a scale for the search with the value 0.2. The scale is like a
search region radius or the mesh size in a pattern search. The solver starts from the incumbent point,
which is the point with the smallest objective function value since the last surrogate reset. The solver
searches for a minimum of a merit function that relates to both the surrogate and to a distance from
existing search points, to try to balance minimizing the surrogate and searching the space. See
“Merit Function Definition” on page 11-7.

The solver adds hundreds or thousands of pseudorandom vectors with scaled length to the incumbent
point to obtain sample points. For details, see the Sampler Cycle table and surrounding discussion.
These vectors are shifted and scaled by the bounds in each dimension, and multiplied by the scale. If
necessary, the solver alters the sample points so that they stay within the bounds. The solver
evaluates the merit function at the sample points, but not at any point within
options.MinSampleDistance of a previously evaluated point. The point with the lowest merit
function value is called the adaptive point. The solver evaluates the objective function value at the
adaptive point, and updates the surrogate with this value. If the objective function value at the
adaptive point is sufficiently lower than the incumbent value, then the solver deems the search
successful and sets the adaptive point as the incumbent. Otherwise, the solver deems the search
unsuccessful and does not change the incumbent.
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The solver changes the scale when the first of these conditions is met:

• Three successful searches occur since the last scale change. In this case, the scale is doubled, up
to a maximum scale length of 0.8 times the size of the box specified by the bounds.

• max(5,nvar) unsuccessful searches occur since the last scale change, where nvar is the number
of problem variables. In this case, the scale is halved, down to a minimum scale length of 1e-5
times the size of the box specified by the bounds.

In this way, the random search eventually concentrates near an incumbent point that has a small
objective function value. Then the solver geometrically reduces the scale toward the minimum scale
length.

surrogateopt uses three different methods of sampling random points to locate a minimum of the
merit function. surrogateopt chooses the sampler in a cycle associated with the weights according
to the following table.

Sampler Cycle

Weight 0.3 0.5 0.8 0.95
Sampler Random Random OrthoMADS GPS

• Scale — Each sampler samples points within a scaled region around the incumbent. Any integer
points have a scale that starts at ½ times the width of the bounds, and adjusts exactly as the non-
integer points, except that the width is increased to 1 if it would ever fall below 1.
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• Random — The sampler generates integer points uniformly at random within a scale, centered at
the incumbent. The sampler generates continuous points according to a Gaussian with mean zero
from the incumbent. The width of the samples of any integer points is multiplied by the scale, as is
the standard deviation of the continuous points.

• OrthoMADS — The sampler chooses an orthogonal coordinate system uniformly at random. The
algorithm then creates sample points around the incumbent, adding and subtracting the current
scale times each unit vector in the coordinate system. The algorithm rounds integer points. This
creates 2N samples (unless some integer points are rounded to the incumbent), where N is the
number of problem dimensions. OrthoMADS also uses two more points than the 2N fixed
directions, one at [+1,+1,…,+1], and the other at [–1,–1,…,–1], for a total of 2N+2 points. Then
the sampler repeatedly halves the 2N + 2 steps, creating a finer and finer set of points around the
incumbent, while rounding the integer points. This process ends when either there are enough
samples or rounding causes no new samples.

• GPS — The sampler is like OrthoMADS, except instead of choosing a random set of directions,
GPS uses the non-rotated coordinate system.

The solver does not evaluate the merit function at points within options.MinSampleDistance of
an evaluated point (see “Definitions for Surrogate Optimization” on page 11-3). The solver switches
from the Search for Minimum phase to a Construct Surrogate phase (in other words, performs a
surrogate reset) when all sample points are within MinSampleDistance of evaluated points.
Generally, this reset occurs after the solver reduces the scale so that all sample points are tightly
clustered around the incumbent.

When the BatchUpdateInterval option is larger than 1, the solver generates
BatchUpdateInterval adaptive points before updating the surrogate model or changing the
incumbent. The update includes all of the adaptive points. Effectively, the algorithm does not use any
new information until it generates BatchUpdateInterval adaptive points, and then the algorithm
uses all the information to update the surrogate.

Merit Function Definition

The merit function fmerit(x) is a weighted combination of two terms:

• Scaled surrogate. Define smin as the minimum surrogate value among the sample points, smax as
the maximum, and s(x) as the surrogate value at the point x. Then the scaled surrogate S(x) is

S(x) =
s(x)− smin
smax− smin

.

s(x) is nonnegative and is zero at points x that have minimal surrogate value among sample points.
• Scaled distance. Define xj, j = 1,…,k as the k evaluated points. Define dij as the distance from

sample point i to evaluated point k. Set dmin = min(dij) and dmax = max(dij), where the minimum
and maximum are taken over all i and j. The scaled distance D(x) is

D(x) =
dmax− d(x)
dmax− dmin

,

where d(x) is the minimum distance of the point x to an evaluated point. D(x) is nonnegative and is
zero at points x that are maximally far from evaluated points. So, minimizing D(x) leads the
algorithm to points that are far from evaluated points.

The merit function is a convex combination of the scaled surrogate and scaled distance. For a weight
w with 0 < w < 1, the merit function is
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fmerit(x) = wS(x) + (1−w)D(x) .

A large value of w gives importance to the surrogate values, causing the search to minimize the
surrogate. A small value of w gives importance to points that are far from evaluated points, leading
the search to new regions. During the Search for Minimum phase, the weight w cycles through these
four values, as suggested by Regis and Shoemaker [2]: 0.3, 0.5, 0.8, and 0.95.

Mixed-Integer surrogateopt Algorithm
• “Mixed-Integer surrogateopt Overview” on page 11-8
• “Algorithm Start” on page 11-8
• “Integer Search for Minimum” on page 11-8
• “Tree Search” on page 11-8

Mixed-Integer surrogateopt Overview

When some or all of the variables are integer, as specified in the intcon argument, surrogateopt
changes some aspects of the “Serial surrogateopt Algorithm” on page 11-3. This description is mainly
about the changes, rather than the entire algorithm.

Algorithm Start

If necessary, surrogateopt moves the specified bounds for intcon points so that they are integers.
Also, surrogateopt ensures that a supplied initial point is integer feasible and feasible with respect
to bounds. The algorithm then generates quasirandom points as in the non-integer algorithm,
rounding integer points to integer values. The algorithm generates a surrogate exactly as in the non-
integer algorithm.

Integer Search for Minimum

This portion of the algorithm is the same as in “Search for Minimum Details” on page 11-5. The
modifications for integer constraints appear in that section.

Tree Search

After sampling hundreds or thousands of values of the merit function, surrogateopt usually
chooses the minimal point, and evaluates the objective function. However, under two circumstances,
surrogateopt performs another search called a Tree Search before evaluating the objective:

• There have been 2N steps since the last Tree Search, called Case A.
• surrogateopt is about to perform a surrogate reset, called Case B.

The Tree Search proceeds as follows, similar to a procedure in intlinprog, as described in “Branch
and Bound”. The algorithm makes a tree by finding an integer value and creating a new problem that
has a bound on this value either one higher or one lower, and solving the subproblem with this new
bound. After solving the subproblem, the algorithm chooses a different integer to be bounded either
above or below by one.

• Case A: Use the scaled sampling radius as the overall bounds, and run for up to 1000 steps of the
search.

• Case B: Use the original problem bounds as the overall bounds, and run for up to 5000 steps of
the search.
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In this case, solving the subproblem means running the fmincon 'sqp' algorithm on the continuous
variables, starting from the incumbent with the specified integer values, so search for a local
minimum of the merit function.

Tree Search can be time-consuming. So surrogateopt has an internal iteration limit to avoid
excessive time in this step, limiting both the number of Case A and Case B steps.

At the end of the Tree search, the algorithm takes the better of the point found by Tree Search and
the point found by the preceding search for a minimum, as measured by the merit function. The
algorithm evaluates the objective function at this point. The remainder of the integer algorithm is
exactly the same as the continuous algorithm.

Linear Constraint Handling
When a problem has linear constraints, the algorithm modifies its search procedure in a way that
keeps all points feasible with respect to these constraints and with respect to bounds at every
iteration. During the construction and search phases, the algorithm creates only linearly feasible
points by a procedure similar to the patternsearch 'GSSPositiveBasis2N' poll algorithm.

When a problem has integer constraints and linear constraints, the algorithm first creates linearly
feasible points. Then the algorithm tries to satisfy integer constraints by a process of rounding
linearly feasible points to integers using a heuristic that attempts to keeps the points linearly feasible.
When this process is unsuccessful in obtaining enough feasible points for constructing a surrogate,
the algorithm calls intlinprog to attempt to find more points that are feasible with respect to
bounds, linear constraints, and integer constraints.

surrogateopt Algorithm with Nonlinear Constraints
When the problem has nonlinear constraints, surrogateopt modifies the previously described
algorithm in several ways.

Initially and after each surrogate reset, the algorithm creates surrogates of the objective and
nonlinear constraint functions. Subsequently, the algorithm differs depending on whether or not the
Construct Surrogate phase found any feasible points; finding a feasible point is equivalent to the
incumbent point being feasible when the surrogate is constructed.

• Incumbent is infeasible — This case, called Phase 1, involves a search for a feasible point. In the
Search for Minimum phase before encountering a feasible point, surrogateopt changes the
definition of the merit function. The algorithm counts the number of constraints that are violated
at each point, and considers only those points with the fewest number of violated constraints.
Among those points, the algorithm chooses the point that minimizes the maximum constraint
violation as the best (lowest merit function) point. This best point is the incumbent. Subsequently,
until the algorithm encounters a feasible point, it uses this modification of the merit function.
When surrogateopt evaluates a point and finds that it is feasible, the feasible point becomes the
incumbent and the algorithm is in Phase 2.

• Incumbent is feasible — This case, called Phase 2, proceeds in the same way as the standard
algorithm. The algorithm ignores infeasible points for the purpose of computing the merit
function.

The algorithm proceeds according to the “Mixed-Integer surrogateopt Algorithm” on page 11-8 with
the following changes. After every 2*nvars points where the algorithm evaluates the objective and
nonlinear constraint functions, surrogateopt calls the fmincon function to minimize the surrogate,
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subject to the surrogate nonlinear constraints and bounds, where the bounds are scaled by the
current scale factor. (If the incumbent is infeasible, fmincon ignores the objective and attempts to
find a point satisfying the constraints.) If the problem has both integer and nonlinear constraints,
then surrogateopt calls “Tree Search” on page 11-8 instead of fmincon.

If the problem is a feasibility problem, meaning it has no objective function, then surrogateopt
performs a surrogate reset immediately after it finds a feasible point.

Parallel surrogateopt Algorithm
The parallel surrogateopt algorithm differs from the serial algorithm as follows:

• The parallel algorithm maintains a queue of points on which to evaluate the objective function.
This queue is 30% larger than the number of parallel workers, rounded up. The queue is larger
than the number of workers to minimize the chance that a worker is idle because no point is
available to evaluate.

• The scheduler takes points from the queue in a FIFO fashion and assigns them to workers as they
become idle, asynchronously.

• When the algorithm switches between phases (Search for Minimum and Construct Surrogate), the
existing points being evaluated remain in service, and any other points in the queue are flushed
(discarded from the queue). So, generally, the number of random points that the algorithm creates
for the Construct Surrogate phase is at most options.MinSurrogatePoints + PoolSize,
where PoolSize is the number of parallel workers. Similarly, after a surrogate reset, the
algorithm still has PoolSize - 1 adaptive points that its workers are evaluating.

Note Currently, parallel surrogate optimization does not necessarily give reproducible results, due to
the nonreproducibility of parallel timing, which can lead to different execution paths.

Parallel Mixed-Integer surrogateopt Algorithm
When run in parallel on a mixed-integer problem, surrogateopt performs the Tree Search
procedure on the host, not on the parallel workers. Using the latest surrogate, surrogateopt
searches for a smaller value of the surrogate after each worker returns with an adaptive point.

If the objective function is not expensive (time-consuming), then this Tree Search procedure can be a
bottleneck on the host. In contrast, if the objective function is expensive, then the Tree Search
procedure takes a small fraction of the overall computational time, and is not a bottleneck.
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Surrogate Optimization of Multidimensional Function
This example shows the behavior of three recommended solvers on a minimization problem. The
objective function is the multirosenbrock function:

type multirosenbrock

function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.

% Copyright 2014 by The MathWorks, Inc.

N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
    error('Input rows must have an even number of elements')
end

odds  = 1:2:N-1;
evens = 2:2:N;
F = zeros(size(x));
F(:,odds)  = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);

The multirosenbrock function has a single local minimum of 0 at the point [1,1,...,1]. See how
well the three best solvers for general nonlinear problems work on this function in 20 dimensions
with a challenging maximum function count of only 200.

Set up the problem.

N = 20; % any even number
mf = 200; % max fun evals
fun = @multirosenbrock;
lb = -3*ones(1,N);
ub = -lb;
rng default
x0 = -3*rand(1,N);

Set options for surrogateopt to use only 200 function evaluations, and then run the solver.

options = optimoptions('surrogateopt','MaxFunctionEvaluations',mf);
[xm,fvalm,~,~,pop] = surrogateopt(fun,lb,ub,options);
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

Set similar options for patternsearch, including a plot function to monitor the optimization.

psopts = optimoptions('patternsearch','PlotFcn','psplotbestf','MaxFunctionEvaluations',mf);
[psol,pfval] = patternsearch(fun,x0,[],[],[],[],lb,ub,[],psopts);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
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Set similar options for fmincon.

opts = optimoptions('fmincon','PlotFcn','optimplotfval','MaxFunctionEvaluations',mf);
[fmsol,fmfval,eflag,fmoutput] = fmincon(fun,x0,[],[],[],[],lb,ub,[],opts);
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Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 2.000000e+02.

For this extremely restricted number of function evaluations, the surrogateopt solution is closest to
the true minimum value of 0.

table(fvalm,pfval,fmfval,'VariableNames',{'surrogateopt','patternsearch','fmincon'})

ans=1×3 table
    surrogateopt    patternsearch    fmincon
    ____________    _____________    _______

       8.9965           774.8         493.7 

Allowing another 200 function evaluations shows that the other solvers rapidly approach the true
solution, while surrogateopt does not improve significantly. Restart the solvers from their previous
solutions, which adds 200 function evaluations to each optimization.

options = optimoptions(options,'InitialPoints',pop);
[xm,fvalm,~,~,pop] = surrogateopt(fun,lb,ub,options);
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

[psol,pfval] = patternsearch(fun,psol,[],[],[],[],lb,ub,[],psopts);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
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[fmsol,fmfval,eflag,fmoutput] = fmincon(fun,fmsol,[],[],[],[],lb,ub,[],opts);

 Surrogate Optimization of Multidimensional Function

11-17



Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 2.000000e+02.

table(fvalm,pfval,fmfval,'VariableNames',{'surrogateopt','patternsearch','fmincon'})

ans=1×3 table
    surrogateopt    patternsearch    fmincon
    ____________    _____________    _______

       8.2655          326.73        8.5989 

See Also
surrogateopt

More About
• “Surrogate Optimization”
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Modify surrogateopt Options
This example shows how to search for a global minimum by running surrogateopt on a two-
dimensional problem that has six local minima. The example then shows how to modify some options
to search more effectively.

Define the objective function sixmin as follows.

sixmin = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);

Plot the function.

[X,Y] = meshgrid(linspace(-2.1,2.1),linspace(-1.2,1.2));
Z = sixmin([X(:),Y(:)]);
Z = reshape(Z,size(X));
surf(X,Y,Z,'EdgeColor','none')
view(-139,31)

The function has six local minima and two global minima.

Run surrogateopt on the problem using the 'surrogateoptplot' plot function in the region
bounded in each direction by [-2.1,2.1]. To understand the 'surrogateoptplot' plot, see
“Interpret surrogateoptplot” on page 11-25.

rng default
lb = [-2.1,-2.1];
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ub = -lb;
opts = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
[xs,fvals,eflags,outputs] = surrogateopt(sixmin,lb,ub,opts);

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

Set a smaller value for the MinSurrogatePoints option to see whether the change helps the solver
reach the global minimum faster.

opts.MinSurrogatePoints = 4;
[xs2,fvals2,eflags2,outputs2] = surrogateopt(sixmin,lb,ub,opts);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

The smaller MinSurrogatePoints option does not noticeably change the solver behavior.

Try setting a larger value of the MinSampleDistance option.

opts.MinSampleDistance = 0.05;
[xs3,fvals3,eflags3,outputs3] = surrogateopt(sixmin,lb,ub,opts);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

Changing the MinSampleDistance option has a small effect on the solver. This setting causes the
surrogate to reset more often, and causes the best objective function to be slightly higher (worse)
than before.

Try using parallel processing. Time the execution both with and without parallel processing on the
camelback function, which is a variant of the sixmin function. To simulate a time-consuming
function, the camelback function has an added pause of one second for each function evaluation.

type camelback

function y = camelback(x)

y = (4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
pause(1)

tic
opts = optimoptions('surrogateopt','UseParallel',true,'PlotFcn','surrogateoptplot');
[xs4,fvals4,eflags4,outputs4] = surrogateopt(@camelback,lb,ub,opts);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

toc

Elapsed time is 43.142697 seconds.

Time the solver when run on the same problem in serial.

opts.UseParallel = false;
tic
[xs5,fvals5,eflags5,outputs5] = surrogateopt(@camelback,lb,ub,opts);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

toc

Elapsed time is 227.968689 seconds.

For time-consuming objective functions, parallel processing significantly improves the speed, without
overly affecting the results.

See Also
surrogateopt

More About
• “Surrogate Optimization”
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Interpret surrogateoptplot
The surrogateoptplot plot function provides a good deal of information about the surrogate
optimization steps.

Minimize Bounded Function

For example, consider the plot of the steps surrogateopt takes on the built-in test function
rastriginsfcn. This function has a global minimum value of 0 at the point [0,0].

Create a surface plot of rastriginsfcn.

ezsurf(@(x,y)rastriginsfcn([x(:),y(:)]));

Plot Minimization Process

By giving asymmetric bounds, you encourage surrogateopt to search away from the global
minimum. Set asymmetric bounds of [-3,-3] and [9,10]. Set options to use the
surrogateoptplot plot function, and then call surrogateopt.

lb = [-3,-3];
ub = [9,10];
options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
rng default
[x,fval] = surrogateopt(@rastriginsfcn,lb,ub,options);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

Interpret Plot

Begin interpreting the plot from its left side. For details of the algorithm steps, see “Surrogate
Optimization Algorithm” on page 11-3.

• The first points are black triangles, indicating quasirandom samples of the function within the
problem bounds. These points come from the Construct Surrogate phase.

• Next are black dots indicating the adaptive points, the points created in the Search for Minimum
phase.

• The thick green line represents the best (lowest) objective function value found. Shortly after
evaluation number 30, surrogateopt is stuck in a local minimum with an objective function
value near 5. Zoom in to see this behavior more clearly.

xlim([20 100])
ylim([0 10])
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• Near evaluation number 120, a vertical line indicates a surrogate reset. At this point, the
algorithm returns to the Construct Surrogate phase.

• The dark blue x points represent the incumbent, which is the best point found since the previous
surrogate reset.

• Near evaluation number 160, the incumbent improves on the previous best point by attaining a
value of about 4. After this evaluation number, the best point slowly drops in value. Zoom in to see
this behavior more clearly.

xlim([140 200])
ylim([0 6])
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• The optimization halts at evaluation number 200 because it is the default function evaluation limit
for a 2-D problem.

Problem with Nonlinear Constraints

The surrogateoptplot display changes when you have nonlinear constraints. Impose the
constraint that x(1) is integer-valued, and the nonlinear constraint that x2 ≥ x1

2− 2. For the function
that implements this constraint, see rasfcn on page 11-0  at the end of this example.

fun = @rasfcn;

Set integer constraints by setting intcon = 1, and run the minimization.

intcon = 1;
[x,fval] = surrogateopt(fun,lb,ub,intcon,options);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

The plot now shows red markers where surrogateopt evaluates an infeasible point. The final point
is close to the true minimum point of [0,0].

disp(x)

   1.0e-03 *

         0   -0.3913

The integer constraint likely helps surrogateopt find the true minimum, by reducing the search
space.

function F = rasfcn(x)
F.Fval = rastriginsfcn(x);
F.Ineq = x(1)^2 - 2 - x(2);
end

See Also
surrogateopt

More About
• “Surrogate Optimization Algorithm” on page 11-3
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Compare Surrogate Optimization with Other Solvers
This example compares surrogateopt to two other solvers: fmincon, the recommended solver for
smooth problems, and patternsearch, the recommended solver for nonsmooth problems. The
example uses a nonsmooth function on a two-dimensional region.

type nonSmoothFcn

function [f, g] = nonSmoothFcn(x)
%NONSMOOTHFCN is a non-smooth objective function

%   Copyright 2005 The MathWorks, Inc.

for i = 1:size(x,1)
    if  x(i,1) < -7
        f(i) = (x(i,1))^2 + (x(i,2))^2 ;
    elseif x(i,1) < -3
        f(i) = -2*sin(x(i,1)) - (x(i,1)*x(i,2)^2)/10 + 15 ;
    elseif x(i,1) < 0
        f(i) = 0.5*x(i,1)^2 + 20 + abs(x(i,2))+ patho(x(i,:));
    elseif x(i,1) >= 0
        f(i) = .3*sqrt(x(i,1)) + 25 +abs(x(i,2)) + patho(x(i,:));
    end
end

%Calculate gradient
g = NaN;
if x(i,1) < -7
    g = 2*[x(i,1); x(i,2)];
elseif x(i,1) < -3
    g = [-2*cos(x(i,1))-(x(i,2)^2)/10; -x(i,1)*x(i,2)/5];
elseif x(i,1) < 0
    [fp,gp] = patho(x(i,:));
    if x(i,2) > 0
        g = [x(i,1)+gp(1); 1+gp(2)];
    elseif x(i,2) < 0
        g =  [x(i,1)+gp(1); -1+gp(2)];
    end
elseif x(i,1) >0
    [fp,gp] = patho(x(i,:));
    if x(i,2) > 0
        g = [.15/sqrt(x(i,1))+gp(1); 1+ gp(2)];
    elseif x(i,2) < 0
        g = [.15/sqrt(x(i,1))+gp(1); -1+ gp(2)];
    end
end

function [f,g] = patho(x)
Max = 500;
f = zeros(size(x,1),1);
g = zeros(size(x));
for k = 1:Max  %k 
   arg = sin(pi*k^2*x)/(pi*k^2);
   f = f + sum(arg,2);
   g = g + cos(pi*k^2*x);
end
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mplier = 0.1; % Scale the control variable
Objfcn = @(x)nonSmoothFcn(mplier*x); % Handle to the objective function
range = [-6 6;-6 6]/mplier; % Range used to plot the objective function
rng default % Reset the global random number generator
showNonSmoothFcn(Objfcn,range);
title('Nonsmooth Objective Function')
view(-151,44)

drawnow

See how well surrogateopt does in locating the global minimum within the default number of
iterations.

lb = -6*ones(1,2)/mplier;
ub = -lb;
[xs,fvals,eflags,outputs] = surrogateopt(Objfcn,lb,ub);
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

fprintf("Lowest found value = %g.\r",fvals)

Lowest found value = 13.

figure
showNonSmoothFcn(Objfcn,range);
view(-151,44)
hold on
p1 = plot3(xs(1),xs(2),fvals,'om','MarkerSize',15,'MarkerFaceColor','m');
legend(p1,{'Solution'})
hold off
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Compare with patternsearch

Set patternsearch options to use the same number of function evaluations, starting from a random
point within the bounds.

rng default
x0 = lb + rand(size(lb)).*(ub - lb);
optsps = optimoptions('patternsearch','MaxFunctionEvaluations',200,'PlotFcn','psplotbestf');
[xps,fvalps,eflagps,outputps] = patternsearch(Objfcn,x0,[],[],[],[],lb,ub,[],optsps);

Optimization terminated: mesh size less than options.MeshTolerance.
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figure
showNonSmoothFcn(Objfcn,range);
view(-151,44)
hold on
p1 = plot3(x0(1),x0(2),Objfcn(x0),'ob','MarkerSize',12,'MarkerFaceColor','b');
p2 = plot3(xps(1),xps(2),fvalps,'om','MarkerSize',15,'MarkerFaceColor','m');
legend([p1,p2],{'Start Point','Solution'})
hold off
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patternsearch found the same solution as surrogateopt.

Restrict the number of function evaluations and try again.

optsurr = optimoptions('surrogateopt','MaxFunctionEvaluations',40);
[xs,fvals,eflags,outputs] = surrogateopt(Objfcn,lb,ub,optsurr);
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

optsps.MaxFunctionEvaluations = 40;
[xps,fvalps,eflagps,outputps] = patternsearch(Objfcn,x0,[],[],[],[],lb,ub,[],optsps);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
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Again, both solvers found the global solution quickly.

Compare with fmincon

fmincon is efficient at finding a local solution near the start point. However, it can easily get stuck
far from the global solution in a nonconvex or nonsmooth problem.

Set fmincon options to use a plot function, the same number of function evaluations as the previous
solvers, and the same start point as patternsearch.

opts = optimoptions('fmincon','PlotFcn','optimplotfval','MaxFunctionEvaluations',200);
[fmsol,fmfval,eflag,fmoutput] = fmincon(Objfcn,x0,[],[],[],[],lb,ub,[],opts);
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Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.

figure
showNonSmoothFcn(Objfcn,range);
view(-151,44)
hold on
p1 = plot3(x0(1),x0(2),Objfcn(x0),'ob','MarkerSize',12,'MarkerFaceColor','b');
p2 = plot3(fmsol(1),fmsol(2),fmfval,'om','MarkerSize',15,'MarkerFaceColor','m');
legend([p1,p2],{'Start Point','Solution'})
hold off
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fmincon is stuck in a local minimum near the start point.

See Also
fmincon | patternsearch | surrogateopt

More About
• “Modify surrogateopt Options” on page 11-19
• “Surrogate Optimization of Multidimensional Function” on page 11-12
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Surrogate Optimization with Nonlinear Constraint
This example shows how to include nonlinear inequality constraints in a surrogate optimization. The
example solves an ODE with a nonlinear constraint. The example “Optimize an ODE in Parallel” on
page 6-83 shows how to solve the same problem using other solvers that accept nonlinear
constraints.

For a video overview of this example, see Surrogate Optimization.

Problem Description

The problem is to change the position and angle of a cannon to fire a projectile as far as possible
beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is
too close to the wall, it fires at too steep an angle, and the projectile does not travel far enough. If the
cannon is too far from the wall, the projectile does not travel far enough.

Nonlinear air resistance slows the projectile. The resisting force is proportional to the square of
velocity, with the proportionality constant 0.02. Gravity acts on the projectile, accelerating it
downward with constant 9.81 m/s^2. Therefore, the equations of motion for the trajectory x(t) are

d2x(t)
dt2 = − 0 . 02‖v(t)‖v(t)− (0, 9 . 81),

where v(t) = dx(t)/dt.

The initial position x0 and initial velocity xp0 are 2-D vectors. However, the initial height x0(2) is 0,
so the initial position is given by the scalar x0(1). The initial velocity has magnitude 300 (the muzzle
velocity) and, therefore, depends only on the initial angle, which is a scalar. For an initial angle th,
the initial velocity is xp0 = 300*(cos(th),sin(th)). Therefore, the optimization problem
depends only on two scalars, making it a 2-D problem. Use the horizontal distance and initial angle as
the decision variables.

Formulate ODE Model

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory
vector (x1(t), x2(t)) with its time derivative (x1′(t), x2′(t)) to form a 4-D trajectory vector. In terms of this
augmented vector, the differential equation becomes

d
dtx t =

x3 t
x4 t

−0 . 02 x3 t , x4 t x3 t
−0 . 02 x3 t , x4 t x4 t − 9 . 81

.

The cannonshot file implements this differential equation.

type cannonshot

function f = cannonshot(~,x)

f = [x(3);x(4);x(3);x(4)]; % initial, gets f(1) and f(2) correct
nrm = norm(x(3:4)) * .02; % norm of the velocity times constant
f(3) = -x(3)*nrm; % horizontal acceleration
f(4) = -x(4)*nrm - 9.81; % vertical acceleration
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Visualize the solution of this ODE starting 30 m from the wall with an initial angle of pi/3. The
plotcannonsolution function uses ode45 to solve the differential equation.

type plotcannonsolution

function dist = plotcannonsolution(x)
% Change initial 2-D point x to 4-D x0
x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
sol = ode45(@cannonshot,[0,15],x0);
% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values
ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)
hold on
plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
ylim([0 100])
legend('Trajectory','Wall','Location','NW')
dist = xs(end);
title(sprintf('Distance %f',dist))
hold off

plotcannonsolution uses fzero to find the time when the projectile lands, meaning its height is
0. The projectile lands before time 15 s, so plotcannonsolution uses 15 as the amount of time for
the ODE solution.

x0 = [-30;pi/3];
dist = plotcannonsolution(x0);
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Prepare Optimization

To optimize the initial position and angle, write a function similar to the previous plotting routine.
Calculate the trajectory starting from an arbitrary horizontal position and initial angle.

Include sensible bound constraints. The horizontal position cannot be greater than 0. Set an upper
bound of –1. Similarly, the horizontal position cannot be below –200, so set a lower bound of –200.
The initial angle must be positive, so set its lower bound to 0.05. The initial angle should not exceed
pi/2; set its upper bound to pi/2 – 0.05.

lb = [-200;0.05];
ub = [-1;pi/2-.05];

Write an objective function that returns the negative of the resulting distance from the wall, given an
initial position and angle. If the trajectory crosses the wall at a height less than 20, the trajectory is
infeasible; this constraint is a nonlinear constraint. The cannonobjcon function implements the
objective function calculation. To implement the nonlinear constraint, the function calls fzero to find
the time when the x-value of the projectile is zero. The function accounts for the possibility of failure
in the fzero function by checking whether, after time 15, the x-value of the projectile is greater than
zero. If not, then the function skips the step of finding the time when the projectile passes the wall.

type cannonobjcon

function f = cannonobjcon(x)
    % Change initial 2-D point x to 4-D x0
    x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
    % Solve for trajectory
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    sol = ode45(@cannonshot,[0,15],x0);
    % Find time t when trajectory height = 0
    zerofnd = fzero(@(r)deval(sol,r,2),[1e-2,15]);
    % Find the horizontal position at that time
    dist = deval(sol,zerofnd,1);
    % What is the height when the projectile crosses the wall at x = 0?
    if deval(sol,15,1) > 0
        wallfnd = fzero(@(r)deval(sol,r,1),[0,15]);
        height = deval(sol,wallfnd,2);
    else
        height = deval(sol,15,2);
    end
    f.Ineq = 20 - height; % height must be above 20
    % Take negative of distance for maximization
    f.Fval = -dist;
end

You already calculated one feasible initial trajectory. Use that value as an initial point.

fx0 = cannonobjcon(x0);
fx0.X = x0;

Solve Optimization Using surrogateopt

Set surrogateopt options to use the initial point. For reproducibility, set the random number
generator to default. Use the 'surrogateoptplot' plot function. Run the optimization. To
understand the 'surrogateoptplot' plot, see “Interpret surrogateoptplot” on page 11-25.

opts = optimoptions('surrogateopt','InitialPoints',x0,'PlotFcn','surrogateoptplot');
rng default
[xsolution,distance,exitflag,output] = surrogateopt(@cannonobjcon,lb,ub,opts)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

xsolution = 1×2

  -28.4012    0.6161

distance = -125.9987

exitflag = 0

output = struct with fields:
        elapsedtime: 57.9024
          funccount: 200
    constrviolation: 8.0630e-04
               ineq: 8.0630e-04
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'

Plot the final trajectory.

figure
dist = plotcannonsolution(xsolution);

 Surrogate Optimization with Nonlinear Constraint

11-45



The patternsearch solution in “Optimize an ODE in Parallel” on page 6-83 shows a final distance of
125.9880, which is almost the same as this surrogateopt solution.

See Also
surrogateopt

More About
• “Optimize an ODE in Parallel” on page 6-83
• Surrogate Optimization
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Surrogate Optimization of Six-Element Yagi-Uda Antenna
This example shows how to optimize an antenna design using the surrogate optimization solver. The
radiation patterns of antennas depend sensitively on the parameters that define the antenna shapes.
Typically, the features of a radiation pattern have multiple local optima. To calculate a radiation
pattern, this example uses Antenna Toolbox™ functions.

A Yagi-Uda antenna is a widely used radiating structure for a variety of applications in commercial
and military sectors. This antenna can receive TV signals in the VHF-UHF range of frequencies [1].
The Yagi-Uda is a directional traveling-wave antenna with a single driven element, usually a folded
dipole or a standard dipole, which is surrounded by several passive dipoles. The passive elements
form the reflector and director. These names identify the positions relative to the driven element. The
reflector dipole is behind the driven element, in the direction of the back lobe of the antenna
radiation. The director dipole is in front of the driven element, in the direction where a main beam
forms.

Design Parameters

Specify the initial design parameters in the center of the VHF band [2].

freq = 165e6;
wirediameter = 19e-3;
c = physconst('lightspeed');
lambda = c/freq;

Create Yagi-Uda Antenna

The driven element for the Yagi-Uda antenna is a folded dipole, a standard exciter for this type of
antenna. Adjust the length and width parameters of the folded dipole. Because cylindrical structures
are modeled as equivalent metal strips, calculate the width using the cylinder2strip utility
function available in the Antenna Toolbox™. The length is λ/2 at the design frequency.

d = dipoleFolded;
d.Length = lambda/2;
d.Width = cylinder2strip(wirediameter/2);
d.Spacing = d.Length/60;

Create a Yagi-Uda antenna with the exciter as the folded dipole. Set the lengths of the reflector and
director elements to be λ/2. Set the number of directors to four. Specify the reflector and director
spacing as 0 . 3λ and 0 . 25λ, respectively. These settings provide an initial guess and serve as a
starting point for the optimization procedure. Show the initial design.

Numdirs = 4;
refLength = 0.5;
dirLength = 0.5*ones(1,Numdirs);
refSpacing = 0.3;
dirSpacing = 0.25*ones(1,Numdirs);
initialdesign = [refLength dirLength refSpacing dirSpacing].*lambda;
yagidesign = yagiUda;
yagidesign.Exciter = d;
yagidesign.NumDirectors = Numdirs;
yagidesign.ReflectorLength = refLength*lambda;
yagidesign.DirectorLength = dirLength.*lambda;
yagidesign.ReflectorSpacing = refSpacing*lambda;
yagidesign.DirectorSpacing = dirSpacing*lambda;
show(yagidesign)
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Plot Radiation Pattern at Design Frequency

Prior to executing the optimization process, plot the radiation pattern for the initial guess in 3-D.

fig1 = figure;
pattern(yagidesign,freq);
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This antenna does not have a higher directivity in the preferred direction, at zenith (elevation = 90
deg). This initial Yagi-Uda antenna design is a poorly designed radiator.

Set Up Optimization

Use the following variables as control variables for the optimization:

• Reflector length (1 variable)
• Director lengths (4 variables)
• Reflector spacing (1 variable)
• Director spacings (4 variables)

In terms of a single vector parameter parasiticVals, use these settings:

• Reflector length = parasiticVals(1)
• Director lengths = parasiticVals(2:5)
• Reflector spacing = parasiticVals(6)
• Director spacings = parasiticVals(7:10)

In terms of parasiticVals, set an objective function that aims to have a large value in the 90-
degree direction, a small value in the 270-degree direction, and a large value of maximum power
between the elevation beamwidth angle bounds.

type yagi_objective_function2.m
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function objectivevalue = yagi_objective_function2(y,parasiticVals,freq,elang)
% yagi_objective_function2 returns the objective for a 6-element Yagi
% objective_value = yagi_objective_function(y,parasiticvals,freq,elang)
% assigns the appropriate parasitic dimensions, parasiticvals, to the Yagi
% antenna y, and uses the frequency freq and angle pair elang to calculate
% the objective function value.

% The yagi_objective_function2 function is used for an internal example.
% Its behavior might change in subsequent releases, so it should not be
% relied upon for programming purposes.

% Copyright 2014-2018 The MathWorks, Inc.

bw1 = elang(1);
bw2 = elang(2);
y.ReflectorLength = parasiticVals(1);
y.DirectorLength = parasiticVals(2:y.NumDirectors+1);
y.ReflectorSpacing = parasiticVals(y.NumDirectors+2);
y.DirectorSpacing = parasiticVals(y.NumDirectors+3:end);
output = calculate_objectives(y,freq,bw1,bw2);
output = output.MaxDirectivity + output.FB;
objectivevalue= -output; % To maximize
end

function output = calculate_objectives(y,freq,bw1,bw2)
%calculate_objectives calculate the objective function
% output = calculate_objectives(y,freq,bw1,bw2) Calculate the directivity
% in az = 90 plane that covers the main beam, sidelobe and backlobe.
% Calculate the maximum directivity, sidelobe level and backlobe and store
% in fields of the output variable structure.
[es,~,el] = pattern(y,freq,90,0:1:270);   
el1 = el < bw1;                           
el2 = el > bw2;                           
el3 = el>bw1&el<bw2;
emainlobe = es(el3);
esidelobes =([es(el1);es(el2)]);
Dmax = max(emainlobe);
SLLmax = max(esidelobes);
Backlobe = es(end);
F = es(91);
B = es(end);
F_by_B = F-B;
output.MaxDirectivity= Dmax;
output.MaxSLL = SLLmax;
output.BackLobeLevel = Backlobe;
output.FB = F_by_B;
end

Set bounds on the control variables.

refLengthBounds = [0.4;
                    0.6];
dirLengthBounds = [0.35 0.35 0.35 0.35;   % lower bound on director length
                   0.495 0.495 0.495 0.495];  % upper bound on director length
refSpacingBounds = [0.05;                 % lower bound on reflector spacing
                    0.30];                % upper bound on reflector spacing
dirSpacingBounds = [0.05 0.05 0.05 0.05;  % lower bound on director spacing
                    0.23 0.23 0.23 0.23]; % upper bound on director spacing
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LB = [refLengthBounds(1) dirLengthBounds(1,:) refSpacingBounds(1) dirSpacingBounds(1,:) ].*lambda;
UB = [refLengthBounds(2) dirLengthBounds(2,:) refSpacingBounds(2) dirSpacingBounds(2,:) ].*lambda;

Set the initial point for the optimization, and set the elevation beamwidth angle bounds.

parasitic_values = [ yagidesign.ReflectorLength,                        ...
                     yagidesign.DirectorLength,                         ...
                     yagidesign.ReflectorSpacing                        ...
                     yagidesign.DirectorSpacing];                

elang = [60 120];                   % elevation beamwidth angles at az = 90

Surrogate Optimization

To search for a global optimum of the objective function, use surrogateopt as the solver. Set
options to allow 500 function evaluations, include the initial point, use parallel computation, and use
the 'surrogateoptplot' plot function. To understand the 'surrogateoptplot' plot, see
“Interpret surrogateoptplot” on page 11-25..

surrogateoptions = optimoptions('surrogateopt','MaxFunctionEvaluations',500,...
    'InitialPoints',parasitic_values,'UseParallel',true,'PlotFcn','surrogateoptplot');
rng(4) % For reproducibility
optimdesign = surrogateopt(@(x) yagi_objective_function2(yagidesign,x,freq,elang),...
                      LB,UB,surrogateoptions);

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.
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surrogateopt found a point giving an objective function value of –70. Investigate the effect of the
optimized parameters on the radiation pattern of the antenna.

Plot Optimized Pattern

Plot the optimized antenna pattern at the design frequency.

yagidesign.ReflectorLength = optimdesign(1);
yagidesign.DirectorLength = optimdesign(2:5);
yagidesign.ReflectorSpacing = optimdesign(6);
yagidesign.DirectorSpacing  = optimdesign(7:10);
fig2 = figure;
pattern(yagidesign,freq)

Apparently, the antenna now radiates significantly more power at zenith.

E-Plane and H-Plane Cuts of Pattern

To obtain a better insight into the behavior in two orthogonal planes, plot the normalized magnitude
of the electric field in the E-plane and H-plane, that is, azimuth = 0 and 90 deg, respectively.

fig3 = figure;
pattern(yagidesign,freq,0,0:1:359);

11 Surrogate Optimization

11-52



fig4 = figure;
pattern(yagidesign,freq,90,0:1:359);
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The optimized design shows a significant improvement in the radiation pattern. Higher directivity is
achieved in the desired direction toward zenith. The back lobe is small, resulting in a good front-to-
back ratio for this antenna. Calculate the directivity at zenith, front-to-back ratio, and beamwidth in
the E-plane and H-plane.

D_max = pattern(yagidesign,freq,0,90)

D_max = 10.2145

D_back = pattern(yagidesign,freq,0,-90)

D_back = -48.1770

F_B_ratio = D_max - D_back

F_B_ratio = 58.3915

Eplane_beamwidth = beamwidth(yagidesign,freq,0,1:1:360)

Eplane_beamwidth = 54

Hplane_beamwidth = beamwidth(yagidesign,freq,90,1:1:360)

Hplane_beamwidth = 68

Comparison with Manufacturer Datasheet

The optimized Yagi-Uda antenna achieves a forward directivity of 10.2 dBi, which translates to 8.1
dBd (relative to a dipole). This result is a bit less than the gain value reported by the datasheet in
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reference [2] (8.5 dBd). The front-to-back ratio is 60 dB; this is part of the quantity that the optimizer
maximizes. The optimized Yagi-Uda antenna has an E-plane beamwidth of 54 deg, whereas the
datasheet lists the E-plane beamwidth as 56 deg. The H-plane beamwidth of the optimized Yagi-Uda
antenna is 68 deg, whereas the value on the datasheet is 63 deg. The example does not address
impedance matching over the band.

Tabulating Initial and Optimized Design

Tabulate the initial design guesses and the final optimized design values.

yagiparam=  {'Reflector Length';
             'Director Length - 1'; 'Director Length - 2';
             'Director Length - 3'; 'Director Length - 4';
             'Reflector Spacing';   'Director Spacing - 1';
             'Director Spacing - 2';'Director Spacing - 3';
             'Director Spacing - 4'};         
initialdesign = initialdesign';
optimdesign = optimdesign';
T = table(initialdesign,optimdesign,'RowNames',yagiparam)

T=10×2 table
                            initialdesign    optimdesign
                            _____________    ___________

    Reflector Length           0.90846         0.92703  
    Director Length - 1        0.90846         0.71601  
    Director Length - 2        0.90846          0.7426  
    Director Length - 3        0.90846         0.68847  
    Director Length - 4        0.90846         0.75779  
    Reflector Spacing          0.54508          0.3117  
    Director Spacing - 1       0.45423         0.28684  
    Director Spacing - 2       0.45423         0.23237  
    Director Spacing - 3       0.45423         0.21154  
    Director Spacing - 4       0.45423         0.27903  

Reference

[1] Balanis, C. A. Antenna Theory: Analysis and Design. 3rd ed. New York: Wiley, 2005, p. 514.

[2] Online at: https://amphenolprocom.com/products/base-station-antennas/2450-s-6y-165
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Work with Checkpoint Files
In this section...
“Checkpoint for Restarting” on page 11-56
“Change Options to Extend or Monitor Optimization” on page 11-58
“Code for Robust Surrogate Optimization” on page 11-60

Checkpoint for Restarting
A checkpoint file contains data about the optimization process. To obtain a checkpoint file, use the
CheckpointFile option.

One basic use of a checkpoint file is to resume an optimization when it stops prematurely. The cause
of the premature stopping can be events such as a power failure or a crash, or when you press the
Stop button in a plot function window.

Whatever the reason for the premature stopping, the restart procedure is simply to call
surrogateopt with the checkpoint file name.

For example, suppose that you run an optimization with the 'check1' checkpoint file, and then click
the Stop button soon after the optimization starts.

options = optimoptions('surrogateopt','CheckpointFile','check1.mat');
lb = [-6,-8];
ub = -lb;
fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
[x,fval,exitflag,output] = surrogateopt(fun,lb,ub,options)

Optimization stopped by a plot function or output function.

x =

     0     0

fval =

     1

exitflag =

    -1

output = 

  struct with fields:

        elapsedtime: 15.3330
          funccount: 30
    constrviolation: 0
               ineq: [1×0 double]
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           rngstate: [1×1 struct]
            message: 'Optimization stopped by a plot function or output function.'

Note Checkpointing takes time. This overhead is especially noticeable for functions that otherwise
take little time to evaluate.

To resume the optimization, call surrogateopt with the 'check1.mat' argument.

[x,fval,exitflag,output] = surrogateopt('check1.mat')

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x =

    1.0186    1.0377

fval =

   3.4902e-04

exitflag =

     0
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output = 

  struct with fields:

        elapsedtime: 181.5824
          funccount: 200
    constrviolation: 0
               ineq: [1×0 double]
           rngstate: [1×1 struct]
            message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by ↵'options.MaxFunctionEvaluations'.'

Change Options to Extend or Monitor Optimization
You can extend an optimization, whether it stops due to an unforeseen event or not, by changing the
stopping criteria in the options. You can also monitor the optimization by displaying information at
each iteration.

Note surrogateopt allows you to change only a limited set of options. For reliability, update the
original options structure instead of creating new options.

For a list of the options you can change when restarting, see opts.
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For example, suppose that you want to extend the previous optimization to run for a total of 400
function evaluations. Additionally, you want to monitor the optimization using the
'surrogateoptplot' plot function.

opts = optimoptions(options,'MaxFunctionEvaluations',400,...
    'PlotFcn','surrogateoptplot');
[x,fval,exitflag,output] = surrogateopt('check1.mat',opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x =

    1.0186    1.0377

fval =

   3.4902e-04

exitflag =

     0

output = 

  struct with fields:

        elapsedtime: 959.7619
          funccount: 400
    constrviolation: 0
               ineq: [1×0 double]
           rngstate: [1×1 struct]
            message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by ↵'options.MaxFunctionEvaluations'.'
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The new plot function plots from the beginning of the optimization, even though you started the plot
function only after the solver stopped at function evaluation number 200. The 'surrogateoptplot'
plot function also shows the evaluation numbers where the optimization stopped and where it
restarted from the checkpoint file.

Code for Robust Surrogate Optimization
To restart a surrogate optimization from a checkpoint file only if the file exists, use the following code
logic. In this way, you can write scripts to keep an optimization going, even after a crash or other
unexpected event.

% Assume that myfun, lb, and ub exist
if isfile('saveddata.mat')
    [x,fval,exitflag,output] = surrogateopt('saveddata.mat');
else
    options = optimoptions("surrogateopt","CheckpointFile",'saveddata.mat');
    [x,fval,exitflag,output] = surrogateopt(myfun,lb,ub,options);
end

See Also
surrogateopt
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More About
• “Surrogate Optimization”
• “Surrogate Optimization Options” on page 17-50
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Mixed-Integer Surrogate Optimization
This example shows how to solve an optimization problem that involves integer variables. Beginning
in R2019b, surrogateopt accepts integer constraints. In this example, find the point x that
minimizes the multirosenbrock function over integer-valued arguments ranging from –3 to 6 in ten
dimensions. The multirosenbrock function is a poorly scaled function that is difficult to optimize.
Its minimum value is 0, which is attained at the point [1,1,...,1]. Code for the
multirosenbrock function appears at the end of this example on page 11-0 .

rng(1,'twister') % For reproducibility
nvar = 10; % Any even number
lb = -3*ones(1,nvar);
ub = 6*ones(1,nvar);
fun = @multirosenbrock;
intcon = 1:nvar; % All integer variables
[sol,fval] = surrogateopt(fun,lb,ub,intcon)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = 1×10

     1     1     1     1     1     1     1     1     1     1

fval = 0
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In this case, surrogateopt finds the solution.

Helper Function

This code creates the multirosenbrock helper function.

function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.
% Copyright 2014 by The MathWorks, Inc.
N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
    error('Input rows must have an even number of elements')
end
odds  = 1:2:N-1;
evens = 2:2:N;
F = zeros(size(x));
F(:,odds)  = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);
end

See Also
surrogateopt

More About
• “Surrogate Optimization”
• “Mixed Integer ga Optimization” on page 8-38
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Fix Variables in surrogateopt
This example shows how to fix the values of some control variables, by removing them from an
optimization. Although the easiest way to fix values is to set equal upper and lower bounds, some
solvers do not allow equal bounds. However, surrogateopt handles equal bounds well by internally
removing fixed variables from the problem before trying to optimize.

The multirosenbrock function accepts any even number of control variables. Its minimum value of
0 is attained at the point [1,1,...,1,1]. Set lower bounds of –1 and upper bounds of 5 for ten
variables, and then set the first six upper and lower bounds equal to 1. This setting removes six
variables from the problem, leaving a problem with four variables.

lb = -1*ones(1,10);
ub = 5*ones(1,10);
lb(1:6) = 1;
ub(1:6) = 1;

Solve the problem.

fun = @multirosenbrock;
rng default % For reproducibility
[x,fval,exitflag] = surrogateopt(fun,lb,ub)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

11 Surrogate Optimization

11-64



x = 1×10

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    0.5195    0.2679    1.5180    2.3061

fval = 0.4999

exitflag = 0

The solver returns a point close to the global minimum. Notice that the solver takes 500 function
evaluations, which is the default value for a problem with 10 variables. The solver does not change
this default value even when you fix some variables.

When you do not fix any variables, the solver does not reach a point near the global minimum.

lb = -1*ones(1,10);
ub = 5*ones(1,10);
rng default % For reproducibility
[x,fval,exitflag] = surrogateopt(fun,lb,ub)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×10

    1.4639    2.1451    1.3645    1.8633    1.4170    2.0147    1.4286    2.0438    1.4343    2.0578

fval = 0.9003
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exitflag = 0

See Also
surrogateopt

More About
• “Surrogate Optimization”
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Integer Optimization with Custom Output Function
This example shows how to choose the resistors and thermistors in a circuit to best match a specified
curve at one point in the circuit. You must choose all of the electronic components from a list of
available components, which means this is a discrete optimization problem. To help visualize the
progress of the optimization, the example includes a custom output function that displays the quality
of the intermediate solutions as the optimization progresses. Because this is an integer problem with
a nonlinear objective function, use the surrogateopt solver.

This example is adapted from Lyon [1].

Problem Description

The problem involves this circuit.

A voltage source holds point A at 1.1V. The problem is to select resistors and thermistors from a list of
standard components so that the voltage at point B matches the target curve as a function of
temperature.

Tdata = -40:5:85;
Vdata = 1.026E-1 + -1.125E-4 * Tdata + 1.125E-5 * Tdata.^2;
plot(Tdata,Vdata,'-*');
title('Target Curve','FontSize',12); 
xlabel('Temperature (^oC)'); ylabel('Voltage (V)')
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Load the standard components list.

load StandardComponentValues

The Res vector contains the standard resistor values. The ThBeta and ThVal vectors contain
standard parameters for the thermistors. Thermistor resistance as a function of temperature T is

RTh =
R25

exp β
T − T25
T ⋅ T25

.

• RTh is the thermistor resistance.
• R25 is the resistance at 25 degrees Celsius, parameter ThVal.
• T25 is the temperature 25 degrees Celsius.
• T is the current temperature.
• β is the thermistor parameter ThBeta.

Based on standard voltage calculations, the equivalent series values of the resistances of the R1− Th1
block is

R1
equivalent =

R1Th1
R1 + Th1

,

and the equivalent resistance of the R3− Th2 block is
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R3
equivalent =

R3Th2
R3 + Th2

.

Therefore, the voltage at point B is

V = 1 . 1
R3

equivalent + R4

R1
equivalent + R2 + R3

equivalent + R4
.

Convert Problem to Code

The problem is to choose resistors R1 through R4 and thermistors Th1 and Th2 so that the voltage V
best matches the target curve. Have the control variable x represent these values:

• x(i) = index of Ri, for i from 1 through 4
• x(5) = index of Th1

• x(6) = index of Th2

The tempCompCurve function calculates the resulting voltage in terms of x and the temperature
Tdata.

type tempCompCurve

function F = tempCompCurve(x,Tdata)
%% Calculate Temperature Curve given Resistor and Thermistor Values
% Copyright (c) 2012-2019, MathWorks, Inc.
%% Input voltage
Vin = 1.1;

%% Thermistor Calculations
% Values in x: R1 R2 R3 R4 RTH1(T_25degc) Beta1 RTH2(T_25degc) Beta2
% Thermistors are represented by:
%   Room temperature is 25degc: T_25
%   Standard value is at 25degc: RTHx_25
%   RTHx is the thermistor resistance at various temperatures
% RTH(T) = RTH(T_25degc) / exp (Beta * (T-T_25)/(T*T_25))
T_25 = 298.15;
T_off = 273.15;
Beta1 = x(6);
Beta2 = x(8);
RTH1 = x(5) ./ exp(Beta1 * ((Tdata+T_off)-T_25)./((Tdata+T_off)*T_25));
RTH2 = x(7) ./ exp(Beta2 * ((Tdata+T_off)-T_25)./((Tdata+T_off)*T_25));

%% Define equivalent circuits for parallel Rs and RTHs
R1_eq = x(1)*RTH1./(x(1)+RTH1);
R3_eq = x(3)*RTH2./(x(3)+RTH2);

%% Calculate voltages at Point B
F = Vin * (R3_eq + x(4))./(R1_eq + x(2) + R3_eq + x(4));

The objective function is the sum of squares of the differences between the target curve and the
resulting voltages for a set of resistors and thermistors, over the target range of temperatures.

type objectiveFunction

function G = objectiveFunction(x,StdRes, StdTherm_Val, StdTherm_Beta,Tdata,Vdata)
%% Objective function for the thermistor problem
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% Copyright (c) 2012-2019, MathWorks, Inc.

% % StdRes = vector of resistor values
% StdTherm_val = vector of nominal thermistor resistances
% StdTherm_Beta = vector of thermistor temperature coefficients

% Extract component values from tables using integers in x as indices
y = zeros(8,1);
x = round(x); % in case of noninteger components
y(1) = StdRes(x(1));
y(2) = StdRes(x(2));
y(3) = StdRes(x(3));
y(4) = StdRes(x(4));
y(5) = StdTherm_Val(x(5));
y(6) = StdTherm_Beta(x(5));
y(7) = StdTherm_Val(x(6));
y(8) = StdTherm_Beta(x(6));

% Calculate temperature curve for a particular set of components
F = tempCompCurve(y, Tdata);

% Compare simulated results to target curve
Residual = F(:) - Vdata(:);
Residual = Residual(1:2:26);
%%
G = Residual'*Residual; % sum of squares

Monitor Progress

To observe the progress of an optimization, call an output function that plots the best response of the
system found so far and the target curve. The SurrOptimPlot function plots these curves, and
updates the curves only when the current objective function value decreases. This custom output
function is lengthy, so it is not shown here. To see the content of this output function, enter type
SurrOptimPlot.

Optimize Problem

To optimize the objective function, use surrogateopt, which accepts integer variables. First, set all
variables to be integer.

intCon = 1:6;

Set the lower bounds on all variables to 1.

lb = ones(1,6);

The upper bounds for the resistors are all the same. Set the upper bounds to the number of entries in
the Res data.

ub = length(Res)*ones(1,6);

Set the upper bounds for the thermistors to the number of entries in the ThBeta data.

ub(5:6) = length(ThBeta)*[1,1];

Set options to use the SurrOptimPlot custom output function, and to use no plot function. Also, to
protect against possible interruptions of the optimization, specify a checkpoint file named
'checkfile.mat'.
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options = optimoptions('surrogateopt','CheckpointFile','C:\TEMP\checkfile.mat','PlotFcn',[],...
    'OutputFcn',@(a1,a2,a3)SurrOptimPlot(a1,a2,a3,Tdata,Vdata,Res,ThVal,ThBeta));

To give the algorithm a better initial set of points to search, specify a larger initial random sample
than the default.

options.MinSurrogatePoints = 50;

Run the optimization.

rng default % For reproducibility
objconstr = @(x)objectiveFunction(x,Res,ThVal,ThBeta,Tdata,Vdata);
[xOpt,Fval] = surrogateopt(objconstr,lb,ub,intCon,options);

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

Optimize with More Function Evaluations

To attempt to get a better fit, restart the optimization from the checkpoint file, and specify more
function evaluations. This time, use the surrogateoptplot plot function to monitor the
optimization process more closely.

clf % Clear previous figure
opts = optimoptions(options,'MaxFunctionEvaluations',600,'PlotFcn','surrogateoptplot');
[xOpt,Fval] = surrogateopt('C:\TEMP\checkfile.mat',opts);
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Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

Using more function evaluations improves the fit slightly.

References

[1] Lyon, Craig K. Genetic algorithm solves thermistor-network component values. EDN Network,
March 19, 2008. Available at https://www.edn.com/design/analog/4326942/Genetic-
algorithm-solves-thermistor-network-component-values.
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Convert Nonlinear Constraints Between surrogateopt Form and
Other Solver Forms

Why Convert Constraint Forms?
To try various solvers including surrogateopt on a problem that has nonlinear inequality
constraints, you must convert between the form required by surrogateopt and the form required
by other solvers.

Convert from surrogateopt Structure Form to Other Solvers
The objective function objconstr(x) for surrogateopt returns a structure. The Fval field
contains the objective function value, a scalar. The Ineq field contains a vector of constraint function
values. The solver attempts to make all values in the Ineq field be less than or equal to zero. Positive
values indicate a constraint violation.

Other solvers expect the objective function to return a scalar value, not a structure. Other solvers
also expect the nonlinear constraint function to return two outputs, c(x) and ceq(x), not a
structure containing c(x).

To convert the surrogateopt function objconstr(x) for use in other solvers:

• Set the objective function to @(x)objconstr(x).Fval.
• Set the nonlinear constraint function to @(x)deal(objconstr(x).Ineq,[]).

For example,

function ff = objconstr(x)
ff.Fval = norm(x)^2;
ff.Ineq = norm(x - [5,8])^2 - 25;
end

To solve a constrained minimization problem using objconstr, call surrogateopt.

lb = [-10,-20];
ub = [20,10];
sol = surrogateopt(@objconstr,lb,ub)

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol =

    2.3325    3.7711
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To solve the same problem using fmincon, split the objective and constraint into separate functions.
Include the nonlinear equality constraint as [] by using the deal function.

objfcn = @(x)objconstr(x).Fval;
nlcon = @(x)deal(objconstr(x).Ineq,[]);

Call fmincon with the objective function objfcn and nonlinear constraint function nlcon.

[solf,fvalf,eflag,output] = ...
    fmincon(objfcn,[0,0],[],[],[],[],lb,ub,nlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

solf =

    2.3500    3.7600

fvalf =

   19.6602

eflag =
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     1

output = 

  struct with fields:

         iterations: 7
          funcCount: 24
    constrviolation: 0
           stepsize: 2.0395e-05
          algorithm: 'interior-point'
      firstorderopt: 4.9651e-06
       cgiterations: 0
            message: '↵Local minimum found that satisfies the constraints.↵↵Optimization completed because the objective function is non-decreasing in ↵feasible directions, to within the value of the optimality tolerance,↵and constraints are satisfied to within the value of the constraint tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The relative first-order optimality measure, 6.602486e-07,↵is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint↵violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.↵↵'

You can also use patternsearch or ga to solve the problem using the same conversion.

Convert from Other Solvers to surrogateopt Structure Form
If you have a problem written in the form for other solvers, use the packfcn function to convert the
objective and nonlinear constraints to the structure form for surrogateopt. If the objective function
is a function handle @obj and the nonlinear constraint function is @nlconst, then use the objective
function objconstr for surrogateopt.

objconstr = packfcn(@obj,@nlconst);

In this example, the objective function is Rosenbrock's function.

ros = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

Specify the constraint function to restrict the solution to lie inside a disk of radius 1/3 centered at the
point [1/3,1/3].

function [c,ceq] = circlecon(x)
c = (x(1)-1/3)^2 + (x(2)-1/3)^2 - (1/3)^2;
ceq = [];

Set bounds of –2 and 2 on each component.

lb = [-2,-2];
ub = [2,2];

Solve the problem using patternsearch starting from [0,0].

x0 = [0,0];
x = patternsearch(ros,x0,[],[],[],[],lb,ub,@circlecon)

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

x =

    0.6523    0.4258

Convert the problem for solution by surrogateopt.
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objconstr = packfcn(ros,@circlecon);
xs = surrogateopt(objconstr,lb,ub)

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

xs =

    0.6543    0.4284

See Also
surrogateopt | packfcn

More About
• “Surrogate Optimization”
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Solve Feasibility Problem
Some problems require you to find a point that satisfies all constraints, with no objective function to
minimize. For example, suppose that you have the following constraints:

(y + x2)2 + 0 . 1y2 ≤ 1
y ≤ exp(− x)− 3
y ≤ x− 4 .

Do any points (x, y) satisfy the constraints? To find out, write a function that returns the constraints in
a structure field Ineq. Write the constraints in terms of a two-element vector x = (x1, x2) instead of
(x, y). Write each inequality as a function c(x), meaning the inequalities c(x) ≤ 0, by subtracting the
right side of each inequality from both sides. To enable plotting, write the function in a vectorized
manner, where each row represents one point. The code for this helper function, named objconstr,
appears at the end of this example on page 11-0 .

Plot the points where the three functions satisfy equalities for −2 ≤ x ≤ 2 and −4 ≤ y ≤ 2, and
indicate the inequalities by plotting level lines for function values equal to –1/2.

[XX,YY] = meshgrid(-2:0.1:2,-4:0.1:2);
ZZ = objconstr([XX(:),YY(:)]).Ineq;
ZZ = reshape(ZZ,[size(XX),3]);
h = figure;
ax = gca;
contour(ax,XX,YY,ZZ(:,:,1),[-1/2 0],'r','ShowText','on');
hold on
contour(ax,XX,YY,ZZ(:,:,2),[-1/2 0],'k','ShowText','on');
contour(ax,XX,YY,ZZ(:,:,3),[-1/2 0],'b','ShowText','on');
hold off
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The plot shows that feasible points exist near [1.75,–3].

Set lower bounds of –5 and upper bounds of 3, and solve the problem using surrogateopt.

rng(1) % For reproducibility
lb = [-5,-5];
ub = [3,3];
[x,fval,exitflag,output,trials] = surrogateopt(@objconstr,lb,ub)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    1.7964   -3.1296

fval =

  1x0 empty double row vector

exitflag = 0

output = struct with fields:
        elapsedtime: 24.1141
          funccount: 200
    constrviolation: -0.0110
               ineq: [-0.0110 -0.2955 -0.9261]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'

trials = struct with fields:
       X: [200x2 double]
    Ineq: [200x3 double]

Check the feasibility at the returned solution x.
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disp(output.ineq)

   -0.0110   -0.2955   -0.9261

Equivalently, evaluate the function objconstr at the returned solution x.

disp(objconstr(x).Ineq)

   -0.0110   -0.2955   -0.9261

Equivalently, examine the Ineq field in the trials structure for the solution x. First, find the index
of x in the trials.X field.

indx = ismember(trials.X,x,'rows');
disp(trials.Ineq(indx,:))

   -0.0110   -0.2955   -0.9261

All constraint function values are negative, indicating that the point x is feasible.

View the feasible points evaluated by surrogateopt.

opts = optimoptions("surrogateopt");
indx = max(trials.Ineq,[],2) <= opts.ConstraintTolerance; % Indices of feasible points
figure(h);
hold on
plot(trials.X(indx,1),trials.X(indx,2),'*')
xlim([1 2])
ylim([-3.5 -2.5])
hold off
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This code creates the objconstr helper function.

function f = objconstr(x)
c(:,1) = (x(:,2) + x(:,1).^2).^2 + 0.1*x(:,2).^2 - 1;
c(:,2) = x(:,2) - exp(-x(:,1)) + 3;
c(:,3) = x(:,2) - x(:,1) + 4;
f.Ineq = c;
end

See Also
surrogateopt

More About
• “Solve Nonlinear Feasibility Problem, Problem-Based”
• “Investigate Linear Infeasibilities”
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Solve Nonlinear Problem with Integer and Nonlinear
Constraints

The surrogateopt solver accepts both integer constraints and nonlinear constraints. Compare the
solution of a nonlinear problem both with and without integer constraints. The integer constraints
cause the solution to lie on a reasonably fine grid.

Objective and Constraint Functions

The objective function is

f (x) = log(1 + 3 x2− x1
3− x1

2 + (x1− 4/3)2) .

This objective function is nonnegative, and takes its minimum value of 0 at the point
x = [4/3, (4/3)3− 4/3] = [1.3333, 1.0370].

The problem has two nonlinear constraint functions.

x1
4 ≤ 5sinh(x2/5),

x2
2 ≤ 5tanh(x1/5) + 1 .

Plot the feasible region for the nonlinear constraints.

[X,Y] = meshgrid(-2:.01:3);
Z = (5*sinh(Y./5) >= X.^4); 
% Z=1 where the first constraint is satisfied, Z=0 otherwise
Z = Z+ 2*(5*tanh(X./5) >= Y.^2 - 1); 
% Z=2 where the second constraint is satisfied
% Z=3 where both constraints are satisfied
surf(X,Y,Z,'LineStyle','none');
fig = gcf;
fig.Color = 'w'; % white background
view(0,90)
xlabel('x_1')
ylabel('x_2')
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The yellow region shows where both constraints are satisfied.

surrogateopt requires that the objective and constraint functions are part of the same function,
one that returns a structure. The objective function is in the Fval field of the structure, and the
constraints are in the Ineq field. These fields are the output of the objconstr function at the end of
this example on page 11-0 .

Scale Integer Constraints to Lie on Fine Grid

Set the problem to have integer constraints in both variables, x(1) and x(2).

intcon = [1 2];

Scale the problem so that the variables are scaled by s = 1/10, where s multiplies the variables.

s = 0.1;
f = @(x)objconstr(x,s);

For this scaling to be effective, you need to scale the bounds by 1/s. Set the unscaled bounds to
−2 ≤ xi ≤ 3 and scale each by 1/s.

lb = [-2,-2]/s;
ub = [3,3]/s;

By using the scaling s, the problem effectively has spacing of s in each component x(1) and x(2).
Plot the integer points as a grid with spacing s.
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hold on
grid on
ax = gca;
sp = -2:s:3;
ax.XTick = sp;
ax.YTick = sp;
ax.Layer = 'top';
ax.GridAlpha = 1/2;
ax.XTickLabel = '';
ax.YTickLabel = '';
xlabel('x_1')
ylabel('x_2')
hold off

Solve Scaled Problem

Set options to use tighter constraints than the default, and to use the surrogateoptplot plot
function.

opts = optimoptions('surrogateopt','PlotFcn',"surrogateoptplot","ConstraintTolerance",1e-6);

Call surrogateopt to solve the problem.

rng default % For reproducibility
[sol,fval,eflag,outpt] = surrogateopt(f,lb,ub,intcon,opts)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = 1×2

     5     1

fval = 0.8634

eflag = 0

outpt = struct with fields:
        elapsedtime: 60.4297
          funccount: 200
    constrviolation: -0.0375
               ineq: [-0.0375 -1.4883]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'

Plot the solution as a red circle on the figure. Notice that the objective function value is
approximately 0.86.

figure(fig);
hold on
plot3(sol(1)*s,sol(2)*s,5,'ro')
hold off
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Compare to Solution Without Integer Constraints

Compare the solution with integer constraints to the solution without integer constraints.

[sol2,fval2,eflag2,outpt2] = surrogateopt(f,lb,ub,[],opts)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol2 = 1×2

    4.3631    0.3626

fval2 = 0.8153

eflag2 = 0

outpt2 = struct with fields:
        elapsedtime: 30.6097
          funccount: 200
    constrviolation: -1.7294e-05
               ineq: [-1.7294e-05 -1.4339]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'

Here, the objective function value is approximately 0.815. The integer constraints increase the
objective function value by less than 10%. Plot the new solution along with the previous integer
solution. Zoom in to see the solution points more clearly.

figure(fig)
hold on
plot3(sol2(1)*s,sol2(2)*s,5,'k*','MarkerSize',12)
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xlim([0 1])
ylim([-1/2 1/2])
hold off

Helper Function

This code creates the objconstr helper function. This function scales the variable x by the factor s,
returns the objective function value in the Fval field of the F structure, and returns the nonlinear
constraints in the Ineq field of the F structure.

function F = objconstr(x,s)
x = x*s;
fun = log(1 + 3*(x(2) - (x(1)^3 - x(1)))^2 + (x(1) - 4/3)^2);
c1 = x(1)^4 - 5*sinh(x(2)/5);
c2 = x(2)^2 - 5*tanh(x(1)/5) - 1;
c = [c1 c2];
F.Fval = fun;
F.Ineq = c;
end

See Also
surrogateopt

More About
• “Mixed Integer ga Optimization” on page 8-38
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Improve surrogateopt Solution or Process

surrogateopt Stalls
When you have both linear constraints and integer constraints, surrogateopt can fail to find any
feasible points or enough distinct feasible points to create a surrogate. In these cases, the solver exits
with exit flag –2 (no feasible point found) or 3 (too few feasible points). For details on exit flag –2, see
“No Feasible Point Found” on page 11-90.

Exit flag 3 can occur in two different ways:

• There were too few feasible points to construct an initial surrogate.
• There were too few feasible points to construct a surrogate after a surrogate reset.

You can see which case applies by using the surrogateoptplot plot function.

options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
[sol,fval,exitflag] = surrogateopt(arguments,options);

After each surrogate reset, surrogateopt requires more feasible points to construct the next
surrogate. When there are integer constraints, surrogateopt can exhaust the set of feasible points,
or can fail to find new feasible points even when some remain

If surrogateopt has performed at least one reset, then it has successfully searched for a solution.
In this case, you might have the solution to the problem.

If surrogateopt was unable to create an initial surrogate, or if surrogateopt reset and you want
to try to find another solution, perform the following steps.

1 Relax some constraints.

• Change some linear constraints to nonlinear, which causes the solver to not insist on strict
feasibility. This can give surrogateopt more feasible points to use in constructing
surrogates.

• Relax some linear inequality constraints by choosing larger values for the b vector. You can
relax all b values at once by adding a scalar:

b = b + 5;
2 Similarly, if your bound constraints are causing the problem to have too few feasible points, and

if it makes sense for your problem, relax the bounds. Take larger upper bounds or smaller lower
bounds or both. You can relax all bounds at once by adding or subtracting a scalar.

ub = ub + 3;
lb = lb - 1;

No Feasible Point Found
When surrogateopt cannot find a point that is feasible with respect to bounds, integer constraints,
and linear constraints, it returns exit flag –2. In this case, the problem is truly infeasible.

However, the solver can also return exit flag –2 when it cannot locate a point that is feasible with
respect to nonlinear inequality constraints. This can sometimes occur even when feasible points exist.
To proceed, follow the steps in “Converged to an Infeasible Point”.
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Solution Might Not Be Optimal
Usually, surrogateopt stops when it runs out of function evaluations. This means that
surrogateopt does not stop because it reaches an optimal solution. However, when a surrogate
reset occurs, the current solution is usually near a local optimum.

How can you evaluate the quality of a solution? Generally, this is difficult to do. Here are some steps
for investigating a solution to help determine its local quality. However, there is no procedure that
guarantees that a point is a global solution. See “Can You Certify That a Solution Is Global?” on page
4-41.

• If the problem has no integer constraints, look at nearby points. To do so, call patternsearch on
the returned solution. Set the InitialMeshSize option to the size of the search step you want to
use. To keep patternsearch from taking too much time, set the MaxIterations option to 1 and
the UseCompletePoll option to true:

options = optimoptions('patternsearch',...
    'InitialMeshSize',1e-3,...
    'MaxIterations',1,'UseCompletePoll',true);

If your problem has nonlinear constraints, first convert the constraints to the form that
patternsearch accepts using “Convert Nonlinear Constraints Between surrogateopt Form and
Other Solver Forms” on page 11-74.

• If the problem has no integer constraints, try running fmincon starting from the solution. Again,
if your problem has nonlinear constraints, first convert the constraints to the form that fmincon
accepts using “Convert Nonlinear Constraints Between surrogateopt Form and Other Solver
Forms” on page 11-74. If the problem uses a simulation or ODE solver, you might need to set
larger finite difference options for fmincon. See “Optimizing a Simulation or Ordinary Differential
Equation”.

• If the problem has integer constraints, then there is little to do except to try to run
surrogateopt for more function evaluations. Do so most efficiently by using a checkpoint file.
See “Work with Checkpoint Files” on page 11-56. If you did not use a checkpoint file, you can also
give a set of initial points using the InitialPoints option.

See Also
surrogateopt

More About
• “Surrogate Optimization”
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Vectorized Surrogate Optimization for Custom Parallel
Simulation

This example shows how to use the surrogateopt UseVectorized option to perform custom
parallel optimization. You can use this technique when you cannot use the UseParallel option
successfully. For example, the UseParallel option might not apply to a Simulink® simulation that
requires parsim for parallel evaluation. Optimizing a vectorized parallel simulation involves
considerable overhead, so this technique is most useful for time-consuming simulations.

The parallel strategy in this example is to break up the optimization into chunks of size N, where N is
the number of parallel workers. The example prepares N sets of parameters in a
Simulink.SimulationInput vector, and then calls parsim on the vector. When all N simulations
are complete, surrogateopt updates the surrogate and evaluates another N sets of parameters.

Model System

This example attempts to fit the Lorenz dynamical system to uniform circular motion over a short
time interval. The Lorenz system and its uniform circular approximation are described in the example
“Fit an Ordinary Differential Equation (ODE)”.

The Lorenz_system.slx Simulink model implements the Lorenz ODE system. This model is
included when you run this example using the live script.

The fitlorenzfn helper function at the end of this example on page 11-0  calculates points from
uniform circular motion. Set circular motion parameters from the example “Fit an Ordinary
Differential Equation (ODE)” that match the Lorenz dynamics reasonably well.

x = zeros(8,1);
x(1) = 1.2814;
x(2) = -1.4930;
x(3) = 24.9763;
x(4) = 14.1870;
x(5) = 0.0545;
x(6:8) = [13.8061;1.5475;25.3616];

This system does not take much time to simulate, so the parallel time for the optimization is not less
than the time to optimize serially. The purpose of this example is to show how to create a vectorized
parallel simulation, not to provide a specific example that runs better in parallel.

Objective Function

The objective function is to minimize the sum of squares of the difference between the Lorenz system
and the uniform circular motion over a set of times from 0 through 1/10. For times xdata, the
objective function is

objective = sum((fitlorenzfn(x,xdata) - lorenz(xdata)).^2) - (F(1) + F(end))/2

Here, lorenz(xdata) represents the 3-D evolution of the Lorenz system at times xdata, and F
represents the vector of squared distances between corresponding points in the circular and Lorenz
systems. The objective subtracts half of the values at the endpoints to best approximate an integral.

Consider the uniform circular motion as the curve to match, and modify the Lorenz parameters in the
simulation to minimize the objective function.
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Calculate Lorenz System for Specific Parameters

Calculate and plot the Lorenz system for Lorenz's original parameters.

model = 'Lorenz_system';
open_system(model);
in = Simulink.SimulationInput(model);
% params [X0,Y0,Z0,Sigma,Beta,Rho]
params = [10,20,10,10,   8/3, 28]; % The original parameters Sigma, Beta, Rho
in = setparams(in,model,params);
out = sim(in);

yout = out.yout;
h = figure;
plot3(yout{1}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Data,'bx');
view([-30 -70])

Calculate Uniform Circular Motion

Calculate the uniform circular motion for the x parameters given previously over the time interval in
the Lorenz calculation, and plot the result along with the Lorenz plot.

tlist = yout{1}.Values.Time;
M = fitlorenzfn(x,tlist);
hold on
plot3(M(:,1),M(:,2),M(:,3),'kx')
hold off

 Vectorized Surrogate Optimization for Custom Parallel Simulation

11-93



The objfun helper function at the end of this example on page 11-0  calculates the sum of squares
difference between the Lorenz system and the uniform circular motion. The objective is to minimize
this sum of squares.

ssq = objfun(in,params,M,model)

ssq = 26.9975

Fit Lorenz System in Parallel

To optimize the fit, use surrogateopt to modify the parameters of the Simulink model. The
parobjfun helper function at the end of this example on page 11-0  accepts a matrix of
parameters, where each row of the matrix represents one set of parameters. The function calls the
setparams helper function at the end of this example on page 11-0  to set parameters for a
Simulink.SimulationInput vector. The parobjfun function then calls parsim to evaluate the
model on the parameters in parallel.

Open a parallel pool and specify N as the number of workers in the pool.

pool = gcp('nocreate'); % Check whether a parallel pool exists
if isempty(pool) % If not, create one
    pool = parpool;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

N = pool.NumWorkers
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N = 6

Set the BatchUpdateInterval option to N and set the UseVectorized option to true. These
settings cause surrogateopt to pass N points at a time to the objective function. Set the initial point
to the parameters used earlier, because they give a reasonably good fit to the uniform circular
motion. Set the MaxFunctionEvaluations option to 600, which is an integer multiple of the 6
workers on the computer used for this example.

options = optimoptions('surrogateopt','BatchUpdateInterval',N,...
    'UseVectorized',true,'MaxFunctionEvaluations',600,...
    'InitialPoints',params);

Set bounds of 20% above and below the current parameters.

lb = 0.8*params;
ub = 1.2*params;

For added speed, set the simulation to use fast restart.

set_param(model,'FastRestart','on');

Create a vector of N simulation inputs for the objective function.

simIn(1:N) = Simulink.SimulationInput(model);

For reproducibility, set the random stream.

rng(100)

Optimize the objective in a vectorized parallel manner by calling parobjfun.

tic
[fittedparams,fval] = surrogateopt(@(params)parobjfun(simIn,params,M,model),lb,ub,options)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

fittedparams = 1×6

   10.5627   19.8962    9.8420    8.9616    2.5723   27.9687

fval = 23.6361

paralleltime = toc

paralleltime = 457.9271

The objective function value improves (decreases). Display the original and improved values.

disp([ssq,fval])

   26.9975   23.6361

Plot the fitted points.

figure(h)
hold on
in = setparams(in,model,fittedparams);
out = sim(in);
yout = out.yout;
plot3(yout{1}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Data,'rx');
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legend('Unfitted Lorenz','Uniform Motion','Fitted Lorenz')
hold off

To close the model, you must first disable fast restart.

set_param(model,'FastRestart','off');
close_system(model)

Conclusion

When you cannot use the UseParallel option successfully, you can optimize a simulation in parallel
by setting the surrogateopt UseVectorized option to true and the BatchUpdateInterval
option to a multiple of the number of parallel workers. This process speeds up the parallel
optimization, but involves overhead, so is best suited for time-consuming simulations.

Helper Functions

The following code creates the fitlorenzfn helper function.

function f = fitlorenzfn(x,xdata)
theta = x(1:2);
R = x(3);
V = x(4);
t0 = x(5);
delta = x(6:8);
f = zeros(length(xdata),3);
f(:,3) = R*sin(theta(1))*sin(V*(xdata - t0)) + delta(3);
f(:,1) = R*cos(V*(xdata - t0))*cos(theta(2)) ...
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    - R*sin(V*(xdata - t0))*cos(theta(1))*sin(theta(2)) + delta(1);
f(:,2) = R*sin(V*(xdata - t0))*cos(theta(1))*cos(theta(2)) ...
    - R*cos(V*(xdata - t0))*sin(theta(2)) + delta(2);
end

The following code creates the objfun helper function.

function f = objfun(in,params,M,model)
in = setparams(in,model,params);
out = sim(in);
yout = out.yout;
vals = [yout{1}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Data];
f = sum((M - vals).^2,2);
f = sum(f) - (f(1) + f(end))/2;
end

The following code creates the parobjfun helper function.

function f = parobjfun(simIn,params,M,model)
N = size(params,1);
f = zeros(N,1);
for i = 1:N
    simIn(i) = setparams(simIn(i),model,params(i,:));
end
simOut = parsim(simIn,'ShowProgress','off'); % Suppress output
for i = 1:N
    yout = simOut(i).yout;
    vals = [yout{1}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Data];
    g = sum((M - vals).^2,2);
    f(i) = sum(g) - (g(1) + g(end))/2;
end
end

The following code creates the setparams helper function.

function pp = setparams(in,model,params)
% parameters [X0,Y0,Z0,Sigma,Beta,Rho]
pp = in.setVariable('X0',params(1),'Workspace',model);
pp = pp.setVariable('Y0',params(2),'Workspace',model);
pp = pp.setVariable('Z0',params(3),'Workspace',model);
pp = pp.setVariable('Sigma',params(4),'Workspace',model);
pp = pp.setVariable('Beta',params(5),'Workspace',model);
pp = pp.setVariable('Rho',params(6),'Workspace',model);
end

See Also
surrogateopt | parsim

Related Examples
• “Surrogate Optimization”
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Problem-Based Surrogate Optimization

• “Optimize Multidimensional Function Using surrogateopt, Problem-Based” on page 12-2
• “Solve Feasibility Problem Using surrogateopt, Problem-Based” on page 12-6
• “Feasibility Using Problem-Based Optimize Live Editor Task” on page 12-11
• “Mixed-Integer Surrogate Optimization, Problem-Based” on page 12-20
• “Specify Starting Points and Values for surrogateopt, Problem-Based” on page 12-24
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Optimize Multidimensional Function Using surrogateopt,
Problem-Based

This example shows how to minimize a multidimensional function using surrogate optimization in the
problem-based approach. The function to minimize, multirosenbrock(x), appears at the end of
this example on page 12-0 . The multirosenbrock function has a single local minimum of 0 at the
point [1,1,...,1]. The function is designed to be challenging for solvers to minimize.

Note: The code for the multirosenbrock helper function is provided at the end of this example on
page 12-0 . Make sure the code is included at the end of your script or in a file on the path.

Create a 4-D optimization variable x. The multirosenbrock function expects the variable to be a
row vector, so specify x as a 4-element row vector.

x = optimvar("x",1,4);

The surrogateopt solver requires finite bounds on all problem variables. Specify lower bounds of –3
and upper bounds of 3. When you specify scalar bounds, they apply to all problem variables.

x.LowerBound = -3;
x.UpperBound = 3;

To use multirosenbrock as the objective function, convert the function to an optimization
expression using fcn2optimexpr.

fun = fcn2optimexpr(@multirosenbrock,x);

Create an optimization problem with the objective function multirosenbrock.

prob = optimproblem("Objective",fun);

Solve the problem, specifying the surrogateopt solver.

rng default % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt")

Solving problem using surrogateopt.
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = struct with fields:
    x: [0.1017 0.0169 0.3921 0.1585]

fval = 1.1830

Attempt to Improve Solution

The returned solution is not good, because the objective function value is not very close to 0. Try to
improve the solution by running surrogateopt for more evaluations. Use the previous solution as a
start point.

options = optimoptions("surrogateopt","MaxFunctionEvaluations",1000);
[sol2,fval2] = solve(prob,sol,"Solver","surrogateopt","Options",options)

Solving problem using surrogateopt.
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol2 = struct with fields:
    x: [0.9212 0.8487 0.8199 0.6725]

fval2 = 0.0387

This time, the solver reaches a good solution.

Helper Function

This code creates the multirosenbrock helper function.

function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.

% Copyright 2014 by The MathWorks, Inc.

N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
    error('Input rows must have an even number of elements')
end

odds  = 1:2:N-1;
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evens = 2:2:N;
F = zeros(size(x));
F(:,odds)  = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);
end

See Also
surrogateopt | fcn2optimexpr | solve

Related Examples
• “Surrogate Optimization”
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Solve Feasibility Problem Using surrogateopt, Problem-Based
Some problems require you to find a point that satisfies all constraints, with no objective function to
minimize. For example, suppose that you have the following constraints:

(y + x2)2 + 0 . 1y2 ≤ 1
y ≤ exp(− x)− 3
y ≤ x− 4 .

Do any points (x, y) satisfy the constraints? To answer this question, you need to evaluate the
expressions at a variety of points. The surrogateopt solver does not require you to provide initial
points, and it searches a wide set of points. So, surrogateopt works well for feasibility problems.

To visualize the constraints, see Visualize Constraints on page 12-0 . For a solver-based approach to
this problem, see “Solve Feasibility Problem” on page 11-78.

Note: This example uses two helper functions, outfun and evaluateExpr. The code for each
function is provided at the end of this example on page 12-0 . Make sure the code for each function
is included at the end of your script or in a file on the path.

Set Up Feasibility Problem

For the problem-based approach, create optimization variables x and y, and create expressions for
the listed constraints. To use the surrogateopt solver, you must set finite bounds for all variables.
Set lower bounds of –10 and upper bounds of 10.

x = optimvar("x","LowerBound",-10,"UpperBound",10);
y = optimvar("y","LowerBound",-10,"UpperBound",10);
cons1 = (y + x^2)^2 + 0.1*y^2 <= 1;
cons2 = y <= exp(-x) - 3;
cons3 = y <= x - 4;

Create an optimization problem and include the constraints in the problem.

prob = optimproblem("Constraints",[cons1 cons2 cons3]);

The problem has no objective function. Internally, the solver sets the objective function value to 0 for
every point.

Solve Problem

Solve the problem using surrogateopt.

rng(1) % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt")

Solving problem using surrogateopt.
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = struct with fields:
    x: 1.7087
    y: -2.8453

fval = 0

The first several evaluated points are infeasible, as indicated by the color red in the plot. After about
90 evaluations, the solver finds a feasible point, plotted in blue.

Check the feasibility at the returned solution.

infeasibility(cons1,sol)

ans = 0

infeasibility(cons2,sol)

ans = 0

infeasibility(cons3,sol)

ans = 0

All infeasibilities are zero, indicating that the point sol is feasible.
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Stop Solver at First Feasible Point

To reach a solution faster, create an output function (see “Output Function” on page 17-52) that
stops the solver whenever it reaches a feasible point. The outfun helper function at the end of this
example on page 12-0  stops the solver when it reaches a point with no constraint violation.

Solve the problem using the outfun output function.

opts = optimoptions("surrogateopt","OutputFcn",@outfun);
rng(1) % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt","Options",opts)

Solving problem using surrogateopt.

Optimization stopped by a plot function or output function.

sol = struct with fields:
    x: 1.7087
    y: -2.8453

fval = 0

This time, the solver stops earlier than before.

Visualize Constraints

To visualize the constraints, plot the points where each constraint function is zero by using
fimplicit. The fimplicit function passes numeric values to its functions, whereas the evaluate
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function requires a structure. To tie these functions together, use the evaluateExpr helper function,
which appears at the end of this example on page 12-0 . This function simply puts passed values
into a structure with the appropriate names.

Avoid a warning that occurs because the evaluateExpr function does not work on vectorized inputs.

s = warning('off','MATLAB:fplot:NotVectorized');
figure
cc1 = (y + x^2)^2 + 0.1*y^2 - 1;
fimplicit(@(a,b)evaluateExpr(cc1,a,b),[-2 2 -4 2],'r')
hold on
cc2 = y - exp(-x) + 3;
fimplicit(@(a,b)evaluateExpr(cc2,a,b),[-2 2 -4 2],'k')
cc3 = y - x + 4;
fimplicit(@(x,y)evaluateExpr(cc3,x,y),[-2 2 -4 2],'b')
hold off

warning(s);

The feasible region is inside the red outline and below the black and blue lines. The feasible region is
at the lower right of the red outline.

Helper Functions

This code creates the outfun helper function.

function stop = outfun(~,optimValues,state)
stop = false;
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switch state
    case 'iter'
        if optimValues.currentConstrviolation <= 0
            stop = true;
        end
end
end

This code creates the evaluateExpr helper function.

function p = evaluateExpr(expr,x,y)
pt.x = x;
pt.y = y;
p = evaluate(expr,pt);
end

See Also
solve | infeasibility | surrogateopt

Related Examples
• “Feasibility Using Problem-Based Optimize Live Editor Task” on page 12-11
• “Solve Feasibility Problem” on page 11-78
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Feasibility Using Problem-Based Optimize Live Editor Task
Problem Description

This example shows how to find a feasible point using the Optimize Live Editor task using a variety
of solvers. The problem is to find a point [x, y] satisfying these constraints:

(y + x2)2 + 0 . 1y2 ≤ 1

y ≤ exp(− x)− 3

y ≤ x− 4.

Graph the curves where the constraint functions are equal to zero. To see which part of the region is
feasible (negative constraint function value), plot the curves where the constraint functions equal –
1/2. Use the plotobjconstr function appearing at the end of this script on page 12-0 .

plotobjconstr

There appears to be a small feasible region near x = 1 . 75, y = − 3. Notice that there is no point
where all constraint values are below –1/2, so the feasible set is small.

Use Problem-Based Optimize Live Editor Task

To find a feasible point, launch the Optimize Live Editor task from a Live Script by choosing Task >
Optimize on the Code tab or Insert tab. Choose the problem-based task.
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Set the problem variable x to have lower bound –5 and upper bound 5. Set the problem variable y to
have lower bound –10 and upper bound 10. Set the initial point for x to 2 and for y to –2.

Set the Goal to Feasibilty.

Create inequalities represending the three constraints. Your task should match this picture.

Switch the task mode to Solve problem. The task chooses the fmincon solver, and reaches the
following solution.
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Effect of Initial Point

Starting from a different initial point can cause fmincon to fail to find a solution. Set the initial point
for x to –2.

This time fmincon fails to find a feasible solution.

Try Different Solver

To attempt to find a solution, try a different solver. Set the solver to ga. To do so, specify the solver in
the Specify problem-dependent solver options expander. And to monitor the solver progress, set
the plot function to Max constraint violation.
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ga finds a feasible point to within the constraint tolerance.
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ga finds a different solution than fmincon. The solution is slightly infeasible. To get a solution with
lower infeasibility, you can set the constraint tolerance option to a lower value than the default.
Alternatively, try a different solver.

Try surrogateopt

Try using the surrogateopt solver. Set the plot function as Max constraint violation; this setting
does not carry forward automatically from the ga solution.
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surrogateopt reaches a feasible solution, but does not stop when it first reaches a solution.
Instead, surrogateopt continues to iterate until it reaches its function evaluation limit. To stop the
iterations earlier, specify an output function that halts the solver as soon as the maximum constraint
violation reaches 1e-6 or less. Doing so causes the solver to stop much earlier. Use the surrout
helper function, which appears at the end of this script on page 12-0 . To specify this function,
create a function handle to the function.

outfun = @surrout;
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Specify this function handle in the Specify problem-dependent solver options > Options >
Diagnostics > Output function drop-down menu.
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This time the solver stops after about 30 function evaluations instead of 200. The solution is slightly
different than the previous one, but both are feasible solutions.

Conclusions

The problem-based Optimize Live Editor task helps you try using different solvers on a problem,
even solvers that have different syntaxes such as fmincon and surrogateopt. The task also helps
you set plot functions, and set other options.

The task appears here in its final state. Feel free to experiment using different solvers and options.

Helper Functions

This code creates the plotobjconstr helper function.

function plotobjconstr
[XX,YY] = meshgrid(-2:0.1:2,-4:0.1:2);
ZZ = objconstr([XX(:),YY(:)]).Ineq;
ZZ = reshape(ZZ,[size(XX),3]);
h = figure;
ax = gca;
contour(ax,XX,YY,ZZ(:,:,1),[-1/2 0],'r','ShowText','on');
hold on
contour(ax,XX,YY,ZZ(:,:,2),[-1/2 0],'k','ShowText','on');
contour(ax,XX,YY,ZZ(:,:,3),[-1/2 0],'b','ShowText','on');
hold off
end

This code creates the objconstr helper function.

function f = objconstr(x)
c(:,1) = (x(:,2) + x(:,1).^2).^2 + 0.1*x(:,2).^2 - 1;
c(:,2) = x(:,2) - exp(-x(:,1)) + 3;
c(:,3) = x(:,2) - x(:,1) + 4;
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f.Ineq = c;
end

This code creates the surrout helper function

function stop = surrout(~,optimValues,~)
stop = false;
if optimValues.constrviolation <= 1e-6 % Tolerance for constraint
    stop = true;
end
end

See Also
Optimize | fmincon | ga | surrogateopt

Related Examples
• “Solve Feasibility Problem Using surrogateopt, Problem-Based” on page 12-6
• “Investigate Linear Infeasibilities”
• “Problem-Based Optimization Workflow”
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Mixed-Integer Surrogate Optimization, Problem-Based
This example shows how to solve an optimization problem that involves integer variables. In this
example, find the point x that minimizes the multirosenbrock function over integer-valued
arguments ranging from –3 to 6 in 10 dimensions. The multirosenbrock function is a poorly scaled
function that is difficult to optimize. Its minimum value is 0, which is attained at the point
[1,1,...,1]. The code for the multirosenbrock function appears at the end of this example on
page 12-0 .

Create a 10-D row vector variable x of type integer with bounds –3 to 6. When you specify scalar
bounds, the bounds apply to all variable components.

x = optimvar("x",1,10,"LowerBound",-3,"UpperBound",6,"Type","integer");

To use multirosenbrock as the objective function, convert the function to an optimization
expression using fcn2optimexpr.

fun = fcn2optimexpr(@multirosenbrock,x);

Create an optimization problem with the objective function multirosenbrock.

prob = optimproblem("Objective",fun);

Set the maximum number of function evaluations to 200.

opts = optimoptions("surrogateopt","MaxFunctionEvaluations",200);

Solve the problem.

rng(1,'twister') % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt","Options",opts)

Solving problem using surrogateopt.
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = struct with fields:
    x: [1 1 1 1 1 1 1 1 1 1]

fval = 0

In this case, surrogateopt reaches the correct solution.

Mixed-Integer Problem

Suppose that only the first six variables are integer-valued. To reformulate the problem, create a 6-D
integer variable xint and a 4-D continuous variable xcont.

xint = optimvar("xint",1,6,"LowerBound",-3,"UpperBound",6,"Type","integer");
xcont = optimvar("xcont",1,4,"LowerBound",-3,"UpperBound",6);

Convert multirosenbrock to an optimization expression using the input [xint xcont].

fun2 = fcn2optimexpr(@multirosenbrock,[xint xcont]);

Create and solve the problem.

prob2 = optimproblem("Objective",fun2);
rng(1,'twister') % For reproducibility
[sol2,fval2] = solve(prob2,"Solver","surrogateopt","Options",opts)
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Solving problem using surrogateopt.

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol2 = struct with fields:
    xcont: [1.2133 1.4719 1.1857 1.5003]
     xint: [1 1 1 1 1 1]

fval2 = 0.9736

This time the integer variables reach the correct solution, and the continuous variables are near the
solution, but are not completely accurate.

Helper Function

This code creates the multirosenbrock helper function.

function F = multirosenbrock(x)
% This function is a multidimensional generalization of Rosenbrock's
% function. It operates in a vectorized manner, assuming that x is a matrix
% whose rows are the individuals.
% Copyright 2014 by The MathWorks, Inc.
N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
    error('Input rows must have an even number of elements')
end
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odds  = 1:2:N-1;
evens = 2:2:N;
F = zeros(size(x));
F(:,odds)  = 1-x(:,odds);
F(:,evens) = 10*(x(:,evens)-x(:,odds).^2);
F = sum(F.^2,2);
end

See Also
solve | surrogateopt

Related Examples
• “Mixed-Integer Surrogate Optimization” on page 11-62
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Specify Starting Points and Values for surrogateopt, Problem-
Based

For some solvers, you can pass the objective and constraint function values, if any, to solve in the x0
argument. This can save time in the solver. Pass a vector of OptimizationValues objects. Create
this vector using the optimvalues function.

The solvers that can use the objective function values are:

• ga
• gamultiobj
• paretosearch
• surrogateopt

The solvers that can use nonlinear constraint function values are:

• paretosearch
• surrogateopt

For example, minimize the peaks function using surrogateopt, starting with values from a grid of
initial points. Create a grid from -10 to 10 in the x variable, and –5/2 to 5/2 in the y variable with
spacing 1/2. Compute the objective function values at the initial points.

x = optimvar("x",LowerBound=-10,UpperBound=10);
y = optimvar("y",LowerBound=-5/2,UpperBound=5/2);
prob = optimproblem("Objective",peaks(x,y));
xval = -10:10;
yval = (-5:5)/2;
[x0x,x0y] = meshgrid(xval,yval);
peaksvals = peaks(x0x,x0y);

Pass the values in the x0 argument by using optimvalues. This saves time for solve, as solve
does not need to compute the values. Pass the values as row vectors.

x0 = optimvalues(prob,'x',x0x(:)','y',x0y(:)',...
    "Objective",peaksvals(:)');

Solve the problem using surrogateopt with the initial values.

[sol,fval,eflag,output] = solve(prob,x0,Solver="surrogateopt")

Solving problem using surrogateopt.
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = struct with fields:
    x: 0.2283
    y: -1.6256

fval = -6.5511

eflag = 
    SolverLimitExceeded

output = struct with fields:
        elapsedtime: 20.1797
          funccount: 200
    constrviolation: 0
               ineq: [1x1 struct]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'
             solver: 'surrogateopt'

See Also
surrogateopt | solve | optimvalues
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Related Examples
• “Specify Start Points for MultiStart, Problem-Based” on page 5-3
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Using Simulated Annealing

• “What Is Simulated Annealing?” on page 13-2
• “Optimize Function Using simulannealbnd, Problem-Based” on page 13-3
• “Minimize Function with Many Local Minima” on page 13-5
• “Simulated Annealing Terminology” on page 13-11
• “How Simulated Annealing Works” on page 13-13
• “Reproduce Your Results” on page 13-16
• “Minimization Using Simulated Annealing Algorithm” on page 13-17
• “Simulated Annealing Options” on page 13-20
• “Multiprocessor Scheduling Using Simulated Annealing with a Custom Data Type” on page 13-26
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What Is Simulated Annealing?
Simulated annealing is a method for solving unconstrained and bound-constrained optimization
problems. The method models the physical process of heating a material and then slowly lowering the
temperature to decrease defects, thus minimizing the system energy.

At each iteration of the simulated annealing algorithm, a new point is randomly generated. The
distance of the new point from the current point, or the extent of the search, is based on a probability
distribution with a scale proportional to the temperature. The algorithm accepts all new points that
lower the objective, but also, with a certain probability, points that raise the objective. By accepting
points that raise the objective, the algorithm avoids being trapped in local minima, and is able to
explore globally for more possible solutions. An annealing schedule is selected to systematically
decrease the temperature as the algorithm proceeds. As the temperature decreases, the algorithm
reduces the extent of its search to converge to a minimum.

See Also

More About
• “Simulated Annealing Terminology” on page 13-11
• “How Simulated Annealing Works” on page 13-13
• “Minimize Function with Many Local Minima” on page 13-5
• “Minimization Using Simulated Annealing Algorithm” on page 13-17
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Optimize Function Using simulannealbnd, Problem-Based
This example shows how to minimize a function using simulated annealing in the problem-based
approach when the objective is a function file, possibly of unknown content (a "black box" function).
The function to minimize, dejong5fcn(x), is included with Global Optimization Toolbox. Plot the
function.

dejong5fcn

Create a 2-D optimization variable x. The dejong5fcn function expects the variable to be a row
vector, so specify x as a 2-element row vector.

x = optimvar("x",1,2);

To use dejong5fcn as the objective function, convert the function to an optimization expression
using fcn2optimexpr.

fun = fcn2optimexpr(@dejong5fcn,x);

Create an optimization problem with the objective function fun.

prob = optimproblem("Objective",fun);

Set variable bounds from –50 to 50 in all components. When you specify scalar bounds, the software
expands the bounds to all variables.

 Optimize Function Using simulannealbnd, Problem-Based

13-3



x.LowerBound = -50;
x.UpperBound = 50;

Set a pseudorandom initial point within the bounds. The initial point is a structure with field x.

rng default % For reproducibility
x0.x = x.LowerBound + rand(size(x.LowerBound)).*x.UpperBound;

Solve the problem, specifying the simulannealbnd solver.

[sol,fval] = solve(prob,x0,"Solver","simulannealbnd")

Solving problem using simulannealbnd.
Optimization terminated: change in best function value less than options.FunctionTolerance.

sol = struct with fields:
    x: [-32.0371 -31.8792]

fval = 0.9980

See Also
simulannealbnd | fcn2optimexpr | solve

Related Examples
• “Simulated Annealing”
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Minimize Function with Many Local Minima

In this section...
“De Jong's Fifth Function” on page 13-5
“Minimize at the Command Line” on page 13-6
“Minimize Using the Optimize Live Editor Task” on page 13-6

De Jong's Fifth Function
This example shows how to find a local minimum of a function using simulated annealing. The
example presents two approaches for minimizing: working at the command line and using the
Optimize Live Editor task.

De Jong's fifth function is a two-dimensional function with many (25) local minima. In the following
plot, it is unclear which of these local minima is the global minimum.

dejong5fcn

Many standard optimization algorithms become stuck in local minima. Because the simulated
annealing algorithm performs a wide random search, the chance of being trapped in a local minimum
is decreased.
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Note:Because simulated annealing uses random number generators, each time you run this
algorithm you can get different results. See “Reproduce Your Results” on page 13-16 for more
information.

Minimize at the Command Line
To run the simulated annealing algorithm without constraints, call simulannealbnd at the command
line using the objective function in dejong5fcn.m, referenced by the anonymous function
@dejong5fcn in the following code.

rng(10,'twister') % for reproducibility
fun = @dejong5fcn;
[x,fval] = simulannealbnd(fun,[0 0])

Optimization terminated: change in best function value less than options.FunctionTolerance.

x =
  -16.1292  -15.8214

fval =
    6.9034

In the results:

• x is the final point returned by the algorithm.
• fval is the objective function value at the final point.

Minimize Using the Optimize Live Editor Task
You can also run the minimization using the Optimize Live Editor task, which provides a visual
approach.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.
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3 Click the Solver-based task.
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4 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

5 In the new section above the task, enter the following code to define the initial point and the
objective function.

x0 = [0 0];
fun = @dejong5fcn;

6 To place these variables into the workspace, run the section by pressing Ctrl+Enter.
7 In the Specify problem type section of the task, click the Objective > Nonlinear button.
8 Select Solver > simulannealbnd - Simulated annealing algorithm.
9 In the Select problem data section of the task, select Objective function > Function handle

and then choose fun.
10 Select Initial point (x0) > x0.
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11 In the Display progress section of the task, select the Best value plot.
12 To run the solver, click the options button ⁝ at the top right of the task window, and select Run

Section. The plot appears in a separate figure window and in the task output area. Note that
your plot might be different from the one shown, because simulannealbnd is a stochastic
algorithm.

13 To see the solution and best objective function value, look at the top of the task.

The Optimize Live Editor task returns variables named solution and objectiveValue to the
workspace.

14 To view the values these variables, enter the following code in the section below the task.

disp(solution)
disp(objectiveValue)
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15 Run the section by pressing Ctrl+Enter.

disp(solution)

  -32.0285   -0.1280

disp(objectiveValue)

    10.7632

Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

See Also
simulannealbnd

More About
• “Minimization Using Simulated Annealing Algorithm” on page 13-17
• “Add Interactive Tasks to a Live Script”
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Simulated Annealing Terminology
In this section...
“Objective Function” on page 13-11
“Temperature” on page 13-11
“Annealing Parameter” on page 13-11
“Reannealing” on page 13-11

Objective Function
The objective function is the function you want to optimize. Global Optimization Toolbox algorithms
attempt to find the minimum of the objective function. Write the objective function as a file or
anonymous function, and pass it to the solver as a function handle. For more information, see
“Compute Objective Functions” on page 2-2 and “Create Function Handle”.

Temperature
The temperature is a parameter in simulated annealing that affects two aspects of the algorithm:

• The distance of a trial point from the current point (See “Outline of the Algorithm” on page 13-
13, Step 1.)

• The probability of accepting a trial point with higher objective function value (See “Outline of the
Algorithm” on page 13-13, Step 2.)

Temperature can be a vector with different values for each component of the current point. Typically,
the initial temperature is a scalar.

Temperature decreases gradually as the algorithm proceeds. You can specify the initial temperature
as a positive scalar or vector in the InitialTemperature option. You can specify the temperature
as a function of iteration number as a function handle in the TemperatureFcn option. The
temperature is a function of the “Annealing Parameter” on page 13-11, which is a proxy for the
iteration number. The slower the rate of temperature decrease, the better the chances are of finding
an optimal solution, but the longer the run time. For a list of built-in temperature functions and the
syntax of a custom temperature function, see “Temperature Options” on page 17-58.

Annealing Parameter
The annealing parameter is a proxy for the iteration number. The algorithm can raise temperature by
setting the annealing parameter to a lower value than the current iteration. (See “Reannealing” on
page 13-11.) You can specify the temperature schedule as a function handle with the
TemperatureFcn option.

Reannealing
Annealing is the technique of closely controlling the temperature when cooling a material to ensure
that it reaches an optimal state. Reannealing raises the temperature after the algorithm accepts a
certain number of new points, and starts the search again at the higher temperature. Reannealing
avoids the algorithm getting caught at local minima. Specify the reannealing schedule with the
ReannealInterval option.
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See Also
simulannealbnd

More About
• “What Is Simulated Annealing?” on page 13-2
• “How Simulated Annealing Works” on page 13-13
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How Simulated Annealing Works
In this section...
“Outline of the Algorithm” on page 13-13
“Stopping Conditions for the Algorithm” on page 13-14
“Bibliography” on page 13-15

Outline of the Algorithm
The simulated annealing algorithm performs the following steps:

1 The algorithm generates a random trial point. The algorithm chooses the distance of the trial
point from the current point by a probability distribution with a scale depending on the current
temperature. You set the trial point distance distribution as a function with the AnnealingFcn
option. Choices:

• @annealingfast (default) — Step length equals the current temperature, and direction is
uniformly random.

• @annealingboltz — Step length equals the square root of temperature, and direction is
uniformly random.

• @myfun — Custom annealing algorithm, myfun. For custom annealing function syntax, see
“Algorithm Settings” on page 17-59.

After generating the trial point, the algorithm shifts it, if necessary, to stay within bounds. The
algorithm shifts each infeasible component of the trial point to a value chosen uniformly at
random between the violated bound and the (feasible) value at the previous iteration.

2 The algorithm determines whether the new point is better or worse than the current point. If the
new point is better than the current point, it becomes the next point. If the new point is worse
than the current point, the algorithm can still make it the next point. The algorithm accepts a
worse point based on an acceptance function. Choose the acceptance function with the
AcceptanceFcn option. Choices:

• @acceptancesa (default) — Simulated annealing acceptance function. The probability of
acceptance is

1
1 + exp Δ

max(T)
,

where

Δ = new objective – old objective.
T0 = initial temperature of component i
T = the current temperature.

Since both Δ and T are positive, the probability of acceptance is between 0 and 1/2. Smaller
temperature leads to smaller acceptance probability. Also, larger Δ leads to smaller
acceptance probability.

• @myfun — Custom acceptance function, myfun. For custom acceptance function syntax, see
“Algorithm Settings” on page 17-59.
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3 The algorithm systematically lowers the temperature, storing the best point found so far. The
TemperatureFcn option specifies the function the algorithm uses to update the temperature.
Let k denote the annealing parameter. (The annealing parameter is the same as the iteration
number until reannealing.) Options:

• @temperatureexp (default) — T = T0 * 0.95^k.
• @temperaturefast — T = T0 / k.
• @temperatureboltz — T = T0 / log(k).
• @myfun — Custom temperature function, myfun. For custom temperature function syntax,

see “Temperature Options” on page 17-58.
4 simulannealbnd reanneals after it accepts ReannealInterval points. Reannealing sets the

annealing parameters to lower values than the iteration number, thus raising the temperature in
each dimension. The annealing parameters depend on the values of estimated gradients of the
objective function in each dimension. The basic formula is

ki = log
T0
Ti

max
j

s j

si
,

where

ki = annealing parameter for component i.
T0 = initial temperature of component i.
Ti = current temperature of component i.
si = gradient of objective in direction i times difference of bounds in direction i.

simulannealbnd safeguards the annealing parameter values against Inf and other improper
values.

5 The algorithm stops when the average change in the objective function is small relative to
FunctionTolerance, or when it reaches any other stopping criterion. See “Stopping Conditions
for the Algorithm” on page 13-14.

For more information on the algorithm, see Ingber [1].

Stopping Conditions for the Algorithm
The simulated annealing algorithm uses the following conditions to determine when to stop:

• FunctionTolerance — The algorithm runs until the average change in value of the objective
function in StallIterLim iterations is less than the value of FunctionTolerance. The default
value is 1e-6.

• MaxIterations — The algorithm stops when the number of iterations exceeds this maximum
number of iterations. You can specify the maximum number of iterations as a positive integer or
Inf. The default value is Inf.

• MaxFunctionEvaluations specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds the value of
MaxFunctionEvaluations. The default value is 3000*numberofvariables.

• MaxTime specifies the maximum time in seconds the algorithm runs before stopping. The default
value is Inf.
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• ObjectiveLimit — The algorithm stops when the best objective function value is less than the
value of ObjectiveLimit. The default value is -Inf.

Bibliography

[1] Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. Invited paper to a special issue of
the Polish Journal Control and Cybernetics on “Simulated Annealing Applied to Combinatorial
Optimization.” 1995. Available from https://www.ingber.com/asa96_lessons.ps.gz
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Reproduce Your Results
Because the simulated annealing algorithm is stochastic—that is, it makes random choices—you get
slightly different results each time you run it. The algorithm uses the default MATLAB pseudorandom
number stream. For more information about random number streams, see RandStream. Each time
the algorithm calls the stream, its state changes. So the next time the algorithm calls the stream, it
returns a different random number.

If you need to reproduce your results exactly, call simulannealbnd with the output argument. The
output structure contains the current random number generator state in the output.rngstate
field. Reset the state before running the function again.

For example, to reproduce the output of simulannealbnd applied to De Jong's fifth function, call
simulannealbnd with the syntax

rng(10,'twister') % for reproducibility
[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0]);

Suppose the results are

x,fval

x =
  -16.1292  -15.8214

fval =
    6.9034

The state of the random number generator, rngstate, is stored in output.rngstate. Reset the
stream by entering

stream = RandStream.getGlobalStream;
stream.State = output.rngstate.State;

If you now run simulannealbnd a second time, you get the same results.

Note If you do not need to reproduce your results, it is better not to set the states of RandStream,
so that you get the benefit of the randomness in these algorithms.

See Also
simulannealbnd

More About
• “Simulated Annealing”

13 Using Simulated Annealing

13-16



Minimization Using Simulated Annealing Algorithm
This example shows how to create and minimize an objective function using the simulated annealing
algorithm (simulannealbnd function) in Global Optimization Toolbox. For algorithmic details, see
“How Simulated Annealing Works” on page 13-13.

Simple Objective Function

The objective function to minimize is a simple function of two variables:

   min f(x) = (4 - 2.1*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-4 + 4*x2^2)*x2^2;
    x

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

To implement the objective function calculation, the MATLAB® file simple_objective.m has the
following code:

type simple_objective

function y = simple_objective(x)
%SIMPLE_OBJECTIVE Objective function for PATTERNSEARCH solver

%   Copyright 2004 The MathWorks, Inc.  

x1 = x(1);
x2 = x(2);
y = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2;

All Global Optimization Toolbox solvers assume that the objective has one input x, where x has as
many elements as the number of variables in the problem. The objective function computes the scalar
value of the objective function and returns it in its single output argument y.

Minimize Using simulannealbnd

To minimize the objective function using simulannealbnd, pass in a function handle to the objective
function and a starting point x0 as the second argument. For reproducibility, set the random number
stream.

ObjectiveFunction = @simple_objective;
x0 = [0.5 0.5];   % Starting point
rng default % For reproducibility
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,x0)

Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1×2

   -0.0896    0.7130

fval = -1.0316

exitFlag = 1

output = struct with fields:
     iterations: 2948
      funccount: 2971
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        message: 'Optimization terminated: change in best function value less than options.FunctionTolerance.'
       rngstate: [1x1 struct]
    problemtype: 'unconstrained'
    temperature: [2x1 double]
      totaltime: 1.1832

simulannealbnd returns four output arguments:

• x — Best point found
• fval — Function value at the best point
• exitFlag — Integer corresponding to the reason the function stopped
• output — Information about the optimization steps

Bound Constrained Minimization

You can use simulannealbnd to solve problems with bound constraints. Pass lower and upper
bounds as vectors. For each coordinate i, the solver ensures that lb(i) <= x(i) <= ub(i).
Impose the bounds –64 <= x(i) <= 64.

lb = [-64 -64];
ub = [64 64];

Run the solver with the lower and upper bound arguments.

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,x0,lb,ub);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The number of iterations was : %d\n', output.iterations);

The number of iterations was : 2428

fprintf('The number of function evaluations was : %d\n', output.funccount);

The number of function evaluations was : 2447

fprintf('The best function value found was : %g\n', fval);

The best function value found was : -1.03163

The solver finds essentially the same solution as before.

Minimize Using Additional Arguments

Sometimes you want an objective function to be parameterized by extra arguments that act as
constants during the optimization. For example, in the previous objective function, you might want to
replace the constants 4, 2.1, and 4 with parameters that you can change to create a family of
objective functions. For more information, see “Passing Extra Parameters”.

Rewrite the objective function to take three additional parameters in a new minimization problem.

   min f(x) = (a - b*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-c + c*x2^2)*x2^2;
    x
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a, b, and c are parameters to the objective function that act as constants during the optimization
(they are not varied as part of the minimization). To implement the objective function calculation, the
MATLAB file parameterized_objective.m contains the following code:

type parameterized_objective

function y = parameterized_objective(x,p1,p2,p3)
%PARAMETERIZED_OBJECTIVE Objective function for PATTERNSEARCH solver

%   Copyright 2004 The MathWorks, Inc.
  
x1 = x(1);
x2 = x(2);
y = (p1-p2.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-p3+p3.*x2.^2).*x2.^2;

Again, you need to pass in a function handle to the objective function as well as a starting point as the
second argument.

simulannealbnd calls the objective function with just one argument x, but the objective function
has four arguments: x, a, b, and c. To indicate which variable is the argument, use an anonymous
function to capture the values of the additional arguments (the constants a, b, and c). Create a
function handle ObjectiveFunction to an anonymous function that takes one input x, but calls
parameterized_objective with x, a, b and c. When you create the function handle
ObjectiveFunction, the variables a, b, and c have values that are stored in the anonymous
function.

a = 4; b = 2.1; c = 4;    % Define constant values
ObjectiveFunction = @(x) parameterized_objective(x,a,b,c);
x0 = [0.5 0.5];
[x,fval] = simulannealbnd(ObjectiveFunction,x0)

Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1×2

    0.0898   -0.7127

fval = -1.0316

The solver finds essentially the same solution as before.

References

[1] Dixon, L. C. W., and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.
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Simulated Annealing Options
This example shows how to create and manage options for the simulated annealing function
simulannealbnd using optimoptions in the Global Optimization Toolbox.

Optimization Problem Setup

simulannealbnd searches for a minimum of a function using simulated annealing. For this example
we use simulannealbnd to minimize the objective function dejong5fcn. This function is a real
valued function of two variables and has many local minima making it difficult to optimize. There is
only one global minimum at x =(-32,-32), where f(x) = 0.998. To define our problem, we must
define the objective function, start point, and bounds specified by the range -64 <= x(i) <= 64 for
each x(i).

ObjectiveFunction = @dejong5fcn;
startingPoint = [-30 0];
lb = [-64 -64];
ub = [64 64];

The function plotobjective in the toolbox plots the objective function over the range -64 <= x1
<= 64, -64 <= x2 <= 64.

plotobjective(ObjectiveFunction,[-64 64; -64 64]);
view(-15,150);

Now, we can run the simulannealbnd solver to minimize our objective function.
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rng default % For reproducibility
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The number of iterations was : %d\n', output.iterations);

The number of iterations was : 1095

fprintf('The number of function evaluations was : %d\n', output.funccount);

The number of function evaluations was : 1104

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 2.98211

Note that when you run this example, your results may be different from the results shown above
because simulated annealing algorithm uses random numbers to generate points.

Adding Visualization

simulannealbnd can accept one or more plot functions through an 'options' argument. This feature
is useful for visualizing the performance of the solver at run time. Plot functions are selected using
optimoptions. The toolbox contains a set of plot functions to choose from, or you can provide your
own custom plot functions.

To select multiple plot functions, set the PlotFcn option via the optimoptions function. For this
example, we select saplotbestf, which plots the best function value every iteration,
saplottemperature, which shows the current temperature in each dimension at every iteration,
saplotf, which shows the current function value (remember that the current value is not necessarily
the best one), and saplotstopping, which plots the percentage of stopping criteria satisfied every
ten iterations.

options = optimoptions(@simulannealbnd, ...
                     'PlotFcn',{@saplotbestf,@saplottemperature,@saplotf,@saplotstopping});

Run the solver.

simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);
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Optimization terminated: change in best function value less than options.FunctionTolerance.

Specifying Temperature Options

The temperature parameter used in simulated annealing controls the overall search results. The
temperature for each dimension is used to limit the extent of search in that dimension. The toolbox
lets you specify initial temperature as well as ways to update temperature during the solution
process. The two temperature-related options are the InitialTemperature and the
TemperatureFcn.

Specifying initial temperature

The default initial temperature is set to 100 for each dimension. If you want the initial temperature to
be different in different dimensions then you must specify a vector of temperatures. This may be
necessary in cases when problem is scaled differently in each dimension. For example,

options = optimoptions(@simulannealbnd,'InitialTemperature',[300 50]);

InitialTemperature can be set to a vector of length less than the number of variables
(dimension); the solver expands the vector to the remaining dimensions by taking the last element of
the initial temperature vector. Here we want the initial temperature to be the same in all dimensions
so we need only specify the single temperature.

options.InitialTemperature = 100;

Specifying a temperature function
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The default temperature function used by simulannealbnd is called temperatureexp. In the
temperatureexp schedule, the temperature at any given step is .95 times the temperature at the
previous step. This causes the temperature to go down slowly at first but ultimately get cooler faster
than other schemes. If another scheme is desired, e.g. Boltzmann schedule or "Fast" schedule
annealing, then temperatureboltz or temperaturefast can be used respectively. To select the
fast temperature schedule, we can update our previously created options, changing
TemperatureFcn directly.

options.TemperatureFcn = @temperaturefast;

Specifying reannealing

Reannealing is a part of annealing process. After a certain number of new points are accepted, the
temperature is raised to a higher value in hope to restart the search and move out of a local minima.
Performing reannealing too soon may not help the solver identify a minimum, so a relatively high
interval is a good choice. The interval at which reannealing happens can be set using the
ReannealInterval option. Here, we reduce the default reannealing interval to 50 because the
function seems to be flat in many regions and solver might get stuck rapidly.

options.ReannealInterval = 50;

Now that we have set up the new temperature options we run the solver again.

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The number of iterations was : %d\n', output.iterations);

The number of iterations was : 1306

fprintf('The number of function evaluations was : %d\n', output.funccount);

The number of function evaluations was : 1321

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 16.4409

Reproducing Results

simulannealbnd is a nondeterministic algorithm. This means that running the solver more than
once without changing any settings may give different results. This is because simulannealbnd
utilizes MATLAB® random number generators when it generates subsequent points and also when it
determines whether or not to accept new points. Every time a random number is generated the state
of the random number generators change.

To see this, two runs of simulannealbnd solver yields:

[x,fval] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 1.99203

And,
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[x,fval] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 10.7632

In the previous two runs simulannealbnd gives different results.

We can reproduce our results if we reset the states of the random number generators between runs
of the solver by using information returned by simulannealbnd. simulannealbnd returns the
states of the random number generators at the time simulannealbnd is called in the output
argument. This information can be used to reset the states. Here we reset the states between runs
using this output information so the results of the next two runs are the same.

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 20.1535

We reset the state of the random number generator.

strm = RandStream.getGlobalStream;
strm.State = output.rngstate.State;

Now, let's run simulannealbnd again.

[x,fval] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 20.1535

Modifying the Stopping Criteria

simulannealbnd uses six different criteria to determine when to stop the solver. simulannealbnd
stops when the maximum number of iterations or function evaluation is exceeded; by default the
maximum number of iterations is set to Inf and the maximum number of function evaluations is
3000*numberOfVariables. simulannealbnd keeps track of the average change in the function
value for MaxStallIterations iterations. If the average change is smaller than the function
tolerance, FunctionTolerance, then the algorithm will stop. The solver will also stop when the
objective function value reaches ObjectiveLimit. Finally the solver will stop after running for
MaxTime seconds. Here we set the FunctionTolerance to 1e-5.

options.FunctionTolerance = 1e-5;

Run the simulannealbnd solver.

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub,options);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The number of iterations was : %d\n', output.iterations);
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The number of iterations was : 1843

fprintf('The number of function evaluations was : %d\n', output.funccount);

The number of function evaluations was : 1864

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 6.90334

See Also
simulannealbnd

More About
• “Simulated Annealing Options” on page 17-57
• “How Simulated Annealing Works” on page 13-13
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Multiprocessor Scheduling Using Simulated Annealing with a
Custom Data Type

This example shows how to use simulated annealing to minimize a function using a custom data type.
Here simulated annealing is customized to solve the multiprocessor scheduling problem.

Multiprocessor Scheduling Problem

The multiprocessor scheduling problem consists of finding an optimal distribution of tasks on a set of
processors. The number of processors and number of tasks are given. Time taken to complete a task
by a processor is also provided as data. Each processor runs independently, but each can only run one
job at a time. We call an assignment of all jobs to available processors a "schedule". The goal of the
problem is to determine the shortest schedule for the given set of tasks.

First we determine how to express this problem in terms of a custom data type optimization problem
that simulannealbnd function can solve. We come up with the following scheme: first, let each task
be represented by an integer between 1 and the total number of tasks. Similarly, each processor is
represented by an integer between 1 and the number of processors. Now we can store the amount of
time a given job will take on a given processor in a matrix called "lengths". The amount of time "t"
that the processor "i" takes to complete the task "j" will be stored in lengths(i,j).

We can represent a schedule in a similar manner. In a given schedule, the rows (integer between 1 to
number of processors) will represent the processors and the columns (integer between 1 to number
of tasks) will represent the tasks. For example, the schedule [1 2 3;4 5 0;6 0 0] would be tasks 1, 2,
and 3 performed on processor 1, tasks 4 and 5 performed on processor 2, and task 6 performed on
processor 3.

Here we define our number of tasks, number of processors, and lengths array. The different
coefficients for the various rows represent the fact that different processors work with different
speeds. We also define a "sampleSchedule" which will be our starting point input to
simulannealbnd.

rng default % for reproducibility
numberOfProcessors = 11;
numberOfTasks = 40;
lengths = [10*rand(1,numberOfTasks);
           7*rand(1,numberOfTasks);
           2*rand(1,numberOfTasks);
           5*rand(1,numberOfTasks);
           3*rand(1,numberOfTasks);
           4*rand(1,numberOfTasks);
           1*rand(1,numberOfTasks);
           6*rand(1,numberOfTasks);
           4*rand(1,numberOfTasks);
           3*rand(1,numberOfTasks);
           1*rand(1,numberOfTasks)];

% Random distribution of task on processors (starting point)
sampleSchedule = zeros(numberOfProcessors,numberOfTasks);
for task = 1:numberOfTasks
    processorID = 1 + floor(rand*(numberOfProcessors));
    index = find(sampleSchedule(processorID,:)==0);
    sampleSchedule(processorID,index(1)) = task;
end
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Simulated Annealing For a Custom Data Type

By default, the simulated annealing algorithm solves optimization problems assuming that the
decision variables are double data types. Therefore, the annealing function for generating subsequent
points assumes that the current point is a vector of type double. However, if the DataType option is
set to 'custom' the simulated annealing solver can also work on optimization problems involving
arbitrary data types. You can use any valid MATLAB® data structure you like as decision variable. For
example, if we want simulannealbnd to use "sampleSchedule" as decision variable, a custom data
type can be specified using a matrix of integers. In addition to setting the DataType option to
'custom' we also need to provide a custom annealing function via the AnnealingFcn option that can
generate new points.

Custom Annealing Functions

This section shows how to create and use the required custom annealing function. A trial point for the
multiprocessor scheduling problem is a matrix of processor (rows) and tasks (columns) as discussed
before. The custom annealing function for the multiprocessor scheduling problem will take a job
schedule as input. The annealing function will then modify this schedule and return a new schedule
that has been changed by an amount proportional to the temperature (as is customary with simulated
annealing). Here we display our custom annealing function.

type mulprocpermute.m

function schedule = mulprocpermute(optimValues,problemData)
% MULPROCPERMUTE Moves one random task to a different processor.
% NEWX = MULPROCPERMUTE(optimValues,problemData) generate a point based
% on the current point and the current temperature

% Copyright 2006 The MathWorks, Inc.

schedule = optimValues.x;
% This loop will generate a neighbor of "distance" equal to
% optimValues.temperature.  It does this by generating a neighbor to the
% current schedule, and then generating a neighbor to that neighbor, and so
% on until it has generated enough neighbors.
for i = 1:floor(optimValues.temperature)+1
    [nrows ncols] = size(schedule);
    schedule = neighbor(schedule, nrows, ncols);
end

%=====================================================%
function schedule = neighbor(schedule, nrows, ncols)
% NEIGHBOR generates a single neighbor to the given schedule.  It does so
% by moving one random task to a different processor.  The rest of the code
% is to ensure that the format of the schedule remains the same.

row1 = randinteger(1,1,nrows)+1;
col = randinteger(1,1,ncols)+1;
while schedule(row1, col)==0
    row1 = randinteger(1,1,nrows)+1;
    col = randinteger(1,1,ncols)+1;
end
row2 = randinteger(1,1,nrows)+1;
while row1==row2
    row2 = randinteger(1,1,nrows)+1;
end
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for j = 1:ncols
    if schedule(row2,j)==0
        schedule(row2,j) = schedule(row1,col);
        break
    end
end

schedule(row1, col) = 0;
for j = col:ncols-1
    schedule(row1,j) = schedule(row1,j+1);
end
schedule(row1,ncols) = 0;
%=====================================================%
function out = randinteger(m,n,range)
%RANDINTEGER generate integer random numbers (m-by-n) in range

len_range = size(range,1) * size(range,2);
% If the IRANGE is specified as a scalar.
if len_range < 2
    if range < 0
        range = [range+1, 0];
    elseif range > 0
        range = [0, range-1];
    else
        range = [0, 0];    % Special case of zero range.
    end
end
% Make sure RANGE is ordered properly.
range = sort(range);

% Calculate the range the distance for the random number generator.
distance = range(2) - range(1);
% Generate the random numbers.
r = floor(rand(m, n) * (distance+1));

% Offset the numbers to the specified value.
out = ones(m,n)*range(1);
out = out + r;

Objective Function

We need an objective function for the multiprocessor scheduling problem. The objective function
returns the total time required for a given schedule (which is the maximum of the times that each
processor is spending on its tasks). As such, the objective function also needs the lengths matrix to be
able to calculate the total times. We are going to attempt to minimize this total time. Here we display
our objective function

type mulprocfitness.m

function timeToComplete = mulprocfitness(schedule, lengths)
%MULPROCFITNESS determines the "fitness" of the given schedule.
%  In other words, it tells us how long the given schedule will take using the
%  knowledge given by "lengths"

%   Copyright 2006 The MathWorks, Inc.
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[nrows ncols] = size(schedule);
timeToComplete = zeros(1,nrows);
for i = 1:nrows
    timeToComplete(i) = 0;
    for j = 1:ncols
        if schedule(i,j)~=0
            timeToComplete(i) = timeToComplete(i)+lengths(i,schedule(i,j));
        else
            break
        end
    end
end
timeToComplete = max(timeToComplete);

simulannealbnd will call our objective function with just one argument x, but our fitness function
has two arguments: x and "lengths". We can use an anonymous function to capture the values of the
additional argument, the lengths matrix. We create a function handle 'ObjectiveFcn' to an anonymous
function that takes one input x, but calls 'mulprocfitness' with x and "lengths". The variable "lengths"
has a value when the function handle 'FitnessFcn' is created so these values are captured by the
anonymous function.

% lengths was defined earlier
fitnessfcn = @(x) mulprocfitness(x,lengths);

We can add a custom plot function to plot the length of time that the tasks are taking on each
processor. Each bar represents a processor, and the different colored chunks of each bar are the
different tasks.

type mulprocplot.m

function stop = mulprocplot(~,optimvalues,flag,lengths)
%MULPROCPLOT PlotFcn used for SAMULTIPROCESSORDEMO
%   STOP = MULPROCPLOT(OPTIONS,OPTIMVALUES,FLAG) where OPTIMVALUES is a
%   structure with the following fields:
%              x: current point
%           fval: function value at x
%          bestx: best point found so far
%       bestfval: function value at bestx
%    temperature: current temperature
%      iteration: current iteration
%      funccount: number of function evaluations
%             t0: start time
%              k: annealing parameter 'k'
%
%   FLAG: Current state in which PlotFcn is called. Possible values are:
%           init: initialization state
%           iter: iteration state
%           done: final state
%
%   STOP: A boolean to stop the algorithm.
%

%   Copyright 2006-2015 The MathWorks, Inc.

persistent thisTitle %#ok

stop = false;
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switch flag
    case 'init'
        set(gca,'xlimmode','manual','zlimmode','manual', ...
            'alimmode','manual')
        titleStr = sprintf('Current Point - Iteration %d', optimvalues.iteration);
        thisTitle = title(titleStr,'interp','none');
        toplot = i_generatePlotData(optimvalues, lengths);
        ylabel('Time','interp','none');
        bar(toplot, 'stacked','edgecolor','none');
        Xlength = size(toplot,1);        
        set(gca,'xlim',[0,1 + Xlength])
    case 'iter'
        if ~rem(optimvalues.iteration, 100)
            toplot = i_generatePlotData(optimvalues, lengths);
            bar(toplot, 'stacked','edgecolor','none');
            titleStr = sprintf('Current Point - Iteration %d', optimvalues.iteration);
            thisTitle = title(titleStr,'interp','none');            
        end
end

function toplot = i_generatePlotData(optimvalues, lengths)

schedule = optimvalues.x;
nrows = size(schedule,1);
% Remove zero columns (all processes are idle)
maxlen = 0;
for i = 1:nrows
    if max(nnz(schedule(i,:))) > maxlen
        maxlen = max(nnz(schedule(i,:)));
    end
end
schedule = schedule(:,1:maxlen);

toplot = zeros(size(schedule));
[nrows, ncols] = size(schedule);
for i = 1:nrows
    for j = 1:ncols
        if schedule(i,j)==0 % idle process
            toplot(i,j) = 0;
        else
            toplot(i,j) = lengths(i,schedule(i,j));
        end
    end
end

But remember, in simulated annealing the current schedule is not necessarily the best schedule found
so far. We create a second custom plot function that will display to us the best schedule that has been
discovered so far.

type mulprocplotbest.m

function stop = mulprocplotbest(~,optimvalues,flag,lengths)
%MULPROCPLOTBEST PlotFcn used for SAMULTIPROCESSORDEMO
%   STOP = MULPROCPLOTBEST(OPTIONS,OPTIMVALUES,FLAG) where OPTIMVALUES is a
%   structure with the following fields:
%              x: current point
%           fval: function value at x
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%          bestx: best point found so far
%       bestfval: function value at bestx
%    temperature: current temperature
%      iteration: current iteration
%      funccount: number of function evaluations
%             t0: start time
%              k: annealing parameter 'k'
%
%   FLAG: Current state in which PlotFcn is called. Possible values are:
%           init: initialization state
%           iter: iteration state
%           done: final state
%
%   STOP: A boolean to stop the algorithm.
%

%   Copyright 2006-2015 The MathWorks, Inc.

persistent thisTitle %#ok

stop = false;
switch flag
    case 'init'
        set(gca,'xlimmode','manual','zlimmode','manual', ...
            'alimmode','manual')
        titleStr = sprintf('Current Point - Iteration %d', optimvalues.iteration);
        thisTitle = title(titleStr,'interp','none');
        toplot = i_generatePlotData(optimvalues, lengths);
        Xlength = size(toplot,1);
        ylabel('Time','interp','none');
        bar(toplot, 'stacked','edgecolor','none');
        set(gca,'xlim',[0,1 + Xlength])
    case 'iter'
        if ~rem(optimvalues.iteration, 100)
            toplot = i_generatePlotData(optimvalues, lengths);
            bar(toplot, 'stacked','edgecolor','none');
            titleStr = sprintf('Best Point - Iteration %d', optimvalues.iteration);
            thisTitle = title(titleStr,'interp','none');            
        end
         
end

function toplot = i_generatePlotData(optimvalues, lengths)

schedule = optimvalues.bestx;
nrows = size(schedule,1);
% Remove zero columns (all processes are idle)
maxlen = 0;
for i = 1:nrows
    if max(nnz(schedule(i,:))) > maxlen
        maxlen = max(nnz(schedule(i,:)));
    end
end
schedule = schedule(:,1:maxlen);

toplot = zeros(size(schedule));
[nrows, ncols] = size(schedule);
for i = 1:nrows
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    for j = 1:ncols
        if schedule(i,j)==0
            toplot(i,j) = 0;
        else
            toplot(i,j) = lengths(i,schedule(i,j));
        end
    end
end

Simulated Annealing Options Setup

We choose the custom annealing and plot functions that we have created, as well as change some of
the default options. ReannealInterval is set to 800 because lower values for ReannealInterval
seem to raise the temperature when the solver was beginning to make a lot of local progress. We also
decrease the StallIterLimit to 800 because the default value makes the solver too slow. Finally,
we must set the DataType to 'custom'.

options = optimoptions(@simulannealbnd,'DataType', 'custom', ...
    'AnnealingFcn', @mulprocpermute, 'MaxStallIterations',800, 'ReannealInterval', 800, ...
    'PlotFcn', {{@mulprocplot, lengths},{@mulprocplotbest, lengths},@saplotf,@saplotbestf});

Finally, we call simulated annealing with our problem information.

schedule = simulannealbnd(fitnessfcn,sampleSchedule,[],[],options);
% Remove zero columns (all processes are idle)
maxlen = 0;
for i = 1:size(schedule,1)
    if max(nnz(schedule(i,:)))>maxlen
        maxlen = max(nnz(schedule(i,:)));
    end
end
% Display the schedule
schedule = schedule(:,1:maxlen)

Optimization terminated: change in best function value less than options.FunctionTolerance.

schedule =

    22    34    32     0     0     0     0     0
     5     0     0     0     0     0     0     0
    19     6    12    11    39    35     0     0
     7    20     0     0     0     0     0     0
    30    15    10     3     0     0     0     0
    18    28     0     0     0     0     0     0
    31    33    29     4    21     9    25    40
    24    26    14     0     0     0     0     0
    13    16    23     0     0     0     0     0
    38    36     1     0     0     0     0     0
     8    27    37    17     2     0     0     0
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See Also
simulannealbnd

More About
• “Algorithm Settings” on page 17-59
• “How Simulated Annealing Works” on page 13-13
• “Minimize Makespan in Parallel Processing”
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Multiobjective Optimization

• “What Is Multiobjective Optimization?” on page 14-2
• “gamultiobj Algorithm” on page 14-5
• “paretosearch Algorithm” on page 14-10
• “gamultiobj Options and Syntax: Differences from ga” on page 14-18
• “Pareto Front for Two Objectives” on page 14-19
• “Compare paretosearch and gamultiobj” on page 14-27
• “Plot 3-D Pareto Front” on page 14-38
• “Performing a Multiobjective Optimization Using the Genetic Algorithm” on page 14-48
• “Effects of Multiobjective Genetic Algorithm Options” on page 14-53
• “Design Optimization of a Welded Beam” on page 14-62
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What Is Multiobjective Optimization?
You might need to formulate problems with more than one objective, since a single objective with
several constraints may not adequately represent the problem being faced. If so, there is a vector of
objectives,

F(x) = [F1(x), F2(x),...,Fm(x)], (14-1)

that must be traded off in some way. The relative importance of these objectives is not generally
known until the system's best capabilities are determined and tradeoffs between the objectives fully
understood. As the number of objectives increases, tradeoffs are likely to become complex and less
easily quantified. The designer must rely on his or her intuition and ability to express preferences
throughout the optimization cycle. Thus, requirements for a multiobjective design strategy must
enable a natural problem formulation to be expressed, and be able to solve the problem and enter
preferences into a numerically tractable and realistic design problem.

Multiobjective optimization is concerned with the minimization of a vector of objectives F(x) that can
be the subject of a number of constraints or bounds:

min
x ∈ ℝn

F(x),  subject to

Gi(x) = 0,  i = 1, ..., ke;  Gi(x) ≤ 0,  i = ke + 1, ..., k;  l ≤ x ≤ u .

Note that because F(x) is a vector, if any of the components of F(x) are competing, there is no unique
solution to this problem. Instead, the concept of noninferiority in Zadeh [4] (also called Pareto
optimality in Censor [1] and Da Cunha and Polak [2]) must be used to characterize the objectives. A
noninferior solution is one in which an improvement in one objective requires a degradation of
another. To define this concept more precisely, consider a feasible region, Ω, in the parameter space.
x is an element of the n-dimensional real numbers x ∈ ℝn that satisfies all the constraints, that is,

Ω = x ∈ ℝn ,

subject to

Gi(x) = 0,  i = 1, ..., ke,
Gi(x) ≤ 0,  i = ke + 1, ..., k,
l ≤ x ≤ u .

This allows definition of the corresponding feasible region for the objective function space Λ:

Λ = y ∈ ℝm: y = F(x), x ∈ Ω .

The performance vector F(x) maps parameter space into objective function space, as represented in
two dimensions in the figure “Figure 14-1, Mapping from Parameter Space into Objective Function
Space” on page 14-3.
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Figure 14-1, Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.

Definition: Point x * ∈ Ω is a noninferior solution if for some neighborhood of x* there does not exist
a Δx such that x * + Δx ∈ Ω and

Fi x * + Δx ≤ Fi(x * ),  i = 1, ..., m,  and
F j x * + Δx < F j(x * ) for at least one  j .

In the two-dimensional representation of the figure “Figure 14-2, Set of Noninferior Solutions” on
page 14-3, the set of noninferior solutions lies on the curve between C and D. Points A and B
represent specific noninferior points.

Figure 14-2, Set of Noninferior Solutions

A and B are clearly noninferior solution points because an improvement in one objective, F1, requires
a degradation in the other objective, F2, that is, F1B < F1A, F2B > F2A.

Since any point in Ω that is an inferior point represents a point in which improvement can be attained
in all the objectives, it is clear that such a point is of no value. Multiobjective optimization is,
therefore, concerned with the generation and selection of noninferior solution points.

Noninferior solutions are also called Pareto optima. A general goal in multiobjective optimization is
constructing the Pareto optima.
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See Also

More About
• “gamultiobj Algorithm” on page 14-5
• “paretosearch Algorithm” on page 14-10
• “Pareto Front for Two Objectives” on page 14-19

14 Multiobjective Optimization

14-4



gamultiobj Algorithm
In this section...
“Introduction” on page 14-5
“Multiobjective Terminology” on page 14-5
“Initialization” on page 14-7
“Iterations” on page 14-7
“Stopping Conditions” on page 14-7
“Integer and Linear Constraints” on page 14-8
“Bibliography” on page 14-8

Introduction
This section describes the algorithm that gamultiobj uses to create a set of points on the Pareto
front. gamultiobj uses a controlled, elitist genetic algorithm (a variant of NSGA-II [3]). An elitist GA
always favors individuals with better fitness value (rank). A controlled elitist GA also favors
individuals that can help increase the diversity of the population even if they have a lower fitness
value.

Multiobjective Terminology
Most of the terminology for the gamultiobj algorithm is the same as “Genetic Algorithm
Terminology” on page 8-11. However, there are some additional terms, described in this section. For
more details about the terminology and the algorithm, see Deb [3].

• Dominance — A point x dominates a point y for a vector-valued objective function f when:

fi(x) ≤ fi(y) for all i.

fj(x) < fj(y) for some j.

The term "dominate" is equivalent to the term "inferior:" x dominates y exactly when y is inferior
to x.

A nondominated set among a set of points P is the set of points Q in P that are not dominated by
any point in P.

• Rank — For feasible individuals, there is an iterative definition of the rank of an individual. Rank 1
individuals are not dominated by any other individuals. Rank 2 individuals are dominated only by
rank 1 individuals. In general, rank k individuals are dominated only by individuals in rank k - 1
or lower.
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Individuals with a lower rank have a higher chance of selection (lower rank is better).

All infeasible individuals have a worse rank than any feasible individual. Within the infeasible
population, the rank is the order by sorted infeasibility measure, plus the highest rank for feasible
members.

gamultiobj uses rank to select parents.
• Crowding Distance — The crowding distance is a measure of the closeness of an individual to its

nearest neighbors. The gamultiobj algorithm measures distance among individuals of the same
rank. By default, the algorithm measures distance in objective function space. However, you can
measure the distance in decision variable space (also termed design variable space) by setting the
DistanceMeasureFcn option to {@distancecrowding,'genotype'}.

The algorithm sets the distance of individuals at the extreme positions to Inf. For the remaining
individuals, the algorithm calculates distance as a sum over the dimensions of the normalized
absolute distances between the individual's sorted neighbors. In other words, for dimension m and
sorted, scaled individual i:
distance(i) = sum_m(x(m,i+1) - x(m,i-1)).

The algorithm sorts each dimension separately, so the term neighbors means neighbors in each
dimension.

Individuals of the same rank with a higher distance have a higher chance of selection (higher
distance is better).

You can choose a different crowding distance measure than the default @distancecrowding
function. See “Multiobjective Options” on page 17-38.

Crowding distance is one factor in the calculation of the spread, which is part of a stopping
criterion. Crowding distance is also used as a tie-breaker in tournament selection, when two
selected individuals have the same rank.

• Spread — The spread is a measure of the movement of the Pareto set. To calculate the spread, the
gamultiobj algorithm first evaluates σ, the standard deviation of the crowding distance measure
of points that are on the Pareto front with finite distance. Q is the number of these points, and d is
the average distance measure among these points. The algorithm then evaluates μ, the sum over
the k objective function indices of the norm of the difference between the current minimum-value
Pareto point for that index and the minimum point for that index in the previous iteration. The
spread is then

14 Multiobjective Optimization

14-6



spread = (μ + σ)/(μ + Qd).

The spread is small when the extreme objective function values do not change much between
iterations (that is, μ is small) and when the points on the Pareto front are spread evenly (that is, σ
is small).

gamultiobj uses the spread in a stopping condition. Iterations halt when the spread does not
change much, and the final spread is less than an average of recent spreads. See “Stopping
Conditions” on page 14-7.

Initialization
The first step in the gamultiobj algorithm is creating an initial population. The algorithm creates
the population, or you can give an initial population or a partial initial population by using the
InitialPopulationMatrix option (see “Population Options” on page 17-26). The number of
individuals in the population is set to the value of the PopulationSize option. By default,
gamultiobj creates a population that is feasible with respect to bounds and linear constraints, but
is not necessarily feasible with respect to nonlinear constraints. The default creation algorithm is
@gacreationuniform when there are no constraints or only bound constraints, and
@gacreationlinearfeasible when there are linear or nonlinear constraints.

gamultiobj evaluates the objective function and constraints for the population, and uses those
values to create scores for the population.

Iterations
The main iteration of the gamultiobj algorithm proceeds as follows.

1 Select parents for the next generation using the selection function on the current population. The
only built-in selection function available for gamultiobj is binary tournament. You can also use
a custom selection function.

2 Create children from the selected parents by mutation and crossover.
3 Score the children by calculating their objective function values and feasibility.
4 Combine the current population and the children into one matrix, the extended population.
5 Compute the rank and crowding distance for all individuals in the extended population.
6 Trim the extended population to have PopulationSize individuals by retaining the appropriate

number of individuals of each rank.

When the problem has integer or linear constraints (including bounds), the algorithm modifies the
evolution of the population. See “Integer and Linear Constraints” on page 14-8.

Stopping Conditions
The following stopping conditions apply. Each stopping condition is associated with an exit flag.
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exitflag Value Stopping Condition
1 Geometric average of the relative change in value of the spread over

options.MaxStallGenerations generations is less than
options.FunctionTolerance, and the final spread is less than the mean spread
over the past options.MaxStallGenerations generations

0 Maximum number of generations exceeded
-1 Optimization terminated by an output function or plot function
-2 No feasible point found
-5 Time limit exceeded

For exit flag 1, the geometric average of the relative change in spread has multiplier ½k for the
relative change in the kth previous generation.

Integer and Linear Constraints
When a problem has integer or linear constraints (including bounds), the algorithm modifies the
evolution of the population.

• When the problem has both integer and linear constraints, the software modifies all generated
individuals to be feasible with respect to those constraints. You can use any creation, mutation, or
crossover function, and the entire population remains feasible with respect to integer and linear
constraints.

• When the problem has only linear constraints, the software does not modify the individuals to be
feasible with respect to those constraints. You must use creation, mutation, and crossover
functions that maintain feasibility with respect to linear constraints. Otherwise, the population can
become infeasible, and the result can be infeasible. The default operators maintain linear
feasibility: gacreationlinearfeasible or gacreationnonlinearfeasible for creation,
mutationadaptfeasible for mutation, and crossoverintermediate for crossover.

The internal algorithms for integer and linear feasibility are similar to those for surrogateopt.
When a problem has integer and linear constraints, the algorithm first creates linearly feasible points.
Then the algorithm tries to satisfy integer constraints by rounding linearly feasible points to integers
using a heuristic that attempts to keep the points linearly feasible. When this process is unsuccessful
in obtaining enough feasible points for constructing a population, the algorithm calls intlinprog to
try to find more points that are feasible with respect to bounds, linear constraints, and integer
constraints.

Later, when mutation or crossover creates new population members, the algorithms ensure that the
new members are integer and linear feasible by taking similar steps. Each new member is modified, if
necessary, to be as close as possible to its original value, while also satisfying the integer and linear
constraints and bounds.
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See Also
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More About
• “What Is Multiobjective Optimization?” on page 14-2
• “Genetic Algorithm Options” on page 17-23
• “gamultiobj Options and Syntax: Differences from ga” on page 14-18
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paretosearch Algorithm

paretosearch Algorithm Overview
The paretosearch algorithm uses pattern search on a set of points to search iteratively for
nondominated points. See “Multiobjective Terminology” on page 14-5. The pattern search satisfies all
bounds and linear constraints at each iteration.

Theoretically, the algorithm converges to points near the true Pareto front. For a discussion and proof
of convergence, see Custòdio et al. [1], whose proof applies to problems with Lipschitz continuous
objectives and constraints.

Definitions for paretosearch Algorithm
paretosearch uses a number of intermediate quantities and tolerances in its algorithm.

Quantity Definition
Rank The rank of a point has an iterative definition.

• Nondominated points have rank 1.
• For any integer k > 1, a point has rank k when the only points

that dominate it have rank strictly less than k.

14 Multiobjective Optimization

14-10



Quantity Definition
Volume Hypervolume of the set of points p in objective function space that

satisfy the inequality, for every index j,
fi(j) < pi < Mi,

where fi(j) is the ith component of the jth objective function value in
the Pareto set, and Mi is an upper bound for the ith component for all
points in the Pareto set. In this figure, M is called the Reference
Point. The shades of gray in the figure denote portions of the volume
that some calculation algorithms use as part of an inclusion-
exclusion calculation.

For details, see Fleischer [3].

paretosearch calculates the volume only when the number of
nondominated points exceeds the number of objectives.
paretosearch uses the reference point M = max(pts,[],1) + 1.
Here, pts is a matrix whose rows are the points.

Volume change is one factor in stopping the algorithm. For details,
see “Stopping Conditions” on page 14-15.

Distance Distance is a measure of the closeness of an individual to its nearest
neighbors. The paretosearch algorithm measures distance among
individuals of the same rank. The algorithm measures distance in
objective function space.

The algorithm sets the distance of individuals at the extreme
positions to Inf. For the remaining individuals, the algorithm
calculates distance as a sum over the dimensions of the normalized
absolute distances between the individual's sorted neighbors. In
other words, for dimension m and sorted, scaled individual i:

distance(i) = sum_m(x(m,i+1) - x(m,i-1)).

The algorithm sorts each dimension separately, so the term
neighbors means neighbors in each dimension.

Individuals of the same rank with a higher distance have a higher
chance of selection (higher distance is better).

Distance is one factor in the calculation of the spread, which is part
of a stopping criterion. For details, see “Stopping Conditions” on
page 14-15.
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Quantity Definition
Spread Spread is a measure of the movement of the Pareto set. To calculate

the spread, the paretosearch algorithm first evaluates σ, the
standard deviation of the crowding distance measure of points on the
Pareto front with finite distance. Q is the number of these points, and
d is the average distance measure among these points. The
algorithm then evaluates μ, the sum over the k objective function
indices of the norm of the difference between the current minimum-
value Pareto point for that index and the minimum point for that
index in the previous iteration. The spread is then

spread = (μ + σ)/(μ + Qd).

The spread is small when the extreme objective function values do
not change much between iterations (that is, μ is small) and when
the points on the Pareto front are spread evenly (that is, σ is small).

paretosearch uses the spread in a stopping condition. Iterations
halt when the spread does not change much. For details, see
“Stopping Conditions” on page 14-15.

ParetoSetChangeToleranc
e

Stopping condition for the search. paretosearch stops when the
volume, spread, or distance does not change by more than
ParetoSetChangeTolerance over a window of iterations. For
details, see “Stopping Conditions” on page 14-15.

MinPollFraction Minimum fraction of locations to poll during an iteration.
paretosearch polls at least MinPollFraction*(number of points
in pattern) locations. If the number of polled points gives a
nondominated point, the poll is considered a success. Otherwise,
paretosearch continues to poll until it either finds a nondominated
point or runs out of points in the pattern.

This option does not apply when the UseVectorized option is true.
In that case, paretosearch polls all pattern points.
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Sketch of paretosearch Algorithm
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Initialize Search
To create the initial set of points, paretosearch generates options.ParetoSetSize points from a
quasirandom sample based on the problem bounds, by default. For details, see Bratley and Fox [2].
When the problem has over 500 dimensions, paretosearch uses Latin hypercube sampling to
generate the initial points.

If a component has no bounds, paretosearch uses an artificial lower bound of -10 and an artificial
upper bound of 10.

If a component has only one bound, paretosearch uses that bound as an endpoint of an interval of
width 20 + 2*abs(bound). For example, if there is no upper bound for a component and there is a
lower bound of 15, paretosearch uses an interval width of 20 + 2*15 = 55, so uses an artificial
upper bound of 15 + 55 = 70.

If you pass some initial points in options.InitialPoints, then paretosearch uses those points
as the initial points. paretosearch generates more points, if necessary, to obtain at least
options.ParetoSetSize initial points.

paretosearch then checks the initial points to ensure that they are feasible with respect to the
bounds and linear constraints. If necessary, paretosearch projects the initial points onto the linear
subspace of linearly feasible points by solving a linear programming problem. This process can cause
some points to coincide, in which case paretosearch removes any duplicate points. paretosearch
does not alter initial points for artificial bounds, only for specified bounds and linear constraints.

After moving the points to satisfy linear constraints, if necessary, paretosearch checks whether the
points satisfy the nonlinear constraints. paretosearch gives a penalty value of Inf to any point that
does not satisfy all nonlinear constraints. Then paretosearch calculates any missing objective
function values of the remaining feasible points.

Note Currently, paretosearch does not support nonlinear equality constraints ceq(x) = 0.

Create Archive and Incumbents
paretosearch maintains two sets of points:

• archive — A structure that contains nondominated points associated with a mesh size below
options.MeshTolerance and satisfying all constraints to within
options.ConstraintTolerance. The archive structure contains no more than
2*options.ParetoSetSize points and is initially empty. Each point in archive contains an
associated mesh size, which is the mesh size at which the point was generated.

• iterates — A structure containing nondominated points and possibly some dominated points
associated with larger mesh sizes or infeasibility. Each point in iterates contains an associated
mesh size. iterates contains no more than options.ParetoSetSize points.

Poll to Find Better Points
paretosearch polls points from iterates, with the polled points inheriting the associated mesh
size from the point in iterates. The paretosearch algorithm uses a poll that maintains feasibility
with respect to bounds and all linear constraints.
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If the problem has nonlinear constraints, paretosearch computes the feasibility of each poll point.
paretosearch keeps the score of infeasible points separately from the score of feasible points. The
score of a feasible point is the vector of objective function values of that point. The score of an
infeasible point is the sum of the nonlinear infeasibilities.

paretosearch polls at least MinPollFraction*(number of points in pattern) locations for each
point in iterates. If the polled points give at least one nondominated point with respect to the
incumbent (original) point, the poll is considered a success. Otherwise, paretosearch continues to
poll until it either finds a nondominated point or runs out of points in the pattern. If paretosearch
runs out of points and does not produce a nondominated point, paretosearch declares the poll
unsuccessful and halves the mesh size.

If the poll finds nondominated points, paretosearch extends the poll in the successful directions
repeatedly, doubling the mesh size each time, until the extension produces a dominated point. During
this extension, if the mesh size exceeds options.MaxMeshSize (default value: Inf), the poll stops.
If the objective function values decrease to -Inf, paretosearch declares the problem unbounded
and stops.

Update archive and iterates Structures
After polling all the points in iterates, the algorithm examines the new points together with the
points in the iterates and archive structures. paretosearch computes the rank, or Pareto front
number, of each point and then does the following.

• Mark for removal all points that do not have rank 1 in archive.
• Mark new rank 1 points for insertion into iterates.
• Mark feasible points in iterates whose associated mesh size is less than

options.MeshTolerance for transfer to archive.
• Mark dominated points in iterates for removal only if they prevent new nondominated points

from being added to iterates.

paretosearch then computes the volume and distance measures for each point. If archive will
overflow as a result of marked points being included, then the points with the largest volume occupy
archive, and the others leave. Similarly, the new points marked for addition to iterates enter
iterates in order of their volumes.

If iterates is full and has no dominated points, then paretosearch adds no points to iterates
and declares the iteration to be unsuccessful. paretosearch multiplies the mesh sizes in iterates
by 1/2.

Stopping Conditions
For three or fewer objective functions, paretosearch uses volume and spread as stopping
measures. For four or more objectives, paretosearch uses distance and spread as stopping
measures. In the remainder of this discussion, the two measures that paretosearch uses are
denoted the applicable measures.

The algorithm maintains vectors of the last eight values of the applicable measures. After eight
iterations, the algorithm checks the values of the two applicable measures at the beginning of each
iteration, where tol = options.ParetoSetChangeTolerance:
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• spreadConverged = abs(spread(end - 1) - spread(end)) <=
tol*max(1,spread(end - 1));

• volumeConverged = abs(volume(end - 1) - volume(end)) <=
tol*max(1,volume(end - 1));

• distanceConverged = abs(distance(end - 1) - distance(end)) <=
tol*max(1,distance(end - 1));

If either applicable test is true, the algorithm stops. Otherwise, the algorithm computes the max of
squared terms of the Fourier transforms of the applicable measures minus the first term. The
algorithm then compares the maxima to their deleted terms (the DC components of the transforms).
If either deleted term is larger than 100*tol*(max of all other terms), then the algorithm
stops. This test essentially determines that the sequence of measures is not fluctuating, and therefore
has converged.

Additionally, a plot function or output function can stop the algorithm, or the algorithm can stop
because it exceeds a time limit or function evaluation limit.

Returned Values
The algorithm returns the points on the Pareto front as follows.

• paretosearch combines the points in archive and iterates into one set.
• When there are three or fewer objective functions, paretosearch returns the points from the

largest volume to the smallest, up to at most ParetoSetSize points.
• When there are four or more objective functions, paretosearch returns the points from the

largest distance to the smallest, up to at most ParetoSetSize points.

Modifications for Parallel Computation and Vectorized Function
Evaluation
When paretosearch computes objective function values in parallel or in a vectorized fashion
(UseParallel is true or UseVectorized is true), there are some changes to the algorithm.

• When UseVectorized is true, paretosearch ignores the MinPollFraction option and
evaluates all poll points in the pattern.

• When computing in parallel, paretosearch sequentially examines each point in iterates and
performs a parallel poll from each point. After returning MinPollFraction fraction of the poll
points, paretosearch determines if any poll points dominate the base point. If so, the poll is
deemed successful, and any other parallel evaluations halt. If not, polling continues until a
dominating point appears or the poll is done.

• paretosearch performs objective function evaluations either on workers or in a vectorized
fashion, but not both. If you set both UseParallel and UseVectorized to true,
paretosearch calculates objective function values in parallel on workers, but not in a vectorized
fashion. In this case, paretosearch ignores the MinPollFraction option and evaluates all poll
points in the pattern.

Run paretosearch Quickly
The fastest way to run paretosearch depends on several factors.
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• If objective function evaluations are slow, then it is usually fastest to use parallel computing. The
overhead in parallel computing can be substantial when objective function evaluations are fast,
but when they are slow, it is usually best to use more computing power.

Note Parallel computing requires a Parallel Computing Toolbox license.
• If objective function evaluations are not very time consuming, then it is usually fastest to use

vectorized evaluation. However, this is not always the case, because vectorized computations
evaluate an entire pattern, whereas serial evaluations can take just a small fraction of a pattern.
In high dimensions especially, this reduction in evaluations can cause serial evaluation to be faster
for some problems.

• To use vectorized computing, your objective function must accept a matrix with an arbitrary
number of rows. Each row represents one point to evaluate. The objective function must return a
matrix of objective function values with the same number of rows as it accepts, with one column
for each objective function. For a single-objective discussion, see “Vectorize the Fitness Function”
on page 8-99 (ga) or “Vectorized Objective Function” on page 6-79 (patternsearch).
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gamultiobj Options and Syntax: Differences from ga
The syntax and options for gamultiobj are similar to those for ga, with the following differences:

• gamultiobj uses only the 'penalty' algorithm for nonlinear constraints. See “Nonlinear
Constraint Solver Algorithms” on page 8-54.

• gamultiobj takes an option DistanceMeasureFcn, a function that assigns a distance measure
to each individual with respect to its neighbors.

• gamultiobj takes an option ParetoFraction, a number between 0 and 1 that specifies the
fraction of the population on the best Pareto frontier to be kept during the optimization. (If there
are too few individuals of other ranks in step 6 of “Iterations” on page 14-7, then the fraction of
the population on the best Pareto frontier can exceed ParetoFraction.)

• gamultiobj uses only the Tournament selection function.
• gamultiobj uses elite individuals differently than ga. It sorts noninferior individuals above

inferior ones, so it uses elite individuals automatically.
• gamultiobj has only one hybrid function, fgoalattain.
• gamultiobj does not have a stall time limit.
• gamultiobj has different plot functions available.
• gamultiobj does not have a choice of scaling function.

See Also

More About
• “What Is Multiobjective Optimization?” on page 14-2
• “gamultiobj Algorithm” on page 14-5
• “Genetic Algorithm Options” on page 17-23
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Pareto Front for Two Objectives
In this section...
“Multiobjective Optimization with Two Objectives” on page 14-19
“Find Pareto Set Using Optimize Live Editor Task” on page 14-19
“Find Pareto Set at the Command Line” on page 14-24
“Alternate Views” on page 14-25

Multiobjective Optimization with Two Objectives
This example shows how to find a Pareto set for a two-objective function of two variables. The
example presents two approaches for minimizing: using the Optimize Live Editor task and working
at the command line.

The two-objective function f(x), where x is also two-dimensional, is

f1(x) = x1
4 + x2

4 + x1x2− (x1− 10x1
2

f2(x) = x1
4 + x2

4 + x1x2− (x1 .

Find Pareto Set Using Optimize Live Editor Task
1 Create a new live script by clicking the New Live Script button in the File section on the Home

tab.
2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select

Task > Optimize.
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3 Click the Solver-based task.
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4 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

5 In the new section above the task, enter the following code to define the number of variables and
lower and upper bounds.

nvar = 2;
lb = [0 -5];
ub = [5 0];

6 To place these variables into the workspace, run the section by pressing Ctrl+Enter.
7 Specify Problem Type

In the Specify problem type section of the task, click the Objective > Nonlinear button.
8 Click the Constraints > Lower bounds and Upper bounds buttons.
9 Select Solver > gamultiobj - Multiobjective optimization using genetic algorithm.
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10 Select Problem Data

In the Select problem data section, select Objective function > Local function, and then
click the New button. The function appears in a new section below the task.

11 Edit the resulting function definition to contain the following code.

function f = mymulti1(x)

f(2) = x(1)^4 + x(2)^4 + x(1)*x(2) - (x(1)*x(2))^2;
f(1) = f(2) - 10*x(1)^2;
end

12 In the Select problem data section, select the Local function > mymulti1 function.
13 Select Number of variables > nvar.
14 Select Lower bounds > From workspace > lb and Upper bounds > From workspace > ub.
15 Specify Solver Options

Expand the Specify solver options section of the task, and then click the Add button. To have a
denser, more connected Pareto front, specify a larger-than-default populations by selecting
Population settings > Population size > 60.

16 To have more of the population on the Pareto front than the default settings, click the + button.
In the resulting options, select Algorithm > Pareto set fraction > 0.7.

17 Set Display Options

In the Display progress section of the task, select the Pareto front plot function.

14 Multiobjective Optimization

14-22



18 Run Solver and Examine Results

To run the solver, click the options button ⁝ at the top right of the task window, and select Run
Section. The plot appears in a separate figure window and in the task output area.
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The plot shows the tradeoff between the two components of f, which is plotted in objective
function space. For details, see the figure “Figure 14-2, Set of Noninferior Solutions” on page 14-
3.

Find Pareto Set at the Command Line
To perform the same optimization at the command line, complete the following steps.

1 Create the mymulti1 objective function file on your MATLAB path.

function f = mymulti1(x)

f(2) = x(1)^4 + x(2)^4 + x(1)*x(2) - (x(1)*x(2))^2;
f(1) = f(2) - 10*x(1)^2;
end

2 Set the options and bounds.

options = optimoptions('gamultiobj','PopulationSize',60,...
          'ParetoFraction',0.7,'PlotFcn',@gaplotpareto);
lb = [0 -5];
ub = [5 0];

3 Run the optimization using the options.

[solution,ObjectiveValue] = gamultiobj(@mymulti1,2,...
                          [],[],[],[],lb,ub,options);
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Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

Alternate Views
You can view this problem in other ways. The following figure contains a plot of the level curves of the
two objective functions, the Pareto frontier calculated by gamultiobj (boxes), and the x-values of
the true Pareto frontier (diamonds connected by a nearly straight line). The true Pareto frontier
points are where the level curves of the objective functions are parallel. The algorithm calculates
these points by finding where the gradients of the objective functions are parallel. The figure is
plotted in parameter space; see “Figure 14-1, Mapping from Parameter Space into Objective Function
Space” on page 14-3.

Contours of objective functions, and Pareto frontier

gamultiobj finds the ends of the line segment, meaning it finds the full extent of the Pareto frontier.

See Also
gamultiobj | paretosearch
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More About
• “Multiobjective Optimization”
• “Add Interactive Tasks to a Live Script”
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Compare paretosearch and gamultiobj
This example shows how to create a set of points on the Pareto front using both paretosearch and
gamultiobj. The objective function has two objectives and a two-dimensional control variable x. The
objective function mymulti3 is available in your MATLAB® session when you click the button to edit
or try this example. Alternatively, copy the mymulti3 code to your session. For speed of calculation,
the function is vectorized.

type mymulti3

function f = mymulti3(x)
%
f(:,1) = x(:,1).^4 + x(:,2).^4 + x(:,1).*x(:,2) - (x(:,1).^2).*(x(:,2).^2) - 9*x(:,1).^2;
f(:,2) = x(:,2).^4 + x(:,1).^4 + x(:,1).*x(:,2) - (x(:,1).^2).*(x(:,2).^2) + 3*x(:,2).^3;

Basic Example and Plots

Find Pareto sets for the objective functions using paretosearch and gamultiobj. Set the
UseVectorized option to true for added speed. Include a plot function to visualize the Pareto set.

rng default
nvars = 2;
opts = optimoptions(@gamultiobj,'UseVectorized',true,'PlotFcn','gaplotpareto');
[xga,fvalga,~,gaoutput] = gamultiobj(@(x)mymulti3(x),nvars,[],[],[],[],[],[],[],opts);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
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optsp = optimoptions('paretosearch','UseVectorized',true,'PlotFcn',{'psplotparetof' 'psplotparetox'});
[xp,fvalp,~,psoutput] = paretosearch(@(x)mymulti3(x),nvars,[],[],[],[],[],[],[],optsp);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Compute theoretically exact points on the Pareto front by using mymulti4. The mymulti4 function is
available in your MATLAB session when you click the button to edit or try this example.

type mymulti4

function mout = mymulti4(x)
%
gg = [4*x(1)^3+x(2)-2*x(1)*(x(2)^2) - 18*x(1);
    x(1)+4*x(2)^3-2*(x(1)^2)*x(2)];
gf = gg + [18*x(1);9*x(2)^2];

mout = gf(1)*gg(2) - gf(2)*gg(1);

The mymulti4 function evaluates the gradients of the two objective functions. Next, for a range of
values of x(2), use fzero to locate the point where the gradients are exactly parallel, which is
where the output mout = 0.

a = [fzero(@(t)mymulti4([t,-3.15]),[2,3]),-3.15];
for jj = linspace(-3.125,-1.89,50)
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    a = [a;[fzero(@(t)mymulti4([t,jj]),[2,3]),jj]];
end
figure
plot(fvalp(:,1),fvalp(:,2),'bo');
hold on
fs = mymulti3(a);
plot(fvalga(:,1),fvalga(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.')
legend('Paretosearch','Gamultiobj','True')
xlabel('Objective 1')
ylabel('Objective 2')
hold off

gamultiobj finds points with a slightly wider spread in objective function space. Plot the solutions
in decision variable space, along with the theoretical optimal Pareto curve and a contour plot of the
two objective functions.

[x,y] = meshgrid(1.9:.01:3.1,-3.2:.01:-1.8);
mydata = mymulti3([x(:),y(:)]);
myff = sqrt(mydata(:,1) + 39);% Spaces the contours better
mygg = sqrt(mydata(:,2) + 28);% Spaces the contours better
myff = reshape(myff,size(x));
mygg = reshape(mygg,size(x));

figure;
hold on
contour(x,y,mygg,50)
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contour(x,y,myff,50)
plot(xp(:,1),xp(:,2),'bo')
plot(xga(:,1),xga(:,2),'r*')
plot(a(:,1),a(:,2),'-k')
xlabel('x(1)')
ylabel('x(2)')
hold off

Unlike the paretosearch solution, the gamultiobj solution has points at the extreme ends of the
range in objective function space. However, the paretosearch solution has more points that are
closer to the true solution in both objective function space and decision variable space. The number
of points on the Pareto front is different for each solver when you use the default options.

Shifted Problem

What happens if the solution to your problem has control variables that are large? Examine this case
by shifting the problem variables. For an unconstrained problem, gamultiobj can fail, while
paretosearch is more robust to such shifts.

For easier comparison, specify 35 points on the Pareto front for each solver.

shift = [20,-30];
fun = @(x)mymulti3(x+shift);
opts.PopulationSize = 100; % opts.ParetoFraction = 35
[xgash,fvalgash,~,gashoutput] = gamultiobj(fun,nvars,[],[],[],[],[],[],opts);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
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gamultiobj fails to find a useful Pareto set.

optsp.PlotFcn = [];
optsp.ParetoSetSize = 35;
[xpsh,fvalpsh,~,pshoutput] = paretosearch(fun,nvars,[],[],[],[],[],[],[],optsp);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

figure
plot(fvalpsh(:,1),fvalpsh(:,2),'bo');
hold on
plot(fs(:,1),fs(:,2),'k.')
legend('Paretosearch','True')
xlabel('Objective 1')
ylabel('Objective 2')
hold off
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paretosearch finds solution points spread evenly over nearly the entire possible range.

Adding bounds, even fairly loose ones, helps both gamultiobj and paretosearch to find
appropriate solutions. Set lower bounds of -50 in each component, and upper bounds of 50.

opts.PlotFcn = [];
optsp.PlotFcn = [];
lb = [-50,-50];
ub = -lb;
[xgash,fvalgash,~,gashoutput] = gamultiobj(fun,nvars,[],[],[],[],lb,ub,opts);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

[xpsh2,fvalpsh2,~,pshoutput2] = paretosearch(fun,nvars,[],[],[],[],lb,ub,[],optsp);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

figure
plot(fvalpsh2(:,1),fvalpsh2(:,2),'bo');
hold on
plot(fvalgash(:,1),fvalgash(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.')
legend('Paretosearch','Gamultiobj','True')
xlabel('Objective 1')
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ylabel('Objective 2')
hold off

In this case, both solvers find good solutions.

Start paretosearch from gamultiobj Solution

Obtain a similar range of solutions from the solvers by starting paretosearch from the gamultiobj
solution.

optsp.InitialPoints = xgash;
[xpsh3,fvalpsh3,~,pshoutput3] = paretosearch(fun,nvars,[],[],[],[],lb,ub,[],optsp);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

figure
plot(fvalpsh3(:,1),fvalpsh3(:,2),'bo');
hold on
plot(fvalgash(:,1),fvalgash(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.')
legend('Paretosearch','Gamultiobj','True')
xlabel('Objective 1')
ylabel('Objective 2')
hold off
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Now the paretosearch solution is similar to the gamultiobj solution, although some of the
solution points differ.

Start from Single-Objective Solutions

Another way of obtaining a good solution is to start from the points that minimize each objective
function separately.

From the multiobjective function, create a single-objective function that chooses each objective in
turn. Use the shifted function from the previous section. Because you are giving good start points to
the solvers, you do not need to specify bounds.

nobj = 2; % Number of objectives

x0 = -shift; % Initial point for single-objective minimization
uncmin = cell(nobj,1); % Cell array to hold the single-objective minima
allfuns = zeros(nobj,2); % Hold the objective function values
eflag = zeros(nobj,1);
fopts = optimoptions('patternsearch','Display','off'); % Use an appropriate solver here
for i = 1:nobj
    indi = zeros(nobj,1); % Choose the objective to minimize
    indi(i) = 1;
    funi = @(x)dot(fun(x),indi);
    [uncmin{i},~,eflag(i)] = patternsearch(funi,x0,[],[],[],[],[],[],[],fopts); % Minimize objective i
    allfuns(i,:) = fun(uncmin{i});
end
uncmin = cell2mat(uncmin); % Matrix of start points
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Start paretosearch from the single-objective minimum points and note that it has a full range in its
solutions. paretosearch adds random initial points to the supplied ones in order to have a
population of at least options.ParetoSetSize individuals. Similarly, gamultiobj adds random
points to the supplied ones to obtain a population of at least
(options.PopulationSize)*(options.ParetoFraction) individuals.

optsp = optimoptions(optsp,'InitialPoints',uncmin);
[xpinit,fvalpinit,~,outputpinit] = paretosearch(fun,nvars,[],[],[],[],[],[],[],optsp);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Now solve the problem using gamultiobj starting from the initial points.

opts = optimoptions(opts,'InitialPopulationMatrix',uncmin);
[xgash2,fvalgash2,~,gashoutput2] = gamultiobj(fun,nvars,[],[],[],[],[],[],opts);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

figure
plot(fvalpinit(:,1),fvalpinit(:,2),'bo');
hold on
plot(fvalgash2(:,1),fvalgash2(:,2),'r*');
plot(fs(:,1),fs(:,2),'k.')
plot(allfuns(:,1),allfuns(:,2),'gs','MarkerSize',12)
legend('Paretosearch','Gamultiobj','True','Start Points')
xlabel('Objective 1')
ylabel('Objective 2')
hold off
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Both solvers fill in the Pareto front between the extreme points, with reasonably accurate and well-
spaced solutions.

View the final points in decision variable space.

figure;
hold on
xx = x - shift(1);
yy = y - shift(2);
contour(xx,yy,mygg,50)
contour(xx,yy,myff,50)
plot(xpinit(:,1),xpinit(:,2),'bo')
plot(xgash2(:,1),xgash2(:,2),'r*')
ashift = a - shift;
plot(ashift(:,1),ashift(:,2),'-k')
plot(uncmin(:,1),uncmin(:,2),'gs','MarkerSize',12);
xlabel('x(1)')
ylabel('x(2)')
hold off
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See Also
gamultiobj | paretosearch

More About
• “Multiobjective Optimization”
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Plot 3-D Pareto Front
This example shows how to plot a Pareto front for three objectives. Each objective function is the
squared distance from a particular 3-D point. For speed of calculation, write each objective function
in vectorized fashion as a dot product. To obtain a dense solution set, use 200 points on the Pareto
front.

The example first shows how to obtain the plot using the built-in 'psplotparetof' plot function.
Then solve the same problem and obtain the plot using gamultiobj, which requires slightly different
option settings. The example shows how to obtain solution variables for a particular point in the
Pareto plot. Then the example shows how to plot the points directly, without using a plot function, and
shows how to plot an interpolated surface instead of Pareto points.

fun = @(x)[dot(x - [1,2,3],x - [1,2,3],2), ...
    dot(x - [-1,3,-2],x - [-1,3,-2],2), ...
    dot(x - [0,-1,1],x - [0,-1,1],2)];
options = optimoptions('paretosearch','UseVectorized',true,'ParetoSetSize',200,...
    'PlotFcn','psplotparetof');
lb = -5*ones(1,3);
ub = -lb;
rng default % For reproducibility
[x,f] = paretosearch(fun,3,[],[],[],[],lb,ub,[],options);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.
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opts = optimoptions('gamultiobj',"PlotFcn","gaplotpareto","PopulationSize",200);
[xg,fg] = gamultiobj(fun,3,[],[],[],[],lb,ub,[],opts);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
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This plot shows many fewer points than the paretosearch plot. Solve the problem again using a
larger population.

opts.PopulationSize = 400;
[xg,fg] = gamultiobj(fun,3,[],[],[],[],lb,ub,[],opts);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Change the viewing angle to better match the psplotpareto plot.

view(-40,57)
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Find Solution Point Using Tool Tips

Select a point in the plot by using the Data Tips tool.
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The pictured point has index 92. Display the point xg(92,:) that contains the solution variables
associated with the pictured point.

disp(xg(92,:))

   -0.2889    0.0939    0.4980

Evaluate the objective functions at this point to see that it matches the displayed values.

disp(fun(xg(92,:)))

   11.5544   15.1912    1.5321

Create 3-D Scatter Plot

Plot points on the Pareto front by using scatter3.

figure
subplot(2,2,1)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
subplot(2,2,2)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
view(-148,8)
subplot(2,2,3)
scatter3(f(:,1),f(:,2),f(:,3),'k.');
view(-180,8)
subplot(2,2,4)
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scatter3(f(:,1),f(:,2),f(:,3),'k.');
view(-300,8)

By rotating the plot interactively, you get a better view of its structure.

Interpolated Surface Plot

To see the Pareto front as a surface, create a scattered interpolant.

figure
F = scatteredInterpolant(f(:,1),f(:,2),f(:,3),'linear','none');

To plot the resulting surface, create a mesh in x-y space from the smallest to the largest values. Then
plot the interpolated surface.

sgr = linspace(min(f(:,1)),max(f(:,1)));
ygr = linspace(min(f(:,2)),max(f(:,2)));
[XX,YY] = meshgrid(sgr,ygr);
ZZ = F(XX,YY);

Plot the Pareto points and surface together.

figure
subplot(2,2,1)
surf(XX,YY,ZZ,'LineStyle','none')
hold on
scatter3(f(:,1),f(:,2),f(:,3),'k.');
hold off
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subplot(2,2,2)
surf(XX,YY,ZZ,'LineStyle','none')
hold on
scatter3(f(:,1),f(:,2),f(:,3),'k.');
hold off
view(-148,8)
subplot(2,2,3)
surf(XX,YY,ZZ,'LineStyle','none')
hold on
scatter3(f(:,1),f(:,2),f(:,3),'k.');
hold off
view(-180,8)
subplot(2,2,4)
surf(XX,YY,ZZ,'LineStyle','none')
hold on
scatter3(f(:,1),f(:,2),f(:,3),'k.');
hold off
view(-300,8)

By rotating the plot interactively, you get a better view of its structure.

Plot Pareto Set in Control Variable Space

You can obtain a plot of the points on the Pareto set by using the 'psplotparetox' plot function.

options.PlotFcn = 'psplotparetox';
[x,f] = paretosearch(fun,3,[],[],[],[],lb,ub,[],options);
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Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Alternatively, create a scatter plot of the x-values in the Pareto set.

figure
subplot(2,2,1)
scatter3(x(:,1),x(:,2),x(:,3),'k.');
subplot(2,2,2)
scatter3(x(:,1),x(:,2),x(:,3),'k.');
view(-148,8)
subplot(2,2,3)
scatter3(x(:,1),x(:,2),x(:,3),'k.');
view(-180,8)
subplot(2,2,4)
scatter3(x(:,1),x(:,2),x(:,3),'k.');
view(-300,8)
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This set does not have a clear surface. By rotating the plot interactively, you get a better view of its
structure.

Parallel Plot

You can plot the Pareto set using a parallel coordinates plot. You can use a parallel coordinates plot
for any number of dimensions. In the plot, each colored line represents one Pareto point, and each
coordinate variable plots to an associated vertical line. Plot the objective function values using
parellelplot.

figure
p = parallelplot(f);
p.CoordinateTickLabels =["Obj1";"Obj2";"Obj3"];

Color the Pareto points in the lowest tenth of the values of Obj2.

minObj2 = min(f(:,2));
maxObj2 = max(f(:,2));
grpRng = minObj2 + 0.1*(maxObj2-minObj2);
grpData = f(:,2) <= grpRng;
p.GroupData = grpData;
p.LegendVisible = "off";
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See Also
gamultiobj | paretosearch

More About
• “Multiobjective Optimization”
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Performing a Multiobjective Optimization Using the Genetic
Algorithm

This example shows how to perform a multiobjective optimization using multiobjective genetic
algorithm function gamultiobj in Global Optimization Toolbox.

Simple Multiobjective Optimization Problem

gamultiobj can be used to solve multiobjective optimization problem in several variables. Here we
want to minimize two objectives, each having one decision variable.

   min F(x) = [objective1(x); objective2(x)]
    x

   where, objective1(x) = (x+2)^2 - 10, and
          objective2(x) = (x-2)^2 + 20

% Plot two objective functions on the same axis
x = -10:0.5:10;
f1 = (x+2).^2 - 10;
f2 = (x-2).^2 + 20;
plot(x,f1);
hold on;
plot(x,f2,'r');
grid on;
title('Plot of objectives ''(x+2)^2 - 10'' and ''(x-2)^2 + 20''');
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The two objectives have their minima at x = -2 and x = +2 respectively. However, in a
multiobjective problem, x = -2, x = 2, and any solution in the range -2 <= x <= 2 is equally
optimal. There is no single solution to this multiobjective problem. The goal of the multiobjective
genetic algorithm is to find a set of solutions in that range (ideally with a good spread). The set of
solutions is also known as a Pareto front. All solutions on the Pareto front are optimal.

Coding the Fitness Function

We create a MATLAB® file named simple_multiobjective.m:

   function y = simple_multiobjective(x)
   y(1) = (x+2)^2 - 10;
   y(2) = (x-2)^2 + 20;

The Genetic Algorithm solver assumes the fitness function will take one input x, where x is a row
vector with as many elements as the number of variables in the problem. The fitness function
computes the value of each objective function and returns these values in a single vector output y.

Minimizing Using gamultiobj

To use the gamultiobj function, we need to provide at least two input arguments, a fitness function,
and the number of variables in the problem. The first two output arguments returned by gamultiobj
are X, the points on Pareto front, and FVAL, the objective function values at the values X. A third
output argument, exitFlag, tells you the reason why gamultiobj stopped. A fourth argument,
OUTPUT, contains information about the performance of the solver. gamultiobj can also return a
fifth argument, POPULATION, that contains the population when gamultiobj terminated and a sixth
argument, SCORE, that contains the function values of all objectives for POPULATION when
gamultiobj terminated.

FitnessFunction = @simple_multiobjective;
numberOfVariables = 1;
[x,fval] = gamultiobj(FitnessFunction,numberOfVariables);

Optimization terminated: maximum number of generations exceeded.

The X returned by the solver is a matrix in which each row is the point on the Pareto front for the
objective functions. The FVAL is a matrix in which each row contains the value of the objective
functions evaluated at the corresponding point in X.

size(x)
size(fval)

ans =

    18     1

ans =

    18     2
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Constrained Multiobjective Optimization Problem

gamultiobj can handle optimization problems with linear inequality, equality, and simple bound
constraints. Here we want to add bound constraints on simple multiobjective problem solved
previously.

   min F(x) = [objective1(x); objective2(x)]
    x

   subject to  -1.5 <= x <= 0 (bound constraints)

   where, objective1(x) = (x+2)^2 - 10, and
          objective2(x) = (x-2)^2 + 20

gamultiobj accepts linear inequality constraints in the form A*x <= b and linear equality
constraints in the form Aeq*x = beq and bound constraints in the form lb <= x <= ub. We pass A
and Aeq as matrices and b, beq, lb, and ub as vectors. Since we have no linear constraints in this
example, we pass [] for those inputs.

A = []; b = [];
Aeq = []; beq = [];
lb = -1.5;
ub = 0;
x = gamultiobj(FitnessFunction,numberOfVariables,A,b,Aeq,beq,lb,ub);

Optimization terminated: maximum number of generations exceeded.

All solutions in X (each row) will satisfy all linear and bound constraints within the tolerance specified
in options.ConstraintTolerance. However, if you use your own crossover or mutation function,
ensure that the new individuals are feasible with respect to linear and simple bound constraints.

Adding Visualization

gamultiobj can accept one or more plot functions through the options argument. This feature is
useful for visualizing the performance of the solver at run time. Plot functions can be selected using
optimoptions.

Here we use optimoptions to select two plot functions. The first plot function is gaplotpareto,
which plots the Pareto front (limited to any three objectives) at every generation. The second plot
function is gaplotscorediversity, which plots the score diversity for each objective. The options
are passed as the last argument to the solver.

options = optimoptions(@gamultiobj,'PlotFcn',{@gaplotpareto,@gaplotscorediversity});
gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options);

Optimization terminated: maximum number of generations exceeded.
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Vectorizing Your Fitness Function

Consider the previous fitness functions again:

   objective1(x) = (x+2)^2 - 10, and
   objective2(x) = (x-2)^2 + 20

By default, the gamultiobj solver only passes in one point at a time to the fitness function. However,
if the fitness function is vectorized to accept a set of points and returns a set of function values you
can speed up your solution.

For example, if the solver needs to evaluate five points in one call to this fitness function, then it will
call the function with a matrix of size 5-by-1, i.e., 5 rows and 1 column (recall that 1 is the number of
variables).

Create a MATLAB file called vectorized_multiobjective.m:

   function scores = vectorized_multiobjective(pop)
     popSize = size(pop,1); % Population size
     numObj = 2;  % Number of objectives
     % initialize scores
     scores = zeros(popSize, numObj);
     % Compute first objective
     scores(:,1) = (pop + 2).^2 - 10;
     % Compute second objective
     scores(:,2) = (pop - 2).^2 + 20;
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This vectorized version of the fitness function takes a matrix pop with an arbitrary number of points,
the rows of pop, and returns a matrix of size populationSize-by- numberOfObjectives.

We need to specify that the fitness function is vectorized using the options created using
optimoptions. The options are passed in as the ninth argument.

FitnessFunction = @(x) vectorized_multiobjective(x);
options = optimoptions(@gamultiobj,'UseVectorized',true);
gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

See Also

More About
• “Vectorize the Fitness Function” on page 8-99
• “Genetic Algorithm Options” on page 17-23

14 Multiobjective Optimization

14-52



Effects of Multiobjective Genetic Algorithm Options
This example shows some of the effects of multiobjective genetic algorithm options. You create and
change options for gamultiobj using the optimoptions function.

Setting Up a Problem for gamultiobj

gamultiobj finds a local Pareto front for multiple objective functions using the genetic algorithm.
For this example, use gamultiobj to obtain a Pareto front for two objective functions described in
the MATLAB® file kur_multiobjective.m. This file represents a real-valued function that consists
of two objectives, each of three decision variables. Also impose bound constraints on the decision
variables -5 <= x(i) <= 5, i = 1,2,3.

type kur_multiobjective.m

function y = kur_multiobjective(x)
%KUR_MULTIOBJECTIVE Objective function for a multiobjective problem. 
%   The Pareto-optimal set for this two-objective problem is nonconvex as
%   well as disconnected. The function KUR_MULTIOBJECTIVE computes two
%   objectives and returns a vector y of size 2-by-1.
%
%   Reference: Kalyanmoy Deb, "Multi-Objective Optimization using
%   Evolutionary Algorithms", John Wiley & Sons ISBN 047187339 

%   Copyright 2007 The MathWorks, Inc.

% Initialize for two objectives 
y = zeros(2,1);

% Compute first objective
for i = 1:2
  y(1) = y(1)  - 10*exp(-0.2*sqrt(x(i)^2 + x(i+1)^2));
end

% Compute second objective
for i = 1:3
   y(2) = y(2) +  abs(x(i))^0.8 + 5*sin(x(i)^3);
end

To observe the solver progress, plot the Pareto front in every generation using the plot function
@gaplotpareto. Specify this plot function in the options by using the optimoptions function.

FitnessFunction = @kur_multiobjective; % Function handle to the fitness function
numberOfVariables = 3; % Number of decision variables
lb = [-5 -5 -5]; % Lower bound
ub = [5 5 5]; % Upper bound
A = []; % No linear inequality constraints
b = []; % No linear inequality constraints
Aeq = []; % No linear equality constraints
beq = []; % No linear equality constraints
options = optimoptions(@gamultiobj,'PlotFcn',@gaplotpareto);

Run the gamultiobj solver and display the number of solutions found on the Pareto front and the
number of generations.

[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
    b,Aeq,beq,lb,ub,options);
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Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));

The number of points on the Pareto front was: 18

fprintf('The number of generations was : %d\n', Output.generations);

The number of generations was : 317

The Pareto plot displays two competing objectives. For this problem, the Pareto front is known to be
disconnected. The solution from gamultiobj can capture the Pareto front even if it is disconnected.
Note that when you run this example, your result may be different from the results shown because
gamultiobj uses random number generators.

Elitist Multiobjective Genetic Algorithm

The multiobjective genetic algorithm (gamultiobj) works on a population using a set of operators
that are applied to the population. A population is a set of points in the design space. The initial
population is generated randomly by default. The next generation of the population is computed using
the non-dominated rank and a distance measure of the individuals in the current generation.

A non-dominated rank is assigned to each individual using the relative fitness. Individual 'p'
dominates 'q' ('p' has a lower rank than 'q') if 'p' is strictly better than 'q' in at least one objective and
'p' is no worse than 'q' in all objectives. This is the same as saying 'q' is dominated by 'p' or 'p' is non-
inferior to 'q'. Two individuals 'p' and 'q' are considered to have equal ranks if neither dominates the
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other. The distance measure of an individual is used to compare individuals with equal rank. It is a
measure of how far an individual is from the other individuals with the same rank.

The multiobjective GA function gamultiobj uses a controlled elitist genetic algorithm (a variant of
NSGA-II [1]). An elitist GA always favors individuals with better fitness value (rank) whereas, a
controlled elitist GA also favors individuals that can help increase the diversity of the population even
if they have a lower fitness value. It is very important to maintain the diversity of population for
convergence to an optimal Pareto front. This is done by controlling the elite members of the
population as the algorithm progresses. Two options 'ParetoFraction' and 'DistanceFcn' are used to
control the elitism. The Pareto fraction option limits the number of individuals on the Pareto front
(elite members) and the distance function helps to maintain diversity on a front by favoring
individuals that are relatively far away on the front.

Specifying Multiobjective GA Options

We can chose the default distance measure function, distancecrowding, that is provided in the
toolbox or write our own function to calculate the distance measure of an individual. The crowding
distance measure function in the toolbox takes an optional argument to calculate distance either in
function space (phenotype) or design space (genotype). If 'genotype' is chosen, then the diversity
on a Pareto front is based on the design space. The default choice is 'phenotype' and, in that case,
the diversity is based on the function space. Here we choose 'genotype' for our distance function.
We will directly modify the value of the parameter DistanceMeasureFcn.

options.DistanceMeasureFcn = {@distancecrowding,'genotype'};

The Pareto fraction has a default value of 0.35 i.e., the solver will try to limit the number of
individuals in the current population that are on the Pareto front to 35 percent of the population size.
Here we set the Pareto fraction to 0.5.

options = optimoptions(options,'ParetoFraction',0.5);

Run the gamultiobj solver and display the number of solutions found on the Pareto front and the
average distance measure of solutions.

[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
                                        b,Aeq,beq,lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
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fprintf('The number of points on the Pareto front was: %d\n', size(x,1));

The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);

The average distance measure of the solutions on the Pareto front was: 0.051005

fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);

The spread measure of the Pareto front was: 0.181192

A smaller average distance measure indicates that the solutions on the Pareto front are evenly
distributed. However, if the Pareto front is disconnected, then the distance measure will not indicate
the true spread of solutions.

Modifying the Stopping Criteria

gamultiobj uses three different criteria to determine when to stop the solver. The solver stops when
any one of the stopping criteria is met. It stops when the maximum number of generations is reached;
by default this number is '200*numberOfVariables'. gamultiobj also stops if the average
change in the spread of the Pareto front over the MaxStallGenerations generations (default is
100) is less than the tolerance specified in options.FunctionTolerance. The third criterion is the
maximum time limit in seconds (default is Inf). Here we modify the stopping criteria to change the
FunctionTolerance from 1e-4 to 1e-3 and increase MaxStallGenerations to 150.

options = optimoptions(options,'FunctionTolerance',1e-3,'MaxStallGenerations',150);
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Run the gamultiobj solver and display the number of solutions found on the Pareto front and the
number of generations.

[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
    b,Aeq,beq,lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));

The number of points on the Pareto front was: 25

fprintf('The number of generations was : %d\n', Output.generations);

The number of generations was : 152

Multiobjective GA Hybrid Function

We will use a hybrid scheme to find an optimal Pareto front for our multiobjective problem.
gamultiobj can reach the region near an optimal Pareto front relatively quickly, but it can take
many function evaluations to achieve convergence. A commonly used technique is to run
gamultiobj for a small number of generations to get near an optimum front. Then the solution from
gamultiobj is used as an initial point for another optimization solver that is faster and more
efficient for a local search. We use fgoalattain as the hybrid solver with gamultiobj.
fgoalattain solves the goal attainment problem, which is one formulation for minimizing a
multiobjective optimization problem.
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The hybrid functionality in multiobjective function gamultiobj is slightly different from that of the
single objective function GA. In single objective GA the hybrid function starts at the best point
returned by GA. However, in gamultiobj the hybrid solver will start at all the points on the Pareto
front returned by gamultiobj. The new individuals returned by the hybrid solver are combined with
the existing population and a new Pareto front is obtained. It may be useful to see the syntax of
fgoalattain function to better understand how the output from gamultiobj is internally
converted to the input of fgoalattain function. gamultiobj estimates the pseudo weights
(required input for fgoalattain) for each point on the Pareto front and runs the hybrid solver
starting from each point on the Pareto front. Another required input, goal, is a vector specifying the
goal for each objective. gamultiobj provides this input as the extreme points from the Pareto front
found so far.

Here we run gamultiobj without the hybrid function.

[x,Fval,exitFlag,Output] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
    b,Aeq,beq,lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));

The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);

The average distance measure of the solutions on the Pareto front was: 0.0434477
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fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);

The spread measure of the Pareto front was: 0.17833

Here we use fgoalattain as the hybrid function. We also reset the random number generators so
that we can compare the results with the previous run (without the hybrid function).

options = optimoptions(options,'HybridFcn',@fgoalattain);

Reset the random state (only to compare with previous run)

strm = RandStream.getGlobalStream;
strm.State = Output.rngstate.State;

Run the GAMULTIOBJ solver with hybrid function.

[x,Fval,exitFlag,Output,Population,Score] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
    b,Aeq,beq,lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));

The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);

The average distance measure of the solutions on the Pareto front was: 0.127964
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fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);

The spread measure of the Pareto front was: 0.421195

If the Pareto fronts obtained by gamultiobj alone and by using the hybrid function are close, we can
compare them using the spread and the average distance measures. The average distance of the
solutions on the Pareto front can be improved by using a hybrid function. The spread is a measure of
the change in two fronts and that can be higher when hybrid function is used. This indicates that the
front has changed considerably from that obtained by gamultiobj with no hybrid function.

It is certain that using the hybrid function will result in an optimal Pareto front but we may lose the
diversity of the solution (because fgoalattain does not try to preserve the diversity). This can be
indicated by a higher value of the average distance measure and the spread of the front. We can
further improve the average distance measure of the solutions and the spread of the Pareto front by
running gamultiobj again with the final population returned in the last run. Here, we should
remove the hybrid function.

options = optimoptions(options,'HybridFcn',[]); % No hybrid function
% Provide initial population and scores 
options = optimoptions(options,'InitialPopulationMatrix',Population,'InitialScoresMatrix',Score);
% Run the GAMULTIOBJ solver with hybrid function.
[x,Fval,exitFlag,Output,Population,Score] = gamultiobj(FitnessFunction,numberOfVariables,A, ...
    b,Aeq,beq,lb,ub,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

fprintf('The number of points on the Pareto front was: %d\n', size(x,1));
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The number of points on the Pareto front was: 25

fprintf('The average distance measure of the solutions on the Pareto front was: %g\n', Output.averagedistance);

The average distance measure of the solutions on the Pareto front was: 0.0518031

fprintf('The spread measure of the Pareto front was: %g\n', Output.spread);

The spread measure of the Pareto front was: 0.306712

References

[1] Kalyanmoy Deb, "Multi-Objective Optimization using Evolutionary
Algorithms", John Wiley & Sons ISBN 047187339.

See Also

More About
• “Genetic Algorithm Options” on page 17-23
• “Hybrid Scheme in the Genetic Algorithm” on page 8-91
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Design Optimization of a Welded Beam
This example shows how to examine the tradeoff between the strength and cost of a beam. Several
publications use this example as a test problem for various multiobjective algorithms, including Deb
et al. [1] and Ray and Liew [2].

For a video overview of this example, see Pareto Sets for Multiobjective Optimization.

Problem Description

The following sketch is adapted from Ray and Liew [2].

This sketch represents a beam welded onto a substrate. The beam supports a load P at a distance L
from the substrate. The beam is welded onto the substrate with upper and lower welds, each of
length l and thickness h. The beam has a rectangular cross-section, width b, and height t. The
material of the beam is steel.

The two objectives are the fabrication cost of the beam and the deflection of the end of the beam
under the applied load P. The load P is fixed at 6,000 lbs, and the distance L is fixed at 14 in.

The design variables are:

• x(1) = h, the thickness of the welds
• x(2) = l, the length of the welds
• x(3) = t, the height of the beam
• x(4) = b, the width of the beam

The fabrication cost of the beam is proportional to the amount of material in the beam, (l + L)tb, plus
the amount of material in the welds, lh2. Using the proportionality constants from the cited papers,
the first objective is

F1(x) = 1 . 10471x1
2x2 + 0 . 04811x3x4(14 + x2) .
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The deflection of the beam is proportional to P and inversely proportional to bt3. Again, using the
proportionality constants from the cited papers, the second objective is

F2(x) = P
x4x3

3C, where C = 4(14)3

30 × 106 ≈ 3 . 6587 × 10−4 and P = 6, 000.

The problem has several constraints.

• The weld thickness cannot exceed the beam width. In symbols, x(1) <= x(4). In toolbox syntax:

Aineq = [1,0,0,-1];
bineq = 0;

• The shear stress τ(x) on the welds cannot exceed 13,600 psi. To calculate the shear stress, first
calculate preliminary expressions:

τ1 = 1
2x1x2

R = x2
2 + (x1 + x3)2

τ2 =
(L + x2/2)R

2x1x3 x2
2/3 + (x1 + x3)2

τ(x) = P τ1
2 + τ2

2 +
2τ1τ2x2

R .

In summary, the shear stress on the welds has the constraint τ(x) <= 13600.

• The normal stress σ(x) on the welds cannot exceed 30,000 psi. The normal stress is
P 6L

x4x3
2 ≤ 30 × 103.

• The buckling load capacity in the vertical direction must exceed the applied load of 6,000 lbs.
Using the values of Young's modulus E = 30 × 106 psi and G = 12 × 106 psi, the buckling load

constraint is 
4 . 013Ex3x4

3

6L2 1−
x3
2L

E
4G ≥ 6000. Numerically, this becomes the inequality

64, 746 . 022 1− 0 . 0282346 x3 x3x4
3 ≥ 6000.

• The bounds on the variables are 0.125 <=x(1) <= 5, 0.1 <= x(2) <= 10, 0.1 <= x(3) <= 10, and
0.125 <= x(4) <= 5. In toolbox syntax:

lb = [0.125,0.1,0.1,0.125];
ub = [5,10,10,5];

The objective functions appear at the end of this example in the function objval(x). The nonlinear
constraints appear at the end of this example in the function nonlcon(x).

Multiobjective Problem Formulation and paretosearch Solution

You can optimize this problem in several ways:

 Design Optimization of a Welded Beam

14-63



• Set a maximum deflection, and find a single-objective minimal fabrication cost over designs that
satisfy the maximum deflection constraint.

• Set a maximum fabrication cost, and find a single-objective minimal deflection over designs that
satisfy the fabrication cost constraint.

• Solve a multiobjective problem, visualizing the tradeoff between the two objectives.

To use the multiobjective approach, which gives more information about the problem, set the
objective function and nonlinear constraint function.

fun = @objval;
nlcon = @nonlcon;

Solve the problem using paretosearch with the 'psplotparetof' plot function. To reduce the
amount of diagnostic display information, set the Display option to 'off'.

opts_ps = optimoptions('paretosearch','Display','off','PlotFcn','psplotparetof');
rng default % For reproducibility
[x_ps1,fval_ps1,~,psoutput1] = paretosearch(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ps);

disp("Total Function Count: " + psoutput1.funccount);

Total Function Count: 1870

For a smoother Pareto front, try using more points.
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npts = 160; % The default is 60
opts_ps.ParetoSetSize = npts;
[x_ps2,fval_ps2,~,psoutput2] = paretosearch(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ps);

disp("Total Function Count: " + psoutput2.funccount);

Total Function Count: 6254

This solution looks like a smoother curve, but it has a smaller extent of Objective 2. The solver takes
over three times as many function evaluations when using 160 Pareto points instead of 60.

gamultiobj Solution

To see if the solver makes a difference, try the gamultiobj solver on the problem. Set equivalent
options as in the previous solution. Because the gamultiobj solver keeps fewer than half of its
solutions on the best Pareto front, use two times as many points as before.

opts_ga = optimoptions('gamultiobj','Display','off','PlotFcn','gaplotpareto','PopulationSize',2*npts);
[x_ga1,fval_ga1,~,gaoutput1] = gamultiobj(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ga);
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disp("Total Function Count: " + gaoutput1.funccount);

Total Function Count: 38401

gamultiobj takes tens of thousands of function evaluations, whereas paretosearch takes only
thousands.

Compare Solutions

The gamultiobj solution seems to differ from the paretosearch solution, although it is difficult to
tell because the plotted scales differ. Plot the two solutions on the same plot, using the same scale.

fps2 = sortrows(fval_ps2,1,'ascend');
figure
hold on
plot(fps2(:,1),fps2(:,2),'r-')
fga = sortrows(fval_ga1,1,'ascend');
plot(fga(:,1),fga(:,2),'b--')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj')
xlabel 'Cost'
ylabel 'Deflection'
hold off
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The gamultiobj solution is better in the rightmost portion of the plot, whereas the paretosearch
solution is better in the leftmost portion. paretosearch uses many fewer function evaluations to
obtain its solution.

Typically, when the problem has no nonlinear constraints, paretosearch is at least as accurate as
gamultiobj. However, the resulting Pareto sets can have somewhat different ranges. In this case,
the presence of a nonlinear constraint causes the paretosearch solution to be less accurate over
part of the range.

One of the main advantages of paretosearch is that it usually takes many fewer function
evaluations.

Start from Single-Objective Solutions

To help the solvers find better solutions, start them from points that are the solutions to minimizing
the individual objective functions. The pickindex function returns a single objective from the
objval function. Use fmincon to find single-objective optima. Then use those solutions as initial
points for a multiobjective search.

x0 = zeros(2,4);
x0f = (lb + ub)/2;
opts_fmc = optimoptions('fmincon','Display','off','MaxFunctionEvaluations',1e4);
x0(1,:) = fmincon(@(x)pickindex(x,1),x0f,Aineq,bineq,[],[],lb,ub,@nonlcon,opts_fmc);
x0(2,:) = fmincon(@(x)pickindex(x,2),x0f,Aineq,bineq,[],[],lb,ub,@nonlcon,opts_fmc);

Examine the single-objective optima.
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objval(x0(1,:))

ans = 1×2

    2.3810    0.0158

objval(x0(2,:))

ans = 1×2

   76.7188    0.0004

The minimum cost is 2.381, which gives a deflection of 0.158. The minimum deflection is 0.0004,
which has a cost of 76.7253. The plotted curves are quite steep near the ends of their ranges,
meaning you get much less deflection if you take a cost a bit above its minimum, or much less cost if
you take a deflection a bit above its minimum.

Start paretosearch from the single-objective solutions. Because you will plot the solutions later on
the same plot, remove the paretosearch plot function.

opts_ps.InitialPoints = x0;
opts_ps.PlotFcn = [];
[x_psx0,fval_ps1x0,~,psoutput1x0] = paretosearch(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ps);
disp("Total Function Count: " + psoutput1x0.funccount);

Total Function Count: 4839

Start ga from the same initial points, and remove its plot function.

opts_ga.InitialPopulationMatrix = x0;
opts_ga.PlotFcn = [];
[~,fval_ga,~,gaoutput] = gamultiobj(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ga);
disp("Total Function Count: " + gaoutput.funccount);

Total Function Count: 37441

Plot the solutions on the same axes.

fps = sortrows(fval_ps1x0,1,'ascend');
figure
hold on
plot(fps(:,1),fps(:,2),'r-')
fga = sortrows(fval_ga,1,'ascend');
plot(fga(:,1),fga(:,2),'b--')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj')
xlabel 'Cost'
ylabel 'Deflection'
hold off
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By starting from the single-objective solutions, the gamultiobj solution is slightly better than the
paretosearch solution throughout the plotted range. However, gamultiobj takes almost ten times
as many function evaluations to reach its solution.

Hybrid Function

gamultiobj can call the hybrid function fgoalattain automatically to attempt to reach a more
accurate solution. See whether the hybrid function improves the solution.

opts_ga.HybridFcn = 'fgoalattain';
[xgah,fval_gah,~,gaoutputh] = gamultiobj(fun,4,Aineq,bineq,[],[],lb,ub,nlcon,opts_ga);
disp("Total Function Count: " + gaoutputh.funccount);

Total Function Count: 57478

fgah = sortrows(fval_gah,1,'ascend');
figure
hold on
plot(fps(:,1),fps(:,2),'r-')
plot(fga(:,1),fga(:,2),'b--')
plot(fgah(:,1),fgah(:,2),'g-')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj','gamultiobj/fgoalattain')
xlabel 'Cost'
ylabel 'Deflection'
hold off
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The hybrid function provides a slight improvement on the gamultiobj solution, mainly in the
leftmost part of the plot.

Run fgoalattain Manually from paretosearch Solution Points

Although paretosearch has no built-in hybrid function, you can improve the paretosearch
solution by running fgoalattain from the paretosearch solution points. Create a goal and
weights for fgoalattain by using the same setup for fgoalattain as described in “gamultiobj
Hybrid Function” on page 17-39.

Fmax = max(fval_ps1x0);
nobj = numel(Fmax);
Fmin = min(fval_ps1x0);
w = sum((Fmax - fval_ps1x0)./(1 + Fmax - Fmin),2);
p = w.*((Fmax - fval_ps1x0)./(1 + Fmax - Fmin));
xnew = zeros(size(x_psx0));
nsol = size(xnew,1);
fvalnew = zeros(nsol,nobj);
opts_fg = optimoptions('fgoalattain','Display','off');
nfv = 0;
for ii = 1:nsol
    [xnew(ii,:),fvalnew(ii,:),~,~,output] = fgoalattain(fun,x_psx0(ii,:),fval_ps1x0(ii,:),p(ii,:),...
        Aineq,bineq,[],[],lb,ub,nlcon,opts_fg);
    nfv = nfv + output.funcCount;
end
disp("fgoalattain Function Count: " + nfv)

fgoalattain Function Count: 14049
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fnew = sortrows(fvalnew,1,'ascend');
figure
hold on
plot(fps(:,1),fps(:,2),'r-')
plot(fga(:,1),fga(:,2),'b--')
plot(fgah(:,1),fgah(:,2),'g-')
plot(fnew(:,1),fnew(:,2),'k.-')
xlim([0,40])
ylim([0,1e-2])
legend('paretosearch','gamultiobj','gamultiobj/fgoalattain','paretosearch/fgoalattain')
xlabel 'Cost'
ylabel 'Deflection'

The combination of paretosearch and fgoalattain creates the most accurate Pareto front. Zoom
in to see.

xlim([3.64 13.69])
ylim([0.00121 0.00442])
hold off
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Even with the extra fgoalattain computations, the total function count for the combination is less
than half of the function count for the gamultiobj solution alone.

fprintf("Total function count for gamultiobj alone is %d.\n" + ...
    "For paretosearch and fgoalattain together it is %d.\n",...
    gaoutput.funccount,nfv + psoutput1x0.funccount)

Total function count for gamultiobj alone is 37441.
For paretosearch and fgoalattain together it is 18888.

Find Good Parameters from Plot

The plotted points show the best values in function space. To determine which parameters achieve
these function values, find the size of the beam and size of the weld in order to get a particular cost/
deflection point. For example, the plot of paretosearch followed by fgoalattain shows points
with a cost of about 6 and a deflection of about 3.5e–3. Determine the sizes of the beam and weld that
achieve these points.

whichgood = find(fvalnew(:,1) <= 6 & fvalnew(:,2) <= 3.5e-3);
goodpoints = table(xnew(whichgood,:),fvalnew(whichgood,:),'VariableNames',{'Parameters' 'Objectives'})

goodpoints=4×2 table
                   Parameters                       Objectives     
    ________________________________________    ___________________

    0.63457     1.5187         10    0.67262    5.6974    0.0032637
    0.61635     1.5708         10    0.63165     5.391    0.0034753
    0.63228     1.5251         10     0.6674    5.6584    0.0032892
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    0.65077     1.4751         10    0.70999     5.976    0.0030919

Four sets of parameters achieve a cost of less than 6 and a deflection of less than 3.5e–3:

• Weld thickness slightly over 0.6
• Weld length about 1.5
• Beam height 10 (the upper bound)
• Beam width between 0.63 and 0.71

Objective and Nonlinear Constraints

function [Cineq,Ceq] = nonlcon(x)
sigma = 5.04e5 ./ (x(:,3).^2 .* x(:,4));
P_c = 64746.022*(1 - 0.028236*x(:,3)).*x(:,3).*x(:,4).^3;
tp = 6e3./sqrt(2)./(x(:,1).*x(:,2));
tpp = 6e3./sqrt(2) .* (14+0.5*x(:,2)).*sqrt(0.25*(x(:,2).^2 + (x(:,1) + x(:,3)).^2)) ./ (x(:,1).*x(:,2).*(x(:,2).^2 / 12 + 0.25*(x(:,1) + x(:,3)).^2));
tau = sqrt(tp.^2 + tpp.^2 + (x(:,2).*tp.*tpp)./sqrt(0.25*(x(:,2).^2 + (x(:,1) + x(:,3)).^2)));
Cineq = [tau - 13600,sigma - 3e4,6e3 - P_c];
Ceq = [];
end

function F = objval(x)
f1 = 1.10471*x(:,1).^2.*x(:,2) + 0.04811*x(:,3).*x(:,4).*(14.0+x(:,2));
f2 = 2.1952./(x(:,3).^3 .* x(:,4));

F = [f1,f2];
end

function z = pickindex(x,k)
    z = objval(x); % evaluate both objectives
    z = z(k); % return objective k
end
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Steps for Problem-Based Multiobjective Optimization

In this section...
“Specify Multiple Objective Functions” on page 15-2
“Specify Multiple Objective Senses (Maximize or Minimize)” on page 15-2
“Data Format of Multiobjective Solutions” on page 15-3
“Supply Initial Points for Multiobjective Problem” on page 15-3
“Hybrid Function” on page 15-3
“View Pareto Set” on page 15-3

This topic shows how to set up a multiobjective optimization in the problem-based approach, and
details the format of results and initial points. For an example, see “Pareto Front for Multiobjective
Optimization, Problem-Based” on page 15-5.

Specify Multiple Objective Functions
Specify multiple objective functions in one of two ways:

• Optimization expression — Give an optimization expression that has vector or array values. For
example, this objective function returns a vector of three values:

prob.Objective = [sin(x),cos(x),1 - x.^2];

• Structure — Give a structure of optimization expressions, each of which evaluates to a scalar. For
example, this objective function returns a structure with three objective components:

prob.Objective.sin = sin(x);
prob.Objective.cos = cos(x);
prob.Objective.quad = 1 - x^2;

Specify Multiple Objective Senses (Maximize or Minimize)
Specify an objective function sense, meaning maximize or minimize, depending on how you specify
the objective function.

• Objective is an optimization expression — All objectives in the problem have the same objective
sense. For example,

prob.ObjectiveSense = "max";

• Objective is a structure — Each objective function can have its own sense. The
prob.ObjectiveSense structure has the same fields as the prob.Objective structure. For
example,

prob.ObjectiveSense.sin = "minimize";
prob.Objective.cos = "maximize";
prob.Objective.quad = "max";

The default sense is minimize.
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Data Format of Multiobjective Solutions
The returned sol output is a vector of OptimizationValues objects. Each object contains the
values of the optimization variables and the objective functions at one point on the Pareto front. If the
problem has nonlinear constraints, sol also contains the nonlinear constraint violations at each
solution point.

The returned fval output is a matrix where each row represents one solution point and each column
represents one objective function. The fval output is numeric, unlike the sol output. You can obtain
the objective function values from the sol object. However, you can find the values more easily in
fval.

You can plot the resulting Pareto front in two or three dimensions by calling paretoplot on sol. For
an example, see “Pareto Front for Multiobjective Optimization, Problem-Based” on page 15-5.

Supply Initial Points for Multiobjective Problem
Specifying initial points for multiobjective problems is optional. However, you can sometimes obtain
better solutions by doing so. For an example showing the benefit, see “Pareto Front for Multiobjective
Optimization, Problem-Based” on page 15-5.

To specify initial points, create an OptimizationValues object using the optimvalues function.
For examples, see the optimvalues reference page.

Hybrid Function
To obtain more accurate solutions, the gamultiobj solver can optionally call fgoalattain. For an
example, see “Design Optimization of a Welded Beam” on page 14-62. To use this hybrid function in
the problem-based workflow, set the HybridFcn option to "fgoalattain":

options = optimoptions('gamultiobj',HybridFcn="fgoalattain");

Include the solver and options arguments in the solve call:

[sol,fval,exitflag,output] = solve(prob,...
    Solver="gamultiobj",...
    Options=options);

View Pareto Set
To view the Pareto set in two or three dimensions while the solver proceeds, set a plot option.

• For the gamultiobj function, set the PlotFcn option to 'gaplotpareto'.

options = optimoptions("gamultiobj",PlotFcn="gaplotpareto");
sol = solve(prob,Options=options)

• For the paretosearch function, set the PlotFcn option to 'psplotparetof'.

To view the Pareto set after the solver finishes, call paretoplot on the solution.

sol = solve(prob);
paretoplot(sol)

For an example, see “Pareto Front for Multiobjective Optimization, Problem-Based” on page 15-5.
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If you have more than three objectives, paretoplot allows you to choose which objectives to plot.
See the paretoplot reference page for details.

See Also
gamultiobj | paretosearch | solve | optimvalues | paretoplot

Related Examples
• “Problem-Based Optimization Setup”
• “Pareto Front for Multiobjective Optimization, Problem-Based” on page 15-5
• “Multiobjective Optimization”
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Pareto Front for Multiobjective Optimization, Problem-Based
This example shows how to solve a multiobjective optimization problem using optimization variables,
and how to plot the solution.

Problem Formulation

The problem has a two-dimensional optimization variable and two objective functions. Create the
optimization variable x as a row vector, the orientation expected by multiobjective solvers. Set
bounds specifying that the components of x range from –50 through 50.

x = optimvar("x",1,2,LowerBound=-50,UpperBound=50);

Create the two-component objective function. Include the objective function in an optimization
problem.

fun(1) = x(1)^4 + x(2)^4 + x(1)*x(2) - x(1)^2*x(2)^2 - 9*x(1)^2;
fun(2) = x(1)^4 + x(2)^4 + x(1)*x(2) - x(1)^2*x(2)^2 + 3*x(2)^3;
prob = optimproblem("Objective",fun);

Review the problem.

show(prob)

  OptimizationProblem : 

    Solve for:
       x

    minimize :
       ((((x(1).^4 + x(2).^4) + (x(1) .* x(2))) - (x(1).^2 .* x(2).^2))
     - (9 .* x(1).^2))
       ((((x(1).^4 + x(2).^4) + (x(1) .* x(2))) - (x(1).^2 .* x(2).^2))
     + (3 .* x(2).^3))

    variable bounds:
       -50 <= x(1) <= 50
       -50 <= x(2) <= 50

Solve and Plot Solution

Call solve to solve the problem.

rng default % For reproducibility
sol = solve(prob)

Solving problem using gamultiobj.
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

sol = 
  1x18 OptimizationValues vector with properties:

   Variables properties:
            x: [2x18 double]

   Objective properties:
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    Objective: [2x18 double]

Plot the resulting Pareto front.

paretoplot(sol)

Solve the problem again using the paretosearch solver.

sol2 = solve(prob,Solver="paretosearch");

Solving problem using paretosearch.

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

paretoplot(sol2)
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Using default options, the paretosearch solver obtains a denser set of solution points than
gamultiobj. However, gamultiobj obtains a wider range of values.

Start from Single-Objective Solutions

To attempt to achieve a better spread of solutions, find the single-objective solutions starting from x
= [1 1].

x0.x = [1 1];
prob1 = optimproblem("Objective",fun(1));
solp1 = solve(prob1,x0);

Solving problem using fmincon.

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.

prob2 = optimproblem("Objective",fun(2));
solp2 = solve(prob2,x0);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
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feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Prepare the single-objective solutions as an initial point for solve. Each point must be passed as a
column vector to the optimvalues function.

start = optimvalues(prob,"x",[solp1.x' solp2.x']);

Solve the multiobjective problem with paretosearch starting from the start points.

sol3 = solve(prob,start,Solver="paretosearch");

Solving problem using paretosearch.

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

paretoplot(sol3)
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This time, paretosearch finds a larger range of the objective functions, going almost to 10 in
Objective 2 and almost to 20 in Objective 1. This range is similar to the gamultiobj range, except
for the anomalous solution point near Objective 1 = –31, Objective 2 = 48.

See Also
gamultiobj | paretosearch | solve | paretoplot

Related Examples
• “Multiobjective Optimization”
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Plan Nuclear Fuel Disposal Using Multiobjective Optimization
This example shows how to formulate and solve a large nonlinear multiobjective problem that has
some integer constraints. The problem is adapted from Montonen, Ranta, and Mäkelä [1] on page 15-
0 . The goal is to dispose of spent nuclear fuel, with objectives of minimizing cost, minimizing the
amount of time between removal of a spent nuclear fuel assembly from a reactor until it is buried,
and minimizing the number of spent fuel assemblies in storage at any one time. The problem is a
multiperiod planning problem, and each period is five years long.

Model Overview

A nuclear reactor creates waste products that must be buried for long-term disposal. These waste
products are fuel rod assemblies containing spent nuclear fuel. The assemblies are hot and
radioactive when taken from the reactor, and gradually become less so. At period t, the radiation
level is given by a double-exponential decay function with parameter vector u:

radiation = u1exp(− u2t) + u3exp(− u4t).

Each assembly remains in a pool of water in the reactor building until it is cool enough to be
transferred to an interim storage facility, where it is again placed in a pool of water. When the
assembly is cooled further, it can be encapsulated with other assemblies in a copper-iron canister and
then buried in a disposal tunnel. All disposal tunnels connect to a central tunnel.

This figure illustrates the stages of the nuclear fuel assemblies from reactor to final disposal.

The problem variables relate to a schedule where each unit of time represents 5 years. Time periods
begin at 1.

Constants Associated with Model

Z is the last time period in which fuel assemblies are removed from the reactor. Removal periods are
1:Z. In [1], Z = 11. Each period is 5 years, so the last period in which fuel assemblies are removed is
at time 55.

N is the last time period in which canisters are buried. Burial periods are 1:N. In [1], N = 19. Each
period is 5 years, so the last period in which canisters can be buried is at time 95.

Z = 11;
N = 19;

a is the period of the last removal before the first disposal.
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b is the disposal period in which the last removal occurs.

a = 5;
b = 6;

R is the minimum number of periods to store an assembly.

R = 4;

K is the maximum number of assemblies to fit into one canister.

K = 4;

T is the minimum number of canisters disposed in one period.

T = 50;

U is the maximum number of canisters disposed in one period.

U = 500;

Q is the length of a disposal tunnel in meters.

Q = 350;

M(i) is the number of assemblies removed at time i.

M = 300 - 60*(-1).^(1:Z); % 360 for odd indices, 240 for even

A(i,j) is the storage time of an assembly from removal i in period j, where i <= Z and j <= N.

A = zeros(Z,N);
for i = 1:Z
    for j = i:N
        A(i, j) = j - i;
    end
end

p(i,j) is the decay heat power of an assembly (in watts) from removal i in period j, where i <= Z
and j <= N.

% The following parameters fit P_{i,j} of Table A2 from [1] to within 1 in each
% entry (fractional error <= 1/250).
u = [503 0.1346 260 0.0231];
myfun = @(d)round(u(1)*exp(-u(2)*d) + u(3)*exp(-u(4)*d));
PP = myfun(1:N);
pij = zeros(Z,N);
for i = 2:Z
    for j = 1:i
        pij(i,j) = 1e3; % Dummy values because j >= i does not occur.
    end
end
for i=1:Z
    pij(i,i:end) = PP(1:(N-i+1)); % Same decay profile for all removal times
end

pmaxup is the upper bound on the average power of a canister, and pmaxlow is the lower bound.

pmaxup = 1830;
pmaxlow = 1300;
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dDTup is the upper bound on the distance between disposal tunnels, and dDTlow is the lower bound.

dDTup = 50;
dDTlow = 25;

dCAup is the upper bound on the distance between canisters in a disposal tunnel, and dCAlow is the
lower bound.

dCAup = 15;
dCAlow = 6;

The costs associated with the operations are not given in [1]. This example assumes the following
values:

• Cas is the storage cost for one assembly per period.
• Cis is the storage cost for one assembly per period in interim storage.
• Csp is the cost of a storage place per assembly.
• Cca is the cost of a canister.
• Cef is the cost of operating the encapsulation facility per period.
• Cdt is the cost of a disposal tunnel per meter.
• Cct is the cost of the central tunnel per meter.

Cas = 50;
Cis = 60;
Csp = 10;
Cca = 1200;
Cef = 300;
Cdt = 3000;
Cct = 5000;

Optimization Variables for Problem

To create the problem for MATLAB®, use the problem-based approach. Define continuous variables
for most quantities.

This figure illustrates the variables associated with the movement of the assemblies.
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x(i,j) is the number of assemblies removed at time i and disposed at time j, i <= Z and j <= N.

x = optimvar("x",Z,N,LowerBound=0,UpperBound=U*K);

z(i,j) is the number of assemblies removed at time i and in storage at time j, i <= Z and j <=
N.

z = optimvar("z",Z,N,LowerBound=0,UpperBound=U*K*N/2);

y(j) is the number of canisters disposed at time j <= N.

y = optimvar("y",N,LowerBound=0,UpperBound=U);

pmax is the maximum average power of a canister.

pmax = optimvar("pmax",LowerBound=pmaxlow,UpperBound=pmaxup);

This figure illustrates quantities associated with the disposal tunnels.

dDT is the distance between adjacent disposal tunnels.

dDT = optimvar("dDT",LowerBound=dDTlow,UpperBound=dDTup);

dCA is the distance between adjacent canisters in a disposal tunnel. You compute this distance later
on, in the Problem Constraints section of this example, using the function g.

This figure relates to the encapsulation times.

Specify the following variables as integer type binary variables, which have lower bounds of 0 and
upper bounds of 1.

ej(j) indicates that the encapsulation facility is in operation during the period j <= N.

ej = optimvar("ej",N,Type="integer",LowerBound=0,UpperBound=1);

ejON(j) indicates that encapsulation starts at the beginning of period j <= N.

ejON = optimvar("ejON",N,Type="integer",LowerBound=0,UpperBound=1);

ejOFF(j) indicates that encapsulation ends at the beginning of period j <= N.
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ejOFF = optimvar("ejOFF",N,Type="integer",LowerBound=0,UpperBound=1);

This figure relates to the times when assemblies can be disposed, rij = 1. These times start when
ejON = 1 and end when sij = 1.

sij(i,j) indicates that assemblies removed at time i can no longer be disposed starting at the
beginning of time j, i <= Z and j <= N.

sij = optimvar("sij",Z,N,Type="integer",LowerBound=0,UpperBound=1);

rij(i,j) indicates that assemblies removed at time i can be disposed at time j, i <= Z and j <=
N.

rij = optimvar("rij",Z,N,Type="integer",LowerBound=0,UpperBound=1);

All optimization variables and problem parameters are now defined.

Problem Constraints

Create an optimization problem to hold the objective and constraints.

prob = optimproblem;

The constraint numbers match the equations in [1]. The first three constraints relate to the number of
assemblies in interim storage.

jnot1 = 2:N;
prob.Constraints.cons10 = z(:,1) - M(:) + x(:,1) == 0;
prob.Constraints.cons11 = z(:,jnot1) - z(:,(jnot1 - 1)) + x(:,jnot1) == 0;
prob.Constraints.cons12 = z(:,N) == 0;

Set the constraint that all assemblies are disposed once.

prob.Constraints.cons13 = sum(sij,2) == 1;

Define the variable rij by setting the following constraints.

cons15 = optimconstr(Z,N);
cons15(:,1) = rij(:,1) == -sij(:,1) + ejON(1); % equation 14
cons15(:,jnot1) = rij(:,jnot1) == ...
    rij(:,jnot1-1) - sij(:,jnot1) + repmat(ejON(jnot1)',Z,1); % equation 15
prob.Constraints.cons15 = cons15;

Set the constraint that disposal occurs only during times when the encapsulation facility is in
operation.

cons16 = rij <= repmat(ej', Z, 1);
prob.Constraints.cons16 = cons16;

Specify the constrain that production capacity is not exceeded.

prob.Constraints.cons17 = x <= U*K*rij;
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The next constraint enforces that assemblies are cool enough before disposal.

prob.Constraints.cons18 = x.*(A - R) >= 0;

The following constraints relate to the encapsulation facility. These constraints enforce that the
facility is turned on and off only once, which means that all canisters are encapsulated in one run,

prob.Constraints.cons19 = sum(ejON) == 1;
prob.Constraints.cons20 = sum(ejOFF) == 1;

Define variable ej by setting the following constraints.

cons21 = optimconstr(N);
cons21(1) = ej(1) == ejON(1) - ejOFF(1); % equation 21
cons21(jnot1) = ej(jnot1) == ...
    ej(jnot1 - 1) + ejON(jnot1) - ejOFF(jnot1); % equation 22
prob.Constraints.cons21 = cons21;

Set constraints that the number of canisters is sufficient for disposal, does not exceed production
capacity, and obeys the minimum production constraint.

prob.Constraints.cons23 = y' >= (1/K)*sum(x,1);
prob.Constraints.cons24 = y <= U*ej;
jnotN = 1:(N-1);
prob.Constraints.cons25 = y(jnotN) >= T*(ej(jnotN) - ejOFF(jnotN + 1));

Regarding the disposal facility, set the constraint that the heat power of canisters is allowable.

prob.Constraints.cons26 = sum(pij.*x,1) <= pmax*y';

Specify a nonlinear constraint on the distance between buried canisters. The function is piecewise
linear, and is defined using the max function, which is not a supported operation for optimization
expressions. Therefore, use fcn2optimexpr to place the constraint into prob.

g = @(pmax,dDT)max([-2.26911*dDT + 0.00675*pmax + 54.5288,...
    -0.05833*dDT + 0.00596*pmax - 0.727083,...
    -0.14*dDT + 0.17701*pmax - 350.651]);
dCA = fcn2optimexpr(@(pmax,dDT)g(pmax,dDT),pmax,dDT);
prob.Constraints.cons29a = dCA >= dCAlow;
prob.Constraints.cons29b = dCA <= dCAup;

Cost Objective

The first objective for this multiobjective problem is the cost, which has seven components.

cost = optimexpr(7,1);

1. Storage cost of assemblies. This cost is the sum of the cost per unit time multiplied by the length of
time each assembly is stored.

cost(1) = Cas*sum(A.*x,"all");

2. Cost of interim storage. This cost is j*ejOFF(j) for the one component of ejOFF that is 1.

cost(2) = Cis*max(ejOFF(1)–1,2*ejOFF(2)–1,3*ejOFF(3)–1,...,N*ejOFF(N)–1).

To represent this expression briefly, represent cost(2) = Cis*u for a new optimization variable u,
along with the constraint
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ucons = u >= ((1:N)'.*ejOFF) – 1.

u = optimvar("u",LowerBound=0);
cost(2) = Cis*u;
ucons = u >= ((1:N)'.*ejOFF) - 1;
prob.Constraints.ucons = ucons;

3. Cost of positions for assembly storage. cost(3) can be represented by Csp*v1, where v1 is a new
optimization variable, along with the constraints

v1 >= sum(M)

v1 >= sum_{i=1}^j z(i,j) for each 1 <= j <= N

v1 >= sum_{i=1}^Z z(i,j) for each b <= j <= N.

Create these costs and associated constraints.

v1 = optimvar("v1",LowerBound=0);
cost(3) = Csp*v1; % Include the three v1 constraints given below.
v1consa = v1 >= sum(M);
bmin1 = 1:(b-1);
v1consb = optimconstr(b-1);
for j=bmin1
    v1consb(j) = sum(z(1:a+j,j)) <= v1;
end
ell = b:N;
v1consc = sum(z(:,ell),1) <= v1;
prob.Constraints.v1consa = v1consa;
prob.Constraints.v1consb = v1consb;
prob.Constraints.v1consc = v1consc;

4. Cost of canisters. This cost is the cost per canister times the total number of canisters buried.

cost(4) = Cca*sum(y);

5. Cost of running the encapsulation facility. This cost is the cost per unit time multiplied by the
length of time the facility operates.

cost(5) = Cef*sum(ej);

6. Cost of disposal tunnels. This is the cost per unit length times the length between canisters times
the total number of canisters buried.

cost(6) = Cdt*dCA*sum(y);

7. Cost of central tunnel. This cost is the cost per unit length times the required length of the central
tunnel. The number of canisters that can be buried in one disposal tunnel is its length Q divided by
the distance between canisters dCA. The length of the central tunnel is proportional to the number of
buried canisters sum(y) and inversely proportional to Q/dCA, and has cost proportional to Cct.

cost(7) = Cct/Q*dDT*dCA*sum(y);

The total cost is the sum of the seven cost components. To change the scale of the total cost to match
that of the other objectives, take the logarithm of the sum.

prob.Objective.cost = log(sum(cost));
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Safety Objectives

The problem has two objectives related to safety. Objective 2, named safety1, tries to minimize the
maximum storage time over all removals. Objective 3, named safety2, tries to stop the disposal as
early as possible. Define these two objectives using the helper functions max1 and max2, which
appear at the end of this script on page 15-0 .

prob.Objective.safety1 = fcn2optimexpr(@max1,A,sij);
% Minimize maximum storage time, objective (2) in [1]

prob.Objective.safety2 = fcn2optimexpr(@max2,ejOFF);
% Stop disposal as early as possible, objective (5) in [1]

Set Options

Set the options for a Pareto plot as the solver proceeds. Because the problem has over 900 variables,
set options to use a population size of 500, which is larger than the default. Also, because the
problem contains binary variables, use the mutationgaussian mutation function. This mutation
function works better than the default mutationpower for binary variables.

opts = optimoptions("gamultiobj",PlotFcn="gaplotpareto",PopulationSize=5e2,...
    MutationFcn=@mutationgaussian);

Run Problem

The problem formulation is complete, and the options are set for this multiobjective problem. Run the
problem.

rng default % For reproducibility
[sol,fval,exitflag,output] = solve(prob,Options=opts);

Solving problem using gamultiobj.
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

xlabel("Cost")
ylabel("Safety 1")
zlabel("Safety 2")
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The Pareto plot shows a clear tradeoff between Cost and Safety 1. The true cost is the exponential of
the amount shown, so the tradeoff is more severe than illustrated.

Examine Solution

gamultiobj finds several feasible solutions with varying fitness function values. To find the control
variables associated with the solutions, use the data tips.

After activating Data Tips, click the upper-left solution.
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The index of the selected point is 1. The variables associated with this point are in sol(1).

Examine the x variables associated with this solution. Recall that x(i,j) are the removals at time i
that are disposed at time j.

disp(sol(1).x)

  Columns 1 through 12

         0         0         0         0   -0.0000         0         0         0         0         0         0         0
         0         0         0         0         0    0.0000         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0   -0.0000         0         0         0         0
         0         0         0         0         0         0         0         0   -0.0000         0         0         0
         0         0         0         0         0         0         0         0         0    0.0000         0         0
         0         0         0         0         0         0         0         0         0         0   -0.0000         0
         0         0         0         0         0         0         0         0         0         0         0    0.0000
         0         0         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0         0         0

  Columns 13 through 19

         0         0         0         0  228.4792  131.5208         0
         0         0         0         0         0  240.0000         0
         0         0         0         0         0  360.0000         0
         0         0         0         0         0  240.0000         0
         0         0         0         0         0  360.0000         0
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         0         0         0         0         0  240.0000         0
         0         0         0         0  354.0977    5.9023         0
         0         0         0         0  228.2471   11.7529         0
   -0.0000         0         0         0         0  360.0000         0
         0    0.0000         0         0  240.0000         0         0
         0         0         0         0  360.0000         0         0

Clearly, the x schedule is not restricted to integer values. View the sums of the x schedule over
disposals compared to the removal quantities M(:).

disp([sum(sol(1).x,2),M(:)])

  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000

The x schedule accounts for all removals.

What are the times when the encapsulation facility is in operation?

disp(sol(1).ej')

  Columns 1 through 12

         0         0         0         0         0         0         0         0         0         0         0         0

  Columns 13 through 19

         0         0         0         0    1.0000    1.0000         0

The encapsulation runs for times 17 and 18.

What is the distance between disposal tunnels?

disp(sol(1).dDT)

   33.1986

The distance is about halfway between its lower bound of 25 and its upper bound of 50.

What is the dollar cost of the schedule? To find out, calculate exp(sol(1).cost), because
sol(1).cost is the logarithm of the total disposal cost.

disp(exp(sol(1).cost))

   2.0943e+07

The cost is about $21 million.

Examine the point in the Pareto set with the lowest value of Objective 2.
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The monetary cost of this operating point is much higher.

disp(exp(sol(5).cost))

   1.2735e+08

The monetary cost is about $127 million, which is over five times the previous value. But the gain is
that Objective 2 is 11 instead of 16, which corresponds to waste burial that is 25 years earlier. Earlier
burial can be considered safer.

View the schedule of x for this solution.

disp(sol(5).x)

  Columns 1 through 12

         0         0         0         0  360.0000         0         0         0         0         0         0         0
         0         0         0         0         0    0.0000  240.0000         0         0         0         0         0
         0         0         0         0         0         0    0.0000   -0.0000         0         0  360.0000         0
         0         0         0         0         0         0         0   -0.0000         0    0.0000         0         0
         0         0         0         0         0         0         0         0  227.2852         0         0         0
         0         0         0         0         0         0         0         0         0  240.0000         0         0
         0         0         0         0         0         0         0         0         0         0    0.0000         0
         0         0         0         0         0         0         0         0         0         0         0    0.0000
         0         0         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0         0         0
         0         0         0         0         0         0         0         0         0         0         0         0
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  Columns 13 through 19

         0         0         0         0         0         0         0
         0         0         0         0         0         0         0
         0         0         0         0         0         0         0
   67.2852         0  172.7148         0         0         0         0
  132.7148         0         0         0         0         0         0
         0         0         0         0         0         0         0
         0         0         0  360.0000         0         0         0
         0  210.2641         0   29.7359         0         0         0
         0         0         0         0         0  360.0000         0
         0         0         0  240.0000         0         0         0
         0         0  360.0000         0         0         0         0

View the sums of the x schedule over disposals compared to the removal quantities M(:).

disp([sum(sol(5).x,2),M(:)])

  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000
  240.0000  240.0000
  360.0000  360.0000

Again, the schedule accounts for all removals.

What are the times when the encapsulation facility is in operation?

disp(sol(5).ej')

  Columns 1 through 12

         0         0    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000

  Columns 13 through 19

    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000         0

The encapsulation runs for times 3 through 18.

What is the distance between disposal tunnels for this solution?

disp(sol(5).dDT)

    50

This time, the distance between disposal tunnels is as great as possible, 50 meters.

Conclusion

This example shows the formulation of a nonlinear, multiobjective, mixed-integer optimization
problem using the problem-based approach. The Data Tips in the Pareto plot enable you to analyze
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the solution. Instead of specifying the gaplotpareto plot function, you can use the paretoplot
function to obtain a similar plot from the solution.
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Helper Functions

This code creates the max1 helper function.

function v = max1(A,sij)
v = round(max(max(A.*sij - 1))); % "round" ensures integer values
end

This code creates the max2 helper function.

function v = max2(ejOFF)
v = round(max((ejOFF').*(1:length(ejOFF)) - 1));
end

See Also
gamultiobj | solve | paretoplot | paretosearch

Related Examples
• “Multiobjective Optimization”
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Parallel Processing

• “How Solvers Compute in Parallel” on page 16-2
• “How to Use Parallel Processing in Global Optimization Toolbox” on page 16-11
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox”

on page 16-16
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How Solvers Compute in Parallel

In this section...
“Parallel Processing Types in Global Optimization Toolbox” on page 16-2
“How Toolbox Functions Distribute Processes” on page 16-3

Parallel Processing Types in Global Optimization Toolbox
Parallel processing is an attractive way to speed optimization algorithms. To use parallel processing,
you must have a Parallel Computing Toolbox license, and have a parallel worker pool (parpool). For
more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page 16-
11.

Global Optimization Toolbox solvers use parallel computing in various ways.

Solver Parallel? Parallel Characteristics
GlobalSearch × No parallel functionality. However, fmincon can use parallel gradient

estimation when run in GlobalSearch. See “Using Parallel Computing in
Optimization Toolbox”.

MultiStart Start points distributed to multiple processors. From these points, local
solvers run to completion. For more details, see “MultiStart” on page 16-
4 and “How to Use Parallel Processing in Global Optimization Toolbox”
on page 16-11.
For fmincon, no parallel gradient estimation with parallel MultiStart.

ga, gamultiobj Population evaluated in parallel, which occurs once per iteration. For
more details, see “Genetic Algorithm” on page 16-7 and “How to Use
Parallel Processing in Global Optimization Toolbox” on page 16-11.
No vectorization of fitness or constraint functions.

particleswarm Population evaluated in parallel, which occurs once per iteration. For
more details, see “Particle Swarm” on page 16-8 and “How to Use
Parallel Processing in Global Optimization Toolbox” on page 16-11.
No vectorization of objective or constraint functions.

patternsearch,
paretosearch

Poll points evaluated in parallel, which occurs once per iteration. For
more details, see “Pattern Search” on page 16-6 and “How to Use
Parallel Processing in Global Optimization Toolbox” on page 16-11.
No vectorization of objective or constraint functions.

simulannealbnd × No parallel functionality. However, simulannealbnd can use a hybrid
function that runs in parallel. See “Simulated Annealing” on page 16-9.

surrogateopt Search points evaluated in parallel.
No vectorization of objective or constraint functions.

In addition, several solvers have hybrid functions that run after they finish. Some hybrid functions
can run in parallel. Also, most patternsearch search methods can run in parallel. For more
information, see “Parallel Search Functions or Hybrid Functions” on page 16-14.
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How Toolbox Functions Distribute Processes
• “parfor Characteristics and Caveats” on page 16-3
• “MultiStart” on page 16-4
• “GlobalSearch” on page 16-5
• “Pattern Search” on page 16-6
• “Genetic Algorithm” on page 16-7
• “Parallel Computing with gamultiobj” on page 16-8
• “Particle Swarm” on page 16-8
• “Simulated Annealing” on page 16-9
• “Pareto Search” on page 16-9
• “Surrogate Optimization” on page 16-9

parfor Characteristics and Caveats
No Nested parfor Loops

Most solvers employ the Parallel Computing Toolbox parfor function to perform parallel
computations. Two solvers, surrogateopt and paretosearch, use parfeval instead.

Note parfor does not work in parallel when called from within another parfor loop.

Note The documentation recommends not to use parfor or parfeval when calling Simulink®; see
“Using sim function within parfor” (Simulink). Therefore, you might encounter issues when
optimizing a Simulink simulation in parallel using a solver's built-in parallel functionality.

Suppose, for example, your objective function userfcn calls parfor, and you want to call fmincon
using MultiStart and parallel processing. Suppose also that the conditions for parallel gradient
evaluation of fmincon are satisfied, as given in “Parallel Optimization Functionality”. The figure
“When parfor Runs In Parallel” on page 16-4 shows three cases:

1 The outermost loop is parallel MultiStart. Only that loop runs in parallel.
2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.
3 The outermost parfor loop is in userfcn. In this case, userfcn can use parfor in parallel.
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When parfor Runs In Parallel
Parallel Random Numbers Are Not Reproducible

Random number sequences in MATLAB are pseudorandom, determined from a seed, or an initial
setting. Parallel computations use seeds that are not necessarily controllable or reproducible. For
example, each instance of MATLAB has a default global setting that determines the current seed for
random sequences.

For patternsearch, if you select MADS as a poll or search method, parallel pattern search does not
have reproducible runs. If you select the genetic algorithm or Latin hypercube as search methods,
parallel pattern search does not have reproducible runs.

For ga and gamultiobj, parallel population generation gives nonreproducible results.

MultiStart is different. You can have reproducible runs from parallel MultiStart. Runs are
reproducible because MultiStart generates pseudorandom start points locally, and then distributes
the start points to parallel processors. Therefore, the parallel processors do not use random numbers.
For more details, see “Parallel Processing and Random Number Streams” on page 4-55.

Limitations and Performance Considerations

More caveats related to parfor appear in “Parallel for-Loops (parfor)” (Parallel Computing Toolbox).

For information on factors that affect the speed of parallel computations, and factors that affect the
results of parallel computations, see “Improving Performance with Parallel Computing”. The same
considerations apply to parallel computing with Global Optimization Toolbox functions.

MultiStart

MultiStart can automatically distribute a problem and start points to multiple processes or
processors. The problems run independently, and MultiStart combines the distinct local minima
into a vector of GlobalOptimSolution objects. MultiStart uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
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• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the UseParallel property to true in the MultiStart object:

ms = MultiStart('UseParallel',true);

When these conditions hold, MultiStart distributes a problem and start points to processes or
processors one at a time. The algorithm halts when it reaches a stopping condition or runs out of
start points to distribute. If the MultiStart Display property is 'iter', then MultiStart
displays:

Running the local solvers in parallel.

For an example of parallel MultiStart, see “Parallel MultiStart” on page 4-82.

Implementation Issues in Parallel MultiStart

fmincon cannot estimate gradients in parallel when used with parallel MultiStart. This lack of
parallel gradient estimation is due to the limitation of parfor described in “No Nested parfor Loops”
on page 16-3.

fmincon can take longer to estimate gradients in parallel rather than in serial. In this case, using
MultiStart with parallel gradient estimation in fmincon amplifies the slowdown. For example,
suppose the ms MultiStart object has UseParallel set to false. Suppose fmincon takes 1 s
longer to solve problem with problem.options.UseParallel set to true. Then
run(ms,problem,200) takes 200 s longer than the same run with
problem.options.UseParallel set to false

Note When executing serially, parfor loops run slower than for loops. Therefore, for best
performance, set your local solver UseParallel option to false when the MultiStart
UseParallel property is true.

Note Even when running in parallel, a solver occasionally calls the objective and nonlinear
constraint functions serially on the host machine. Therefore, ensure that your functions have no
assumptions about whether they are evaluated in serial and parallel.

GlobalSearch

GlobalSearch does not distribute a problem and start points to multiple processes or processors.
However, when GlobalSearch runs the fmincon local solver, fmincon can estimate gradients by
parallel finite differences. fmincon uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the UseParallel option to true with optimoptions. Set this option in the problem

structure:

opts = optimoptions(@fmincon,'UseParallel',true,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',@myobj,...
    'x0',startpt,'options',opts);

For more details, see “Using Parallel Computing in Optimization Toolbox”.
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Pattern Search

patternsearch can automatically distribute the evaluation of objective and constraint functions
associated with the points in a pattern to multiple processes or processors. patternsearch uses
parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using optimoptions:

• UseCompletePoll is true.
• UseVectorized is false (default).
• UseParallel is true.

When these conditions hold, the solver computes the objective function and constraint values of the
pattern search in parallel during a poll. Furthermore, patternsearch overrides the setting of the
Cache option, and uses the default 'off' setting.

Beginning in R2019a, when you set the UseParallel option to true, patternsearch internally
overrides the UseCompletePoll setting to true so it polls in parallel.

Note Even when running in parallel, patternsearch occasionally calls the objective and nonlinear
constraint functions serially on the host machine. Therefore, ensure that your functions have no
assumptions about whether they are evaluated in serial or parallel.

Parallel Search Function

patternsearch can optionally call a search function at each iteration. The search is parallel when
you:

• Set UseCompleteSearch to true.
• Do not set the search method to @searchneldermead or custom.
• Set the search method to a patternsearch poll method or Latin hypercube search, and set

UseParallel to true.
• Or, if you set the search method to ga, create a search method option with UseParallel set to

true.

Implementation Issues in Parallel Pattern Search

The limitations on patternsearch options, listed in “Pattern Search” on page 16-6, arise partly from
the limitations of parfor, and partly from the nature of parallel processing:

• Cache is overridden to be 'off' — patternsearch implements Cache as a persistent variable.
parfor does not handle persistent variables, because the variable could have different settings at
different processors.

• UseCompletePoll is true — UseCompletePoll determines whether a poll stops as soon as
patternsearch finds a better point. When searching in parallel, parfor schedules all
evaluations simultaneously, and patternsearch continues after all evaluations complete.
patternsearch cannot halt evaluations after they start.
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Beginning in R2019a, when you set the UseParallel option to true, patternsearch internally
overrides the UseCompletePoll setting to true so it polls in parallel.

• UseVectorized is false — UseVectorized determines whether patternsearch evaluates all
points in a pattern with one function call in a vectorized fashion. If UseVectorized is true,
patternsearch does not distribute the evaluation of the function, so does not use parfor.

Genetic Algorithm

ga and gamultiobj can automatically distribute the evaluation of objective and nonlinear constraint
functions associated with a population to multiple processors. ga uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using optimoptions:

• UseVectorized is false (default).
• UseParallel is true.

When these conditions hold, ga computes the objective function and nonlinear constraint values of
the individuals in a population in parallel.

Note Even when running in parallel, ga occasionally calls the fitness and nonlinear constraint
functions serially on the host machine. Therefore, ensure that your functions have no assumptions
about whether they are evaluated in serial or parallel.

Implementation Issues in Parallel Genetic Algorithm

The limitations on options, listed in “Genetic Algorithm” on page 16-7, arise partly from limitations of
parfor, and partly from the nature of parallel processing:

• UseVectorized is false — UseVectorized determines whether ga evaluates an entire
population with one function call in a vectorized fashion. If UseVectorized is true, ga does not
distribute the evaluation of the function, so does not use parfor.

ga can have a hybrid function that runs after it finishes; see “Hybrid Scheme in the Genetic
Algorithm” on page 8-91. If you want the hybrid function to take advantage of parallel computation,
set its options separately so that UseParallel is true. If the hybrid function is patternsearch,
set UseCompletePoll to true so that patternsearch runs in parallel.

If the hybrid function is fmincon, set the following options with optimoptions to have parallel
gradient estimation:

• GradObj must not be 'on' — it can be 'off' or [].
• Or, if there is a nonlinear constraint function, GradConstr must not be 'on' — it can be 'off'

or [].

To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 16-
14.
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Parallel Computing with gamultiobj

Parallel computing with gamultiobj works almost the same as with ga. For detailed information,
see “Genetic Algorithm” on page 16-7.

The difference between parallel computing with gamultiobj and ga has to do with the hybrid
function. gamultiobj allows only one hybrid function, fgoalattain. This function optionally runs
after gamultiobj finishes its run. Each individual in the calculated Pareto frontier, that is, the final
population found by gamultiobj, becomes the starting point for an optimization using
fgoalattain. These optimizations run in parallel. The number of processors performing these
optimizations is the smaller of the number of individuals and the size of your parpool.

For fgoalattain to run in parallel, set its options correctly:

fgoalopts = optimoptions(@fgoalattain,'UseParallel',true)
gaoptions = optimoptions('ga','HybridFcn',{@fgoalattain,fgoalopts});

Run gamultiobj with gaoptions, and fgoalattain runs in parallel. For more information about
setting the hybrid function, see “Hybrid Function Options” on page 17-39.

gamultiobj calls fgoalattain using a parfor loop, so fgoalattain does not estimate gradients
in parallel when used as a hybrid function with gamultiobj. For more information, see “No Nested
parfor Loops” on page 16-3.

Particle Swarm

particleswarm can automatically distribute the evaluation of the objective function associated with
a population to multiple processors. particleswarm uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following options using optimoptions:

• UseVectorized is false (default).
• UseParallel is true.

When these conditions hold, particleswarm computes the objective function of the particles in a
population in parallel.

Note Even when running in parallel, particleswarm occasionally calls the objective function
serially on the host machine. Therefore, ensure that your objective function has no assumptions about
whether it is evaluated in serial or parallel.

Implementation Issues in Parallel Particle Swarm Optimization

The limitations on options, listed in “Particle Swarm” on page 16-8, arise partly from limitations of
parfor, and partly from the nature of parallel processing:

• UseVectorized is false — UseVectorized determines whether particleswarm evaluates an
entire population with one function call in a vectorized fashion. If UseVectorized is true,
particleswarm does not distribute the evaluation of the function, so does not use parfor.

particleswarm can have a hybrid function that runs after it finishes; see “Hybrid Scheme in the
Genetic Algorithm” on page 8-91. If you want the hybrid function to take advantage of parallel
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computation, set its options separately so that UseParallel is true. If the hybrid function is
patternsearch, set UseCompletePoll to true so that patternsearch runs in parallel.

If the hybrid function is fmincon, set the GradObj option to 'off' or [] with optimoptions to
have parallel gradient estimation.

To find out how to write options for the hybrid function, see “Parallel Hybrid Functions” on page 16-
14.

Simulated Annealing

simulannealbnd does not run in parallel automatically. However, it can call hybrid functions that
take advantage of parallel computing. To find out how to write options for the hybrid function, see
“Parallel Hybrid Functions” on page 16-14.

Pareto Search

paretosearch can automatically distribute the evaluation of the objective function associated with a
population to multiple processors. paretosearch uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following option using optimoptions:

• UseParallel is true.

When these conditions hold, paretosearch computes the objective function of the particles in a
population in parallel.

Note Even when running in parallel, paretosearch occasionally calls the objective function serially
on the host machine. Therefore, ensure that your objective function has no assumptions about
whether it is evaluated in serial or parallel.

For algorithmic details, see “Modifications for Parallel Computation and Vectorized Function
Evaluation” on page 14-16.

Surrogate Optimization

surrogateopt can automatically distribute the evaluation of the objective function associated with a
population to multiple processors. surrogateopt uses parallel computing when you:

• Have a license for Parallel Computing Toolbox software.
• Enable parallel computing with parpool, a Parallel Computing Toolbox function.
• Set the following option using optimoptions:

• UseParallel is true.

When these conditions hold, surrogateopt computes the objective function of the particles in a
population in parallel.
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Note Even when running in parallel, surrogateopt occasionally calls the objective function serially
on the host machine. Therefore, ensure that your objective function has no assumptions about
whether it is evaluated in serial or parallel.

For algorithmic details, see “Parallel surrogateopt Algorithm” on page 11-10.

See Also

More About
• “How to Use Parallel Processing in Global Optimization Toolbox” on page 16-11
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox” on page 16-

16
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How to Use Parallel Processing in Global Optimization Toolbox

In this section...
“Multicore Processors” on page 16-11
“Processor Network” on page 16-12
“Parallel Search Functions or Hybrid Functions” on page 16-14
“Testing Parallel Optimization” on page 16-15

Multicore Processors
If you have a multicore processor, you can increase processing speed by using parallel processing.
You can establish a parallel pool of several workers with a Parallel Computing Toolbox license. For a
description of Parallel Computing Toolbox software, see “Get Started with Parallel Computing
Toolbox” (Parallel Computing Toolbox).

Suppose you have a dual-core processor, and want to use parallel computing. Enter this code at the
command line.

parpool

MATLAB starts a pool of workers using the multicore processor. If you previously set a nondefault
cluster profile, you can enforce multicore (local) computing by entering this code.

parpool('local')

Note Depending on your preferences, MATLAB can start a parallel pool automatically. To enable this
feature, select Parallel > Parallel Preferences in the Environment group on the Home tab, and
then select Automatically create a parallel pool.

Set your solver to use parallel processing.

Solver Command-Line Settings
ga options = optimoptions('ga','UseParallel',

true, 'UseVectorized', false);
gamultiobj options =

optimoptions('gamultiobj','UseParallel',
true, 'UseVectorized', false);

MultiStart ms = MultiStart('UseParallel', true);

or

ms.UseParallel = true
paretosearch options =

optimoptions('paretosearch','UseParallel',
true);
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Solver Command-Line Settings
particleswarm options = optimoptions('particleswarm',

'UseParallel', true, 'UseVectorized',
false);

patternsearch options =
optimoptions('patternsearch','UseParallel'
, true, 'UseCompletePoll', true,
'UseVectorized', false);

surrogateopt options =
optimoptions('surrogateopt','UseParallel',
true);

Beginning in R2019a, when you set the UseParallel option to true, patternsearch internally
overrides the UseCompletePoll setting to true so it polls in parallel.

When you run an applicable solver with options, applicable solvers automatically use parallel
computing.

To stop computing optimizations in parallel, set UseParallel to false. To halt all parallel
computation, enter this code.

delete(gcp)

Note The documentation recommends not to use parfor or parfeval when calling Simulink; see
“Using sim function within parfor” (Simulink). Therefore, you might encounter issues when
optimizing a Simulink simulation in parallel using a solver's built-in parallel functionality.

Processor Network
If you have multiple processors on a network, use Parallel Computing Toolbox functions and MATLAB
Parallel Server™ software to establish parallel computation.

Make sure your system is configured properly for parallel computing. Check with your systems
administrator, or refer to the Parallel Computing Toolbox documentation.

1 Perform a basic check by entering this code, where prof is your cluster profile.

parpool(prof)
2 Workers must be able to access your objective function file and, if applicable, your nonlinear

constraint function file. Complete one of these steps to ensure access:

• Distribute the files to the workers using the parpool AttachedFiles argument. In this
example, objfun.m is your objective function file, and constrfun.m is your nonlinear
constraint function file.

parpool('AttachedFiles',{'objfun.m','constrfun.m'});

Workers access their own copies of the files.
• Give a network file path to your objective or constraint function files.

pctRunOnAll('addpath network_file_path')

16 Parallel Processing

16-12



Workers access the function files over the network.
3 Check whether a file is on the path of every worker.

pctRunOnAll('which filename')

If any worker does not have a path to the file, it reports

filename not found.

Set your solver to use parallel processing.

Solver Command-Line Settings
ga options = optimoptions('ga','UseParallel',

true, 'UseVectorized', false);
gamultiobj options =

optimoptions('gamultiobj','UseParallel',
true, 'UseVectorized', false);

MultiStart ms = MultiStart('UseParallel', true);

or

ms.UseParallel = true
paretosearch options =

optimoptions('paretosearch','UseParallel',
true);

particleswarm options = optimoptions('particleswarm',
'UseParallel', true, 'UseVectorized',
false);

patternsearch options =
optimoptions('patternsearch','UseParallel'
, true, 'UseCompletePoll', true,
'UseVectorized', false);

surrogateopt options =
optimoptions('surrogateopt','UseParallel',
true);

Beginning in R2019a, when you set the UseParallel option to true, patternsearch internally
overrides the UseCompletePoll setting to true so it polls in parallel.

After you establish your parallel computing environment, applicable solvers automatically use parallel
computing whenever you call them with options.

To stop computing optimizations in parallel, set UseParallel to false. To halt all parallel
computation, enter this code.

delete(gcp)

Note The documentation recommends not to use parfor or parfeval when calling Simulink; see
“Using sim function within parfor” (Simulink). Therefore, you might encounter issues when
optimizing a Simulink simulation in parallel using a solver's built-in parallel functionality.
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Parallel Search Functions or Hybrid Functions
To have a patternsearch search function run in parallel, or a hybrid function for ga or
simulannealbnd run in parallel, do the following.

1 Set up parallel processing as described in “Multicore Processors” on page 16-11 or “Processor
Network” on page 16-12.

2 Ensure that your search function or hybrid function has the conditions outlined in these sections:

• “patternsearch Search Function” on page 16-14
• “Parallel Hybrid Functions” on page 16-14

patternsearch Search Function

patternsearch uses a parallel search function under the following conditions:

• UseCompleteSearch is true.
• The search method is not @searchneldermead or custom.
• If the search method is a patternsearch poll method or Latin hypercube search, UseParallel

is true. Set at the command line with optimoptions:

options = optimoptions('patternsearch','UseParallel',true,...
    'UseCompleteSearch',true,'SearchFcn',@GPSPositiveBasis2N);

• If the search method is ga, the search method option has UseParallel set to true. Set at the
command line with optimoptions:

iterlim = 1; % iteration limit, specifies # ga runs
gaopt = optimoptions('ga','UseParallel',true);
options = optimoptions('patternsearch','SearchFcn',...
    {@searchga,iterlim,gaopt});

For more information about search options, see “Search Options” on page 17-12. For an example,
see “Search and Poll” on page 6-39.

Parallel Hybrid Functions

ga, particleswarm, and simulannealbnd can have other solvers run after or interspersed with
their iterations. These other solvers are called hybrid functions. For information on using a hybrid
function with gamultiobj, see “Parallel Computing with gamultiobj” on page 16-8. Both
patternsearch and fmincon can be hybrid functions. You can set options so that patternsearch
runs in parallel, or fmincon estimates gradients in parallel.

Set the options for the hybrid function as described in “Hybrid Function Options” on page 17-39 for
ga, “Hybrid Function” on page 17-46 for particleswarm, or “Hybrid Function Options” on page
17-60 for simulannealbnd. To summarize:

• If your hybrid function is patternsearch

1 Create patternsearch options:

hybridopts = optimoptions('patternsearch','UseParallel',true,...
    'UseCompletePoll',true);

2 Set the ga or simulannealbnd options to use patternsearch as a hybrid function:
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options = optimoptions('ga','UseParallel',true); % for ga
options = optimoptions('ga',options,...
    'HybridFcn',{@patternsearch,hybridopts});
% or, for simulannealbnd:
options = optimoptions(@simulannealbnd,'HybridFcn',{@patternsearch,hybridopts});

For more information on parallel patternsearch, see “Pattern Search” on page 16-6.
• If your hybrid function is fmincon:

1 Create fmincon options:

hybridopts = optimoptions(@fmincon,'UseParallel',true,...
    'Algorithm','interior-point');
% You can use any Algorithm except trust-region-reflective

2 Set the ga or simulannealbnd options to use fmincon as a hybrid function:

options = optimoptions('ga','UseParallel',true);
options = optimoptions('ga',options,'HybridFcn',{@fmincon,hybridopts});
% or, for simulannealbnd:
options = optimoptions(@simulannealbnd,'HybridFcn',{@fmincon,hybridopts});

For more information on parallel fmincon, see “Parallel Computing”.

Testing Parallel Optimization
Follow these steps to test whether your problem runs correctly in parallel.

1 Try your problem without parallel computation to ensure that it runs serially. Make sure this test
is successful (gives correct results) before going to the next test.

2 Set UseParallel to true, and ensure that no parallel pool exists by entering delete(gcp). To
make sure that MATLAB does not create a parallel pool, select Parallel > Parallel Preferences
in the Environment group on the Home tab, and then clear Automatically create a parallel
pool. Your problem runs parfor serially, with loop iterations in reverse order from a for loop.
Make sure this test is successful (gives correct results) before going to the next test.

3 Set UseParallel to true, and create a parallel pool using parpool. Unless you have a
multicore processor or a network set up, this test does not increase processing speed. This
testing is simply to verify the correctness of the computations.

Remember to call your solver using an options argument to test or use parallel functionality.

See Also

More About
• “How Solvers Compute in Parallel” on page 16-2
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox” on page 16-

16
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Minimizing an Expensive Optimization Problem Using Parallel
Computing Toolbox

This example shows how to speed up the minimization of an expensive optimization problem using
functions in Optimization Toolbox™ and Global Optimization Toolbox. In the first part of the example
we solve the optimization problem by evaluating functions in a serial fashion, and in the second part
of the example we solve the same problem using the parallel for loop (parfor) feature by evaluating
functions in parallel. We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective and
constraint functions are made artificially expensive by pausing.

function f = expensive_objfun(x)
%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

%   Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1)
% Evaluate objective function
f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)
%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

%   Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1);
% Evaluate constraints
c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4); 
     -x(1)*x(2) + x(4) - 10];
% No nonlinear equality constraints:
ceq = [];

Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that we can compare it to the
parallel time.

startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequential);

                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       5    1.839397e+00    1.500e+00    3.211e+00

16 Parallel Processing

16-16



    1      11   -9.760099e-01    3.708e+00    7.902e-01    2.362e+00
    2      16   -1.480976e+00    0.000e+00    8.344e-01    1.069e+00
    3      21   -2.601599e+00    0.000e+00    8.390e-01    1.218e+00
    4      29   -2.823630e+00    0.000e+00    2.598e+00    1.118e+00
    5      34   -3.905339e+00    0.000e+00    1.210e+00    7.302e-01
    6      39   -6.212992e+00    3.934e-01    7.372e-01    2.405e+00
    7      44   -5.948762e+00    0.000e+00    1.784e+00    1.905e+00
    8      49   -6.940062e+00    1.233e-02    7.668e-01    7.553e-01
    9      54   -6.973887e+00    0.000e+00    2.549e-01    3.920e-01
   10      59   -7.142993e+00    0.000e+00    1.903e-01    4.735e-01
   11      64   -7.155325e+00    0.000e+00    1.365e-01    2.626e-01
   12      69   -7.179122e+00    0.000e+00    6.336e-02    9.115e-02
   13      74   -7.180116e+00    0.000e+00    1.069e-03    4.670e-02
   14      79   -7.180409e+00    0.000e+00    7.799e-04    2.815e-03
   15      84   -7.180410e+00    0.000e+00    6.189e-06    3.122e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Serial FMINCON optimization takes 17.0722 seconds.

Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we remove the expensive
constraint from this problem and perform unconstrained optimization instead. Pass empty matrices
[] for constraints. In addition, we limit the maximum number of generations to 15 for ga so that ga
can terminate in a reasonable amount of time. We are interested in measuring the time taken by ga
so that we can compare it to the parallel ga evaluation. Note that running ga requires Global
Optimization Toolbox.

rng default % for reproducibility
try
    gaAvailable = false;
    nvar = 4;
    gaoptions = optimoptions('ga','MaxGenerations',15,'Display','iter');
    startTime = tic;
    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
    time_ga_sequential = toc(startTime);
    fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential);
    gaAvailable = true;
catch ME
    warning(message('optimdemos:optimparfor:gaNotFound'));
end

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100      -5.546e+05       1.483e+15        0
    2              150      -5.581e+17      -1.116e+16        0
    3              200      -7.556e+17       6.679e+22        0
    4              250      -7.556e+17      -7.195e+16        1
    5              300      -9.381e+27      -1.876e+26        0
    6              350      -9.673e+27      -7.497e+26        0
    7              400      -4.511e+36      -9.403e+34        0
    8              450      -5.111e+36      -3.011e+35        0
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    9              500      -7.671e+36       9.346e+37        0
   10              550       -1.52e+43      -3.113e+41        0
   11              600      -2.273e+45       -4.67e+43        0
   12              650      -2.589e+47      -6.281e+45        0
   13              700      -2.589e+47      -1.015e+46        1
   14              750      -8.149e+47      -5.855e+46        0
   15              800      -9.503e+47       -1.29e+47        0
Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 80.2351 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate derivatives is
done in parallel using the parfor feature if Parallel Computing Toolbox™ is available and there is a
parallel pool of workers. Similarly, ga, gamultiobj, and patternsearch solvers in Global
Optimization Toolbox evaluate functions in parallel. To use the parfor feature, we use the parpool
function to set up the parallel environment. The computer on which this example is published has
four cores, so parpool starts four MATLAB® workers. If there is already a parallel pool when you
run this example, we use that pool; see the documentation for parpool for more information.

if max(size(gcp)) == 0 % parallel pool needed
    parpool % create the parallel pool
end

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function, we need to
explicitly indicate that our objective and constraint functions can be evaluated in parallel and that we
want fmincon to use its parallel functionality wherever possible. Currently, finite differencing can be
done in parallel. We are interested in measuring the time taken by fmincon so that we can compare
it to the serial fmincon run.

options = optimoptions(options,'UseParallel',true);
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_parallel);

                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       5    1.839397e+00    1.500e+00    3.211e+00
    1      11   -9.760099e-01    3.708e+00    7.902e-01    2.362e+00
    2      16   -1.480976e+00    0.000e+00    8.344e-01    1.069e+00
    3      21   -2.601599e+00    0.000e+00    8.390e-01    1.218e+00
    4      29   -2.823630e+00    0.000e+00    2.598e+00    1.118e+00
    5      34   -3.905339e+00    0.000e+00    1.210e+00    7.302e-01
    6      39   -6.212992e+00    3.934e-01    7.372e-01    2.405e+00
    7      44   -5.948762e+00    0.000e+00    1.784e+00    1.905e+00
    8      49   -6.940062e+00    1.233e-02    7.668e-01    7.553e-01
    9      54   -6.973887e+00    0.000e+00    2.549e-01    3.920e-01
   10      59   -7.142993e+00    0.000e+00    1.903e-01    4.735e-01
   11      64   -7.155325e+00    0.000e+00    1.365e-01    2.626e-01
   12      69   -7.179122e+00    0.000e+00    6.336e-02    9.115e-02
   13      74   -7.180116e+00    0.000e+00    1.069e-03    4.670e-02
   14      79   -7.180409e+00    0.000e+00    7.799e-04    2.815e-03
   15      84   -7.180410e+00    0.000e+00    6.189e-06    3.122e-04
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Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Parallel FMINCON optimization takes 8.11945 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function, we need to explicitly indicate
that our objective function can be evaluated in parallel and that we want ga to use its parallel
functionality wherever possible. To use the parallel ga we also require that the 'Vectorized' option be
set to the default (i.e., 'off'). We are again interested in measuring the time taken by ga so that we
can compare it to the serial ga run. Though this run may be different from the serial one because ga
uses a random number generator, the number of expensive function evaluations is the same in both
runs. Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run
if gaAvailable
    gaoptions = optimoptions(gaoptions,'UseParallel',true);
    startTime = tic;
    gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
    time_ga_parallel = toc(startTime);
    fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel);
end

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100      -5.546e+05       1.483e+15        0
    2              150      -5.581e+17      -1.116e+16        0
    3              200      -7.556e+17       6.679e+22        0
    4              250      -7.556e+17      -7.195e+16        1
    5              300      -9.381e+27      -1.876e+26        0
    6              350      -9.673e+27      -7.497e+26        0
    7              400      -4.511e+36      -9.403e+34        0
    8              450      -5.111e+36      -3.011e+35        0
    9              500      -7.671e+36       9.346e+37        0
   10              550       -1.52e+43      -3.113e+41        0
   11              600      -2.273e+45       -4.67e+43        0
   12              650      -2.589e+47      -6.281e+45        0
   13              700      -2.589e+47      -1.015e+46        1
   14              750      -8.149e+47      -5.855e+46        0
   15              800      -9.503e+47       -1.29e+47        0
Optimization terminated: maximum number of generations exceeded.
Parallel GA optimization takes 15.6984 seconds.

Compare Serial and Parallel Time

X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
ax = gca;
ax.XTick = [0 1];
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ax.XTickLabel = {'Serial' 'Parallel'};
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')

Utilizing parallel function evaluation via parfor improved the efficiency of both fmincon and ga.
The improvement is typically better for expensive objective and constraint functions.

See Also

More About
• “How Solvers Compute in Parallel” on page 16-2
• “How to Use Parallel Processing in Global Optimization Toolbox” on page 16-11
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Options Reference

• “GlobalSearch and MultiStart Properties (Options)” on page 17-2
• “Pattern Search Options” on page 17-7
• “Genetic Algorithm Options” on page 17-23
• “Particle Swarm Options” on page 17-44
• “Surrogate Optimization Options” on page 17-50
• “Simulated Annealing Options” on page 17-57
• “Options Changes in R2016a” on page 17-64
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GlobalSearch and MultiStart Properties (Options)
In this section...
“How to Set Properties” on page 17-2
“Properties of Both Objects” on page 17-2
“GlobalSearch Properties” on page 17-5
“MultiStart Properties” on page 17-6

How to Set Properties
To create a GlobalSearch or MultiStart object with nondefault properties, use name-value pairs.
For example, to create a GlobalSearch object that has iterative display and runs only from feasible
points with respect to bounds and inequalities, enter

gs = GlobalSearch('Display','iter', ...
    'StartPointsToRun','bounds-ineqs');

To set a property of an existing GlobalSearch or MultiStart object, use dot notation. For
example, if ms is a MultiStart object, and you want to set the Display property to 'iter', enter

ms.Display = 'iter';

To set multiple properties of an existing object simultaneously, use the constructor (GlobalSearch
or MultiStart) with name-value pairs. For example, to set the Display property to 'iter' and the
MaxTime property to 100, enter

ms = MultiStart(ms,'Display','iter','MaxTime',100);

For more information on setting properties, see “Changing Global Options” on page 4-52.

Properties of Both Objects
You can create a MultiStart object from a GlobalSearch object and vice-versa.

The syntax for creating a new object from an existing object is:

ms = MultiStart(gs);
or
gs = GlobalSearch(ms);

The new object contains the properties that apply of the old object. This section describes those
shared properties:

• “Display” on page 17-3
• “FunctionTolerance” on page 17-3
• “MaxTime” on page 17-3
• “OutputFcn” on page 17-3
• “PlotFcn” on page 17-4
• “StartPointsToRun” on page 17-4
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• “XTolerance” on page 17-5

Display

Values for the Display property are:

• 'final' (default) — Summary results to command line after last solver run.
• 'off' — No output to command line.
• 'iter' — Summary results to command line after each local solver run.

FunctionTolerance

The FunctionTolerance property describes how close two objective function values must be for
solvers to consider them identical for creating the vector of local solutions. Set FunctionTolerance
to 0 to obtain the results of every local solver run. Set FunctionTolerance to a larger value to have
fewer results.

Solvers consider two solutions identical if they are within XTolerance distance of each other and
have objective function values within FunctionTolerance of each other. If both conditions are not
met, solvers report the solutions as distinct. The tolerances are relative, not absolute. For details, see
“When fmincon Runs” on page 4-37 for GlobalSearch, and “Create GlobalOptimSolution Object” on
page 4-39 for MultiStart.

MaxTime

The MaxTime property describes a tolerance on the number of seconds since the solver began its run.
Solvers halt when they see MaxTime seconds have passed since the beginning of the run. Time means
wall clock as opposed to processor cycles. The default is Inf.

OutputFcn

The OutputFcn property directs the global solver to run one or more output functions after each
local solver run completes. The output functions also run when the global solver starts and ends.
Include a handle to an output function written in the appropriate syntax, or include a cell array of
such handles. The default is an empty entry ([]).

The syntax of an output function is:

stop = outFcn(optimValues,state)

• stop is a Boolean. When true, the algorithm stops. When false, the algorithm continues.

Note A local solver can have an output function. The global solver does not necessarily stop when
a local solver output function causes a local solver run to stop. If you want the global solver to
stop in this case, have the global solver output function stop when
optimValues.localsolution.exitflag=-1.

• optimValues is a structure, described in “optimValues Structure” on page 17-4.
• state is the current state of the global algorithm:

• 'init' — The global solver has not called the local solver. The fields in the optimValues
structure are empty, except for localrunindex, which is 0, and funccount, which contains
the number of objective and constraint function evaluations.

 GlobalSearch and MultiStart Properties (Options)

17-3



• 'iter' — The global solver calls output functions after each local solver run.
• 'done' — The global solver finished calling local solvers. The fields in optimValues generally

have the same values as the ones from the final output function call with state='iter'.
However, the value of optimValues.funccount for GlobalSearch can be larger than the
value in the last function call with 'iter', because the GlobalSearch algorithm might have
performed some function evaluations that were not part of a local solver. For more information,
see “GlobalSearch Algorithm” on page 4-35.

For an example using an output function, see “GlobalSearch Output Function” on page 4-27.

Note Output and plot functions do not run when MultiStart has the UseParallel option set to
true and there is an open parpool.

optimValues Structure

The optimValues structure contains the following fields:

• bestx — The current best point
• bestfval — Objective function value at bestx
• funccount — Total number of function evaluations
• localrunindex — Index of the local solver run
• localsolution — A structure containing part of the output of the local solver call: X, Fval and

Exitflag

PlotFcn

The PlotFcn property directs the global solver to run one or more plot functions after each local
solver run completes. Include a handle to a plot function written in the appropriate syntax, or include
a cell array of such handles. The default is an empty entry ([]).

The syntax of a plot function is the same as that of an output function. For details, see “OutputFcn”
on page 17-3.

There are two predefined plot functions for the global solvers:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

For an example using a plot function, see “MultiStart Plot Function” on page 4-30.

If you specify more than one plot function, all plots appear as subplots in the same window. Right-
click any subplot to obtain a larger version in a separate figure window.

Note Output and plot functions do not run when MultiStart has the UseParallel option set to
true and there is an open parpool.

StartPointsToRun

The StartPointsToRun property directs the solver to exclude certain start points from being run:
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• all — Accept all start points.
• bounds — Reject start points that do not satisfy bounds.
• bounds-ineqs — Reject start points that do not satisfy bounds or inequality constraints.

XTolerance

The XTolerance property describes how close two points must be for solvers to consider them
identical for creating the vector of local solutions. Set XTolerance to 0 to obtain the results of every
local solver run. Set XTolerance to a larger value to have fewer results. Solvers compute the
distance between a pair of points with norm, the Euclidean distance.

Solvers consider two solutions identical if they are within XTolerance distance of each other and
have objective function values within FunctionTolerance of each other. If both conditions are not
met, solvers report the solutions as distinct. The tolerances are relative, not absolute. For details, see
“When fmincon Runs” on page 4-37 for GlobalSearch, and “Create GlobalOptimSolution Object” on
page 4-39 for MultiStart.

GlobalSearch Properties
• “NumTrialPoints” on page 17-5
• “NumStageOnePoints” on page 17-5
• “MaxWaitCycle” on page 17-5
• “BasinRadiusFactor” on page 17-6
• “DistanceThresholdFactor” on page 17-6
• “PenaltyThresholdFactor” on page 17-6

NumTrialPoints

Number of potential start points to examine in addition to x0 from the problem structure.
GlobalSearch runs only those potential start points that pass several tests. For more information,
see “GlobalSearch Algorithm” on page 4-35.

Default: 1000

NumStageOnePoints

Number of start points in Stage 1. For details, see “Obtain Stage 1 Start Point, Run” on page 4-36.

Default: 200

MaxWaitCycle

A positive integer tolerance appearing in several points in the algorithm.

• If the observed penalty function of MaxWaitCycle consecutive trial points is at least the penalty
threshold, then raise the penalty threshold (see “PenaltyThresholdFactor” on page 17-6).

• If MaxWaitCycle consecutive trial points are in a basin, then update that basin's radius (see
“BasinRadiusFactor” on page 17-6).

Default: 20
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BasinRadiusFactor

A basin radius decreases after MaxWaitCycle consecutive start points are within the basin. The
basin radius decreases by a factor of 1–BasinRadiusFactor.

Default: 0.2

DistanceThresholdFactor

A multiplier for determining whether a trial point is in an existing basin of attraction. For details, see
“Examine Stage 2 Trial Point to See if fmincon Runs” on page 4-36. Default: 0.75

PenaltyThresholdFactor

Determines increase in penalty threshold. For details, see React to Large Counter Values on page 4-
38.

Default: 0.2

MultiStart Properties
UseParallel

The UseParallel property determines whether the solver distributes start points to multiple
processors:

• false (default) — Do not run in parallel.
• true — Run in parallel.

For the solver to run in parallel you must set up a parallel environment with parpool. For details,
see “How to Use Parallel Processing in Global Optimization Toolbox” on page 16-11.

17 Options Reference

17-6



Pattern Search Options

In this section...
“Options for Pattern Search” on page 17-7
“Plot Options” on page 17-7
“Poll Options” on page 17-9
“Multiobjective Options” on page 17-11
“Search Options” on page 17-12
“Mesh Options” on page 17-15
“Constraint Parameters” on page 17-15
“Cache Options” on page 17-16
“Stopping Criteria” on page 17-16
“Output Function Options” on page 17-17
“Display to Command Window Options” on page 17-18
“Vectorized and Parallel Options” on page 17-19
“Options Table for Pattern Search Algorithms” on page 17-21

Options for Pattern Search
Set options for patternsearch by using optimoptions.

options = optimoptions('patternsearch',...
    'Option1','value1','Option2','value2');

• Some options are listed in italics. These options do not appear in the listing that
optimoptions returns. To see why optimoptions hides these option values, see “Options that
optimoptions Hides” on page 17-64.

• Ensure that you pass options to the solver. Otherwise, patternsearch uses the default option
values.

[x,fval] = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Plot Options
PlotFcn specifies the plot function or functions called at each iteration by patternsearch or
paretosearch. Set the PlotFcn option to be a built-in plot function name or a handle to the plot
function. You can stop the algorithm at any time by clicking the Stop button on the plot window. For
example, to display the best function value, set options as follows:

options = optimoptions('patternsearch','PlotFcn','psplotbestf');

To display multiple plots, use a cell array of built-in plot function names or a cell array of function
handles:

options = optimoptions('patternsearch',...
    'PlotFcn', {@plotfun1, @plotfun2, ...});
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where @plotfun1, @plotfun2, and so on are function handles to the plot functions. If you specify
more than one plot function, all plots appear as subplots in the same window. Right-click any subplot
to obtain a larger version in a separate figure window.

Available plot functions for patternsearch or for paretosearch with a single objective function:

• 'psplotbestf' — Plot the best objective function value.
• 'psplotfuncount' — Plot the number of function evaluations.
• 'psplotmeshsize' — Plot the mesh size.
• 'psplotbestx' — Plot the current best point.
• 'psplotmaxconstr' — Plot the maximum nonlinear constraint violation.
• You can also create and use your own plot function. “Structure of the Plot Functions” on page 17-

8 describes the structure of a custom plot function. Pass any custom function as a function
handle.

For paretosearch with multiple objective functions, you can select a custom function that you pass
as a function handle, or any of the following functions.

• 'psplotfuncount' — Plot the number of function evaluations.
• 'psplotmaxconstr' — Plot the maximum nonlinear constraint violation.
• 'psplotdistance' — Plot the distance metric. See “paretosearch Algorithm” on page 14-10.
• 'psplotparetof' — Plot the objective function values. Applies to three or fewer objectives.
• 'psplotparetox' — Plot the current points in parameter space. Applies to three or fewer

dimensions.
• 'psplotspread' — Plot the spread metric. See “paretosearch Algorithm” on page 14-10.
• 'psplotvolume' — Plot the volume metric. See “paretosearch Algorithm” on page 14-10.

For patternsearch, the PlotInterval option specifies the number of iterations between
consecutive calls to the plot function.

Structure of the Plot Functions

The first line of a plot function has the form

function stop = plotfun(optimvalues, flag)

The input arguments to the function are

• optimvalues — Structure containing information about the current state of the solver. The
structure contains the following fields for patternsearch:

• x — Current point
• iteration — Iteration number
• fval — Objective function value
• meshsize — Current mesh size
• funccount — Number of function evaluations
• method — Method used in last iteration
• TolFun — Tolerance on function value in last iteration
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• TolX — Tolerance on x value in last iteration
• nonlinineq — Nonlinear inequality constraints, displayed only when a nonlinear constraint

function is specified
• nonlineq — Nonlinear equality constraints, displayed only when a nonlinear constraint

function is specified

The structure contains the following fields for paretosearch:

• x — Current point
• fval — Objective function value
• iteration — Iteration number
• funccount — Number of function evaluations
• nonlinineq — Nonlinear inequality constraints, displayed only when a nonlinear constraint

function is specified
• nonlineq — Nonlinear equality constraints, always empty []
• volume — Volume measure (see “Definitions for paretosearch Algorithm” on page 14-10)
• averagedistance — Distance measure (see “Definitions for paretosearch Algorithm” on page

14-10)
• spread — Spread measure (see “Definitions for paretosearch Algorithm” on page 14-10)

• flag — Current state in which the plot function is called. The possible values for flag are

• 'init' — Initialization state
• 'iter' — Iteration state
• 'interrupt' — Intermediate stage
• 'done' — Final state

For details of flag, see “Structure of the Output Function” on page 17-17.

“Passing Extra Parameters” explains how to provide additional parameters to the function.

The output argument stop provides a way to stop the algorithm at the current iteration. stop can
have the following values:

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

Poll Options
Poll options control how the pattern search polls the mesh points at each iteration.

PollMethod specifies the pattern the algorithm uses to create the mesh. There are two patterns for
each of the classes of direct search algorithms: the generalized pattern search (GPS) algorithm, the
generating set search (GSS) algorithm, and the mesh adaptive direct search (MADS) algorithm. These
patterns are the Positive basis 2N and the Positive basis N+1:

• The default pattern for patternsearch, 'GPSPositiveBasis2N', consists of the following 2N
vectors, where N is the number of independent variables for the objective function.

[1 0 0...0] [0 1 0...0] ...[0 0 0...1] [–1 0 0...0] [0 –1 0...0] [0 0 0...–1].
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For example, if the optimization problem has three independent variables, the pattern consists of
the following six vectors.

[1 0 0] [0 1 0] [0 0 1] [–1 0 0] [0 –1 0] [0 0 –1].
• The default pattern for paretosearch, 'GPSPositiveBasis2Np2', is the same as

'GPSPositiveBasis2N' with two more points: all ones and all minus ones.
[1 1 1...1] [–1 –1 –1...–1]

For example, if the optimization problem has three independent variables, the pattern consists of
the following eight vectors.

[1 0 0] [0 1 0] [0 0 1] [–1 0 0] [0 –1 0] [0 0 –1] [1 1 1] [–1 –1 –1].
• The 'GSSPositiveBasis2N' pattern is similar to 'GPSPositiveBasis2N', but adjusts the

basis vectors to account for linear constraints. 'GSSPositiveBasis2N' is more efficient than
'GPSPositiveBasis2N' when the current point is near a linear constraint boundary.
paretosearch also has the 'GSSPositiveBasis2Np2' pattern that is similar to
'GPSPositiveBasis2Np2'.

• The 'MADSPositiveBasis2N' pattern consists of 2N randomly generated vectors, where N is
the number of independent variables for the objective function. This is done by randomly
generating N vectors which form a linearly independent set, then using this first set and the
negative of this set gives 2N vectors. As shown above, the 'GPSPositiveBasis2N' pattern is
formed using the positive and negative of the linearly independent identity, however, with the
'MADSPositiveBasis2N', the pattern is generated using a random permutation of an N-by-N
linearly independent lower triangular matrix that is regenerated at each iteration.

Note You cannot use MADS polling when the problem has linear equality constraints.
• The 'GPSPositiveBasisNp1' pattern consists of the following N + 1 vectors.

[1 0 0...0] [0 1 0...0] ...[0 0 0...1] [–1 –1 –1...–1].

For example, if the objective function has three independent variables, the pattern consists of the
following four vectors.

[1 0 0] [0 1 0] [0 0 1] [–1 –1 –1].
• The 'GSSPositiveBasisNp1' pattern is similar to 'GPSPositiveBasisNp1', but adjusts the

basis vectors to account for linear constraints. 'GSSPositiveBasisNp1' is more efficient than
'GPSPositiveBasisNp1' when the current point is near a linear constraint boundary.

• The 'MADSPositiveBasisNp1' pattern consists of N randomly generated vectors to form the
positive basis, where N is the number of independent variables for the objective function. Then,
one more random vector is generated, giving N+1 randomly generated vectors. Each iteration
generates a new pattern when the 'MADSPositiveBasisNp1' is selected.

Note You cannot use MADS polling when the problem has linear equality constraints.

UseCompletePoll specifies whether all the points in the current mesh must be polled at each
iteration. UseCompletePoll can have the values true or false.

• If you set UseCompletePoll to true, the algorithm polls all the points in the mesh at each
iteration and chooses the point with the smallest objective function value as the current point at
the next iteration.

• If you set UseCompletePoll to false, the default value, the algorithm stops the poll as soon as
it finds a point whose objective function value is less than that of the current point. The algorithm
then sets that point as the current point at the next iteration.
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• For paretosearch only, the MinPollFraction option specifies the fraction of poll directions
that are investigated during a poll, instead of the binary value of UseCompletePoll. To specify a
complete poll, set MinPollFraction to 1. To specify that the poll stops as soon as it finds a point
that improves all objective functions, set MinPollFraction to 0.

PollOrderAlgorithm specifies the order in which the algorithm searches the points in the current
mesh. The options are

• 'Consecutive' (default) — The algorithm polls the mesh points in consecutive order, that is, the
order of the pattern vectors as described in “Poll Method” on page 6-31.

• 'Random' — The polling order is random.
• 'Success' — The first search direction at each iteration is the direction in which the algorithm

found the best point at the previous iteration. After the first point, the algorithm polls the mesh
points in the same order as 'Consecutive'.

Multiobjective Options
The paretosearch solver mainly uses patternsearch options. Several of the available built-in plot
functions differ; see “Plot Options” on page 17-7. The following options apply only to paretosearch.

In the table, N represents the number of decision variables.
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Multiobjective Pattern Search Options

Option Definition Allowed and {Default}
Values

ParetoSetSize Number of points in the Pareto set. Positive integer |
{max(60,number of
objectives) }

ParetoSetChangeTolera
nce

Tolerance on the change in volume or
spread of solutions. When either of these
measures relatively changes by less than
ParetoSetChangeTolerance, the
iterations end. For details, see “Stopping
Conditions” on page 14-15.

Positive scalar | {1e-4}

MinPollFraction Minimum fraction of the pattern to poll. Scalar from 0 through 1 |
{0}

InitialPoints Initial points for paretosearch. Use one of
these data types:

• Matrix with nvars columns, where each
row represents one initial point.

• Structure containing the following fields
(all fields are optional except X0):

• X0 — Matrix with nvars columns,
where each row represents one initial
point.

• Fvals — Matrix with
numObjectives columns, where
each row represents the objective
function values at the corresponding
point in X0.

• Cineq — Matrix with numIneq
columns, where each row represents
the nonlinear inequality constraint
values at the corresponding point in
X0.

If there are missing entries in the Fvals or
Cineq fields, paretosearch computes the
missing values.

Matrix with nvars
columns | structure |
{[]}

Search Options
The SearchFcn option specifies an optional search that the algorithm can perform at each iteration
prior to the polling. If the search returns a point that improves the objective function, the algorithm
uses that point at the next iteration and omits the polling. If you select the same SearchFcn and
PollMethod, only the Poll method is used, although both are used when the selected options differ.

The values for SearchFcn are listed below.
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• [], the default, specifies no search step.
• Any built-in poll algorithm: 'GPSPositiveBasis2N', 'GPSPositiveBasisNp1',

'GSSPositiveBasis2N', 'GSSPositiveBasisNp1', 'MADSPositiveBasis2N', or
'MADSPositiveBasisNp1'.

• 'searchga' specifies a search using the genetic algorithm. You can modify the genetic algorithm
search using two additional parameters:

options = optimoptions('patternsearch','SearchFcn',...
       {@searchga,iterlim,optionsGA})

• iterlim — Positive integer specifying the number of iterations of the pattern search for which
the genetic algorithm search is performed. The default for iterlim is 1. The recommendation
is not to change this value, because performing these time-consuming searches more than
once is not likely to improve results.

• optionsGA — Options for the genetic algorithm, which you can set using optimoptions. If
you do not specify any searchga options, then searchga uses the same UseParallel and
UseVectorized option settings as patternsearch.

• 'searchlhs' specifies a Latin hypercube search. patternsearch generates each point for the
search as follows. For each component, take a random permutation of the vector [1,2,...,k]
minus rand(1,k), divided by k. (k is the number of points.) This yields k points, with each
component close to evenly spaced. The resulting points are then scaled to fit any bounds. Latin
hypercube uses default bounds of -1 and 1.

The way the search is performed depends on the setting for the UseCompleteSearch option.

• If you set UseCompleteSearch to true, the algorithm polls all the points that are randomly
generated at each iteration by the Latin hypercube search and chooses the one with the
smallest objective function value.

• If you set UseCompleteSearch to false (the default), the algorithm stops the poll as soon as
it finds one of the randomly generated points whose objective function value is less than that of
the current point, and chooses that point for the next iteration.

You can modify the Latin hypercube search using two additional parameters:

options = optimoptions('patternsearch','SearchFcn',...
    {@searchlhs,iterlim,level})

• iterlim — Positive integer specifying the number of iterations of the pattern search for which
the Latin hypercube search is performed. The default for iterlim is 1.

• level — The level is the number of points patternsearch searches, a positive integer. The
default for level is 15 times the number of dimensions.

• 'searchneldermead' specifies a search using fminsearch, which uses the Nelder-Mead
algorithm. You can modify the Nelder-Mead search using two additional parameters:

options = optimoptions('patternsearch','SearchFcn',...
     {@searchneldermead,iterlim,optionsNM})

• iterlim — Positive integer specifying the number of iterations of the pattern search for which
the Nelder-Mead search is performed. The default for iterlim is 1.

• optionsNM — Options for fminsearch, which you can create using the optimset function.
• Custom enables you to write your own search function.

options = optimoptions('patternsearch','SearchFcn',@myfun);
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To see a template that you can use to write your own search function, enter

edit searchfcntemplate

The following section describes the structure of the search function.

Structure of the Search Function

Your search function must have the following calling syntax.

function [successSearch,xBest,fBest,funccount] = ...
    searchfcntemplate(fun,x,A,b,Aeq,beq,lb,ub, ...
        optimValues,options)

The search function has the following input arguments:

• fun — Objective function
• x — Current point
• A,b — Linear inequality constraints
• Aeq,beq — Linear equality constraints
• lb,ub — Lower and upper bound constraints
• optimValues — Structure that enables you to set search options. The structure contains the

following fields:

• x — Current point
• fval — Objective function value at x
• iteration — Current iteration number
• funccount — Counter for user function evaluation
• scale — Scale factor used to scale the design points
• problemtype — Flag passed to the search routines, indicating whether the problem is

'unconstrained', 'boundconstraints', or 'linearconstraints'. This field is a
subproblem type for nonlinear constrained problems.

• meshsize — Current mesh size used in search step
• method — Method used in last iteration

• options — Pattern search options

The function has the following output arguments:

• successSearch — A Boolean identifier indicating whether the search is successful or not
• xBest,fBest — Best point and best function value found by search method
• funccount — Number of user function evaluation in search method

See “Search and Poll” on page 6-39 for an example.

Complete Search

The UseCompleteSearch option applies when you set SearchFcn to 'GPSPositiveBasis2N',
'GPSPositiveBasisNp1', 'GSSPositiveBasis2N', 'GSSPositiveBasisNp1',
'MADSPositiveBasis2N', 'MADSPositiveBasisNp1', or 'searchlhs'. UseCompleteSearch
can have the values true or false.
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For search functions that are poll algorithms, UseCompleteSearch has the same meaning as the
poll option UseCompletePoll. For the meaning of UseCompleteSearch for Latin hypercube
search, see the 'searchlhs' entry in “Search Options” on page 17-12.

Mesh Options
Mesh options control the mesh that the pattern search uses. The following options are available.

• InitialMeshSize specifies the size of the initial mesh, which is the length of the shortest vector
from the initial point to a mesh point. InitialMeshSize must be a positive scalar. The default is
1.0.

• MaxMeshSize specifies a maximum size for the mesh. When the maximum size is reached, the
mesh size does not increase after a successful iteration. MaxMeshSize must be a positive scalar,
and is only used when a GPS or GSS algorithm is selected as the Poll or Search method. The
default value is Inf. MADS uses a maximum size of 1.

• AccelerateMesh specifies whether, when the mesh size is small, the MeshContractionFactor
is multiplied by 0.5 after each unsuccessful iteration. AccelerateMesh can have the values
true (use accelerator) or false (do not use accelerator), the default. AccelerateMesh applies
to the GPS and GSS algorithms.

• MeshRotate applies only when the PollMethod is 'GPSPositiveBasisNp1' or
'GSSPositiveBasisNp1'. MeshRotate = 'On' specifies that the mesh vectors are multiplied
by –1 when the mesh size is less than 1/100 of the MeshTolerance option after an unsuccessful
poll. In other words, after the first unsuccessful poll with small mesh size, instead of polling in
directions ei (unit positive directions) and –Σei, the algorithm polls in directions –ei and Σei.
MeshRotate can have the values 'Off' or 'On' (the default).

• MeshRotate is especially useful for discontinuous functions.
• When the problem has equality constraints, MeshRotate is disabled.

• ScaleMesh specifies whether the algorithm scales the mesh points by carefully multiplying the
pattern vectors by constants proportional to the logarithms of the absolute values of components
of the current point (or, for unconstrained problems, of the initial point). ScaleMesh can have the
values false or true (the default). When the problem has equality constraints, ScaleMesh is
disabled.

• MeshExpansionFactor specifies the factor by which the mesh size is increased after a
successful poll. The default value is 2.0, which means that the size of the mesh is multiplied by
2.0 after a successful poll. MeshExpansionFactor must be a positive scalar and is only used
when a GPS or GSS method is selected as the Poll or Search method. MADS uses a
MeshExpansionFactor of 4.0. See “Mesh Expansion and Contraction” on page 6-62 for more
information.

• MeshContractionFactor specifies the factor by which the mesh size is decreased after an
unsuccessful poll. The default value is 0.5, which means that the size of the mesh is multiplied by
0.5 after an unsuccessful poll. MeshContractionFactor must be a positive scalar and is only
used when a GPS or GSS method is selected as the Poll or Search method. MADS uses a
MeshContractionFactor of 0.25. See “Mesh Expansion and Contraction” on page 6-62 for
more information.

Constraint Parameters
For information on the meaning of penalty parameters, see “Nonlinear Constraint Solver Algorithm”
on page 6-43.
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• InitialPenalty — Specifies an initial value of the penalty parameter that is used by the
nonlinear constraint algorithm. InitialPenalty must be greater than or equal to 1, and has a
default of 10.

• PenaltyFactor — Increases the penalty parameter when the problem is not solved to required
accuracy and constraints are not satisfied. PenaltyFactor must be greater than 1, and has a
default of 100.

TolBind specifies the tolerance for the distance from the current point to the boundary of the
feasible region with respect to linear constraints. This means TolBind specifies when a linear
constraint is active. TolBind is not a stopping criterion. Active linear constraints change the pattern
of points patternsearch uses for polling or searching. The default value of TolBind is 1e-3.

Cache Options
The pattern search algorithm can keep a record of the points it has already polled, so that it does not
have to poll the same point more than once. If the objective function requires a relatively long time to
compute, the cache option can speed up the algorithm. The memory allocated for recording the
points is called the cache. This option should only be used for deterministic objective functions, and
not for stochastic ones.

Cache specifies whether a cache is used. The options are 'On' and 'Off', the default. When you set
Cache to 'On', the algorithm does not evaluate the objective function at any mesh points that are
within CacheTol of a point in the cache.

CacheTol specifies how close a mesh point must be to a point in the cache for the algorithm to omit
polling it. CacheTol must be a positive scalar. The default value is eps.

CacheSize specifies the size of the cache. CacheSize must be a positive scalar. The default value is
1e4.

Note Cache does not work when you run the solver in parallel.

See “Use Cache” on page 6-76 for more information.

Stopping Criteria
Stopping criteria determine what causes the pattern search algorithm to stop. Pattern search uses
the following criteria:

MeshTolerance specifies the minimum tolerance for mesh size. The GPS and GSS algorithms stop if
the mesh size becomes smaller than MeshTolerance. MADS 2N stops when the mesh size becomes
smaller than MeshTolerance^2. MADS Np1 stops when the mesh size becomes smaller than
(MeshTolerance/nVar)^2, where nVar is the number of elements of x0. The default value of
MeshTolerance is 1e-6.

MaxIterations specifies the maximum number of iterations the algorithm performs. The algorithm
stops if the number of iterations reaches MaxIterations. The default value is 100 times the number
of independent variables.
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MaxFunctionEvaluations specifies the maximum number of evaluations of the objective function.
The algorithm stops if the number of function evaluations reaches MaxFunctionEvaluations. The
default value is 2000 times the number of independent variables.

MaxTime specifies the maximum time in seconds the pattern search algorithm runs before stopping.
This also includes any specified pause time for pattern search algorithms.

StepTolerance specifies the minimum distance between the current points at two consecutive
iterations. Does not apply to MADS polling. After an unsuccessful poll, the algorithm stops if the
distance between two consecutive points is less than StepTolerance and the mesh size is smaller
than StepTolerance. The default value is 1e-6.

FunctionTolerance specifies the minimum tolerance for the objective function. Does not apply to
MADS polling. After an unsuccessful poll, the algorithm stops if the difference between the function
value at the previous best point and function value at the current best point is less than
FunctionTolerance, and if the mesh size is also smaller than StepTolerance. The default value is
1e-6.

See “Setting Solver Tolerances” on page 6-38 for an example.

ConstraintTolerance is not used as stopping criterion. It is used to determine the feasibility with
respect to nonlinear constraints. The default value is 1e-6.

Output Function Options
OutputFcn specifies functions that the pattern search algorithm calls at each iteration. For an output
function file myfun.m, set

options = optimoptions('patternsearch','OutputFcn',@myfun);

For multiple output functions, enter a cell array of function handles:

options = optimoptions('patternsearch',...
    'OutputFcn',{@myfun1,@myfun2,...});

To see a template that you can use to write your own output function, enter

edit psoutputfcntemplate

at the MATLAB command prompt.

To pass extra parameters in the output function, use “Anonymous Functions”.

Structure of the Output Function

Your output function must have the following calling syntax:

[stop,options,optchanged] = myfun(optimvalues,options,flag)

MATLAB passes the optimvalues, options, and flag data to your output function, and the output
function returns stop, options, and optchanged data.

The output function has the following input arguments.

• optimvalues — Structure containing information about the current state of the solver. The
structure contains the following fields:
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• x — Current point
• iteration — Iteration number
• fval — Objective function value at x
• meshsize — Current mesh size
• funccount — Number of function evaluations
• method — Method used in last iteration, such as 'Update multipliers' or 'Increase

penalty' for a nonlinearly constrained problem, or 'Successful Poll', 'Refine Mesh',
or 'Successful Search', possibly with a '\Rotate' suffix, for a problem without nonlinear
constraints

• TolFun — Absolute value of change in function value in last iteration
• TolX — Norm of change in x in last iteration
• nonlinineq — Nonlinear inequality constraint function values at x, displayed only when a

nonlinear constraint function is specified
• nonlineq — Nonlinear equality constraint function values at x, displayed only when a

nonlinear constraint function is specified
• options — Options
• flag — Current state in which the output function is called. The possible values for flag are

• 'init' — Initialization state
• 'iter' — Iteration state
• 'interrupt' — Iteration of a subproblem of a nonlinearly constrained problem

• When flag is 'interrupt', the values of optimvalues fields apply to the subproblem
iterations.

• When flag is 'interrupt', patternsearch does not accept changes in options, and
ignores optchanged.

• 'done' — Final state

“Passing Extra Parameters” explains how to provide additional parameters to the output function.

The output function returns the following arguments to patternsearch:

• stop — Provides a way to stop the algorithm at the current iteration. stop can have the following
values.

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

• options — patternsearch options.
• optchanged — Boolean flag indicating changes to options. To change options for subsequent

iterations, set optchanged to true.

Display to Command Window Options
Display specifies how much information is displayed at the command line while the pattern search
is running. The available options are

• 'final' (default) — The reason for stopping is displayed.
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• 'off' or the equivalent 'none' — No output is displayed.
• 'iter' — Information is displayed for each iteration.
• 'diagnose' — Information is displayed for each iteration. In addition, the diagnostic lists some

problem information and the options that are changed from the defaults.

Both 'iter' and 'diagnose' display the following information:

• Iter — Iteration number
• FunEval — Cumulative number of function evaluations
• MeshSize — Current mesh size
• FunVal — Objective function value of the current point
• Method — Outcome of the current poll (with no nonlinear constraint function specified). With a

nonlinear constraint function, Method displays the update method used after a subproblem is
solved.

• Max Constraint — Maximum nonlinear constraint violation (displayed only when a nonlinear
constraint function has been specified)

Vectorized and Parallel Options
You can choose to have your objective and constraint functions evaluated in serial, parallel, or in a
vectorized fashion. Set the UseVectorized or UseParallel options to true to use vectorized or
parallel computation.

Note You must set UseCompletePoll to true for patternsearch to use vectorized or parallel
polling. Similarly, set UseCompleteSearch to true for vectorized or parallel searching.

Beginning in R2019a, when you set the UseParallel option to true, patternsearch internally
overrides the UseCompletePoll setting to true so it polls in parallel.

• When UseVectorized is false, patternsearch calls the objective function on one point at a
time as it loops through the mesh points. (This assumes UseParallel is at its default value of
false.)

• UseVectorized is true, patternsearch calls the objective function on all the points in the
mesh at once, i.e., in a single call to the objective function.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to
be vectorized in order for the algorithm to compute in a vectorized manner.

For details and an example, see “Vectorize the Objective and Constraint Functions” on page 6-79.
• When UseParallel is true, patternsearch calls the objective function in parallel, using the

parallel environment you established (see “How to Use Parallel Processing in Global Optimization
Toolbox” on page 16-11). At the command line, set 'UseParallel' to false to compute serially.

Note You cannot simultaneously use vectorized and parallel computations. If you set UseParallel
to true and UseVectorized to true, patternsearch evaluates your objective and constraint
functions in a vectorized manner, not in parallel.
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How Objective and Constraint Functions Are Evaluated

Assume UseCompletePoll =
true

UseVectorized = false UseVectorized = true

UseParallel = false Serial Vectorized
UseParallel = true Parallel Vectorized
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Options Table for Pattern Search Algorithms
Option Availability Table for All Algorithms

Option Description Algorithm Availability
AccelerateMesh Accelerate mesh size contraction. GPS and GSS
Cache With Cache set to 'on',

patternsearch keeps a history of
the mesh points it polls and does not
poll points close to them again at
subsequent iterations. Use this
option if patternsearch runs
slowly because it is taking a long
time to compute the objective
function. If the objective function is
stochastic, it is advised not to use
this option.

Note Cache does not work when you
run the solver in parallel.

All

CacheSize Size of the cache, in number of
points.

All

CacheTol Positive scalar specifying how close
the current mesh point must be to a
point in the cache in order for
patternsearch to avoid polling it.
Available if 'Cache' option is set to
'on'.

All

ConstraintTolerance Tolerance on nonlinear constraints. All
Display Level of display to Command

Window.
All

FunctionTolerance Tolerance on function value. All
InitialMeshSize Initial mesh size used in pattern

search algorithms.
All

InitialPenalty Initial value of the penalty parameter. All
MaxFunctionEvaluations Maximum number of objective

function evaluations.
All

MaxIterations Maximum number of iterations. All
MaxMeshSize Maximum mesh size used in a poll/

search step.
GPS and GSS

MaxTime Total time (in seconds) allowed for
optimization. Also includes any
specified pause time for pattern
search algorithms.

All

MeshContractionFactor Mesh contraction factor, used when
iteration is unsuccessful.

GPS and GSS
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Option Description Algorithm Availability
MeshExpansionFactor Mesh expansion factor, expands mesh

when iteration is successful.
GPS and GSS

MeshRotate Rotate the pattern before declaring a
point to be optimum.

GPS Np1 and GSS Np1

MeshTolerance Tolerance on mesh size. All
OutputFcn User-specified function that a pattern

search calls at each iteration.
All

PenaltyFactor Penalty update parameter. All
PlotFcn Specifies function to plot at run time. All
PlotInterval Specifies that plot functions will be

called at every interval.
All

PollOrderAlgorithm Order in which search directions are
polled.

GPS and GSS

PollMethod Polling strategy used in pattern
search.

All

ScaleMesh Automatic scaling of variables. All
SearchFcn Specifies search method used in

pattern search.
All

StepTolerance Tolerance on independent variable. All
TolBind Binding tolerance used to determine

if linear constraint is active.
All

UseCompletePoll Complete poll around current iterate.
Evaluate all the points in a poll step.

All

UseCompleteSearch Complete search around current
iterate when the search method is a
poll method. Evaluate all the points
in a search step.

All

UseParallel When true, compute objective
functions of a poll or search in
parallel. Disable by setting to false.

All

UseVectorized Specifies whether objective and
constraint functions are vectorized.

All
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Genetic Algorithm Options
In this section...
“Options for Genetic Algorithm” on page 17-23
“Plot Options” on page 17-23
“Population Options” on page 17-26
“Fitness Scaling Options” on page 17-29
“Selection Options” on page 17-30
“Reproduction Options” on page 17-31
“Mutation Options” on page 17-31
“Crossover Options” on page 17-34
“Migration Options” on page 17-36
“Constraint Parameters” on page 17-37
“Multiobjective Options” on page 17-38
“Hybrid Function Options” on page 17-39
“Stopping Criteria Options” on page 17-40
“Output Function Options” on page 17-41
“Display to Command Window Options” on page 17-42
“Vectorize and Parallel Options (User Function Evaluation)” on page 17-43

Options for Genetic Algorithm
Set options for ga by using optimoptions.

options = optimoptions('ga','Option1','value1','Option2','value2');

• Some options are listed in italics. These options do not appear in the listing that
optimoptions returns. To see why 'optimoptions hides these option values, see “Options that
optimoptions Hides” on page 17-64.

• Ensure that you pass options to the solver. Otherwise, patternsearch uses the default option
values.

[x,fval] = ga(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Plot Options
PlotFcn specifies the plot function or functions called at each iteration by ga or gamultiobj. Set
the PlotFcn option to be a built-in plot function name or a handle to the plot function. You can stop
the algorithm at any time by clicking the Stop button on the plot window. For example, to display the
best function value, set options as follows:

options = optimoptions('ga','PlotFcn','gaplotbestf');

To display multiple plots, use a cell array of built-in plot function names or a cell array of function
handles:
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options = optimoptions('patternsearch',...
    'PlotFcn', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot functions. If you specify
more than one plot function, all plots appear as subplots in the same window. Right-click any subplot
to obtain a larger version in a separate figure window.

Available plot functions for ga or for gamultiobj:

• 'gaplotscorediversity' plots a histogram of the scores at each generation.
• 'gaplotstopping' plots stopping criteria levels.
• 'gaplotgenealogy' plots the genealogy of individuals. Lines from one generation to the next

are color-coded as follows:

• Red lines indicate mutation children.
• Blue lines indicate crossover children.
• Black lines indicate elite individuals.

• 'gaplotscores' plots the scores of the individuals at each generation.
• 'gaplotdistance' plots the average distance between individuals at each generation.
• 'gaplotselection' plots a histogram of the parents.
• 'gaplotmaxconstr' plots the maximum nonlinear constraint violation at each generation. For

ga, available only when the NonlinearConstraintAlgorithm option is 'auglag' (default for
non-integer problems). Therefore, not available for integer-constrained problems, as they use the
'penalty' nonlinear constraint algorithm.

• You can also create and use your own plot function. “Structure of the Plot Functions” on page 17-
24 describes the structure of a custom plot function. Pass any custom function as a function
handle.

The following plot functions are available for ga only:

• 'gaplotbestf' plots the best score value and mean score versus generation.
• 'gaplotbestindiv' plots the vector entries of the individual with the best fitness function value

in each generation.
• 'gaplotexpectation' plots the expected number of children versus the raw scores at each

generation.
• 'gaplotrange' plots the minimum, maximum, and mean score values in each generation.

The following plot functions are available for gamultiobj only:

• 'gaplotpareto' plots the Pareto front for the first two or three objective functions.
• 'gaplotparetodistance' plots a bar chart of the distance of each individual from its

neighbors.
• 'gaplotrankhist' plots a histogram of the ranks of the individuals. Individuals of rank 1 are on

the Pareto frontier. Individuals of rank 2 are lower than at least one rank 1 individual, but are not
lower than any individuals from other ranks, etc.

• 'gaplotspread' plots the average spread as a function of iteration number.

Structure of the Plot Functions

The first line of a plot function has this form:
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function state = plotfun(options,state,flag)

The input arguments to the function are

• options — Structure containing all the current options settings.
• state — Structure containing information about the current generation. “The State Structure” on

page 17-25 describes the fields of state.
• flag — Description of the stage the algorithm is currently in. For details, see “Output Function

Options” on page 17-41.

“Passing Extra Parameters” explains how to provide additional parameters to the function.

The output argument state is a state structure as well. Pass the input argument, modified if you like;
see “Changing the State Structure” on page 17-42. To stop the iterations, set state.StopFlag to a
nonempty character vector, such as 'y'.

The State Structure
ga

The state structure for ga, which is an input argument to plot, mutation, and output functions,
contains the following fields:

• Generation — Current generation number.
• StartTime — Time when genetic algorithm started, returned by tic.
• StopFlag — Reason for stopping, a character vector.
• LastImprovement — Generation at which the last improvement in fitness value occurred.
• LastImprovementTime — Time at which last improvement occurred.
• Best — Vector containing the best score in each generation.
• how — The 'augLag' nonlinear constraint algorithm reports one of the following actions:

'Infeasible point', 'Update multipliers', or 'Increase penalty'; see “Augmented
Lagrangian Genetic Algorithm” on page 8-54.

• FunEval — Cumulative number of function evaluations.
• Expectation — Expectation for selection of individuals.
• Selection — Indices of individuals selected for elite, crossover, and mutation.
• Population — Population in the current generation.
• Score — Scores of the current population.
• NonlinIneq — Nonlinear inequality constraints at current point, present only when a nonlinear

constraint function is specified, there are no integer variables, flag is not 'interrupt', and
NonlinearConstraintAlgorithm is 'auglag'.

• NonlinEq — Nonlinear equality constraints at current point, present only when a nonlinear
constraint function is specified, there are no integer variables, flag is not 'interrupt', and
NonlinearConstraintAlgorithm is 'auglag'.

• EvalElites — Logical value indicating whether ga evaluates the fitness function of elite
individuals. Initially, this value is true. In the first generation, if the elite individuals evaluate to
their previous values (which indicates that the fitness function is deterministic), then this value
becomes false by default for subsequent iterations. When EvalElites is false, ga does not
reevaluate the fitness function of elite individuals. You can override this behavior in a custom plot
function or custom output function by changing the output state.EvalElites.
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• HaveDuplicates — Logical value indicating whether ga adds duplicate individuals for the initial
population. ga uses a small relative tolerance to determine whether an individual is duplicated or
unique. If HaveDuplicates is true, then ga locates the unique individuals and evaluates the
fitness function only once for each unique individual. ga copies the fitness and constraint function
values to duplicate individuals. ga repeats the test in each generation until all individuals are
unique. The test takes order n*m*log(m) operations, where m is the population size and n is
nvars. To override this test in a custom plot function or custom output function, set the output
state.HaveDuplicates to false.

gamultiobj

The state structure for gamultiobj, which is an input argument to plot, mutation, and output
functions, contains the following fields:

• Population — Population in the current generation
• Score — Scores of the current population, a Population-by-nObjectives matrix, where

nObjectives is the number of objectives
• Generation — Current generation number
• StartTime — Time when genetic algorithm started, returned by tic
• StopFlag — Reason for stopping, a character vector
• FunEval — Cumulative number of function evaluations
• Selection — Indices of individuals selected for elite, crossover, and mutation
• Rank — Vector of the ranks of members in the population
• Distance — Vector of distances of each member of the population to the nearest neighboring

member
• AverageDistance — Standard deviation (not average) of Distance
• Spread — Vector where the entries are the spread in each generation
• mIneq — Number of nonlinear inequality constraints
• mEq — Number of nonlinear equality constraints
• mAll — Total number of nonlinear constraints, mAll = mIneq + mEq
• C — Nonlinear inequality constraints at current point, a PopulationSize-by-mIneq matrix
• Ceq — Nonlinear equality constraints at current point, a PopulationSize-by-mEq matrix
• isFeas — Feasibility of population, a logical vector with PopulationSize elements
• maxLinInfeas — Maximum infeasibility with respect to linear constraints for the population

Population Options
Population options let you specify the parameters of the population that the genetic algorithm uses.

PopulationType specifies the type of input to the fitness function. Types and their restrictions are:

• 'doubleVector' — Use this option if the individuals in the population have type double. Use
this option for mixed integer programming. This is the default.

• 'bitstring' — Use this option if the individuals in the population have components that are 0 or
1.
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Caution The individuals in a Bit string population are vectors of type double, not strings or
characters.

For CreationFcn and MutationFcn, use 'gacreationuniform' and 'mutationuniform' or
handles to custom functions. For CrossoverFcn, use 'crossoverscattered',
'crossoversinglepoint', 'crossovertwopoint', or a handle to a custom function. You
cannot use a HybridFcn, and ga ignores all constraints, including bounds, linear constraints, and
nonlinear constraints.

• 'custom' — Indicates a custom population type. In this case, you must also use a custom
CrossoverFcn and MutationFcn. You must provide either a custom creation function or an
InitialPopulationMatrix. You cannot use a HybridFcn, and ga ignores all constraints,
including bounds, linear constraints, and nonlinear constraints.

PopulationSize specifies how many individuals there are in each generation. With a large
population size, the genetic algorithm searches the solution space more thoroughly, thereby reducing
the chance that the algorithm returns a local minimum that is not a global minimum. However, a
large population size also causes the algorithm to run more slowly. The default is '50 when
numberOfVariables <= 5, else 200'.

If you set PopulationSize to a vector, the genetic algorithm creates multiple subpopulations, the
number of which is the length of the vector. The size of each subpopulation is the corresponding entry
of the vector. Note that this option is not useful. See “Migration Options” on page 17-36.

CreationFcn specifies the function that creates the initial population for ga. Choose from:

• [] uses the default creation function for your problem type.
• 'gacreationuniform' creates a random initial population with a uniform distribution. This is

the default when there are no linear constraints, or when there are integer constraints. The
uniform distribution is in the initial population range (InitialPopulationRange). The default
values for InitialPopulationRange are [-10;10] for every component, or [-9999;10001]
when there are integer constraints. These bounds are shifted and scaled to match any existing
bounds lb and ub.

Caution Do not use 'gacreationuniform' when you have linear constraints. Otherwise, your
population might not satisfy the linear constraints.

• 'gacreationlinearfeasible' is the default when there are linear constraints and no integer
constraints. This choice creates a random initial population that satisfies all bounds and linear
constraints. If there are linear constraints, 'gacreationlinearfeasible' creates many
individuals on the boundaries of the constraint region, and creates a well-dispersed population.
'gacreationlinearfeasible' ignores InitialPopulationRange.
'gacreationlinearfeasible' calls linprog to create a feasible population with respect to
bounds and linear constraints.

For an example showing its behavior, see “Custom Plot Function and Linear Constraints in ga” on
page 8-72.

• 'gacreationnonlinearfeasible' is the default creation function for the 'penalty'
nonlinear constraint algorithm. For details, see “Constraint Parameters” on page 17-37.

• 'gacreationuniformint' is the default creation function for ga when the problem has integer
constraints. This function applies an artificial bound to unbounded components, generates
individuals uniformly at random within the bounds, and then enforces integer constraints.
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Note When your problem has integer constraints, ga and gamultiobj enforce that integer
constraints, bounds, and all linear constraints are feasible at each iteration. For nondefault
mutation, crossover, creation, and selection functions, ga and gamultiobj apply extra feasibility
routines after the functions operate.

• 'gacreationsobol' is the default creation function for gamultiobj when the problem has
integer constraints. The creation function uses a quasirandom Sobol sequence to generate a well-
dispersed initial population. The population is feasible with respect to bounds, linear constraints,
and integer constraints.

• A function handle lets you write your own creation function, which must generate data of the type
that you specify in PopulationType. For example,

options = optimoptions('ga','CreationFcn',@myfun);

Your creation function must have the following calling syntax.

function Population = myfun(GenomeLength, FitnessFcn, options)

The input arguments to the function are:

• Genomelength — Number of independent variables for the fitness function
• FitnessFcn — Fitness function
• options — Options

The function returns Population, the initial population for the genetic algorithm.

“Passing Extra Parameters” explains how to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your creation function creates
individuals that satisfy these constraints. Otherwise, your population might not satisfy the
constraints.

InitialPopulationMatrix specifies an initial population for the genetic algorithm. The default
value is [], in which case ga uses the default CreationFcn to create an initial population. If you
enter a nonempty array in the InitialPopulationMatrix, the array must have no more than
PopulationSize rows, and exactly nvars columns, where nvars is the number of variables, the
second input to ga or gamultiobj. If you have a partial initial population, meaning fewer than
PopulationSize rows, then the genetic algorithm calls CreationFcn to generate the remaining
individuals.

InitialScoreMatrix specifies initial scores for the initial population. The initial scores can also be
partial. If your problem has nonlinear constraints then the algorithm does not use
InitialScoreMatrix.

InitialPopulationRange specifies the range of the vectors in the initial population that is
generated by the gacreationuniform creation function. You can set InitialPopulationRange
to be a matrix with two rows and nvars columns, each column of which has the form [lb;ub],
where lb is the lower bound and ub is the upper bound for the entries in that coordinate. If you
specify InitialPopulationRange to be a 2-by-1 vector, each entry is expanded to a constant row
of length nvars. If you do not specify an InitialPopulationRange, the default is [-10;10]
([-1e4+1;1e4+1] for integer-constrained problems), modified to match any existing bounds.
'gacreationlinearfeasible' ignores InitialPopulationRange. See “Set Initial Range” on
page 8-69 for an example.
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Fitness Scaling Options
Fitness scaling converts the raw fitness scores that are returned by the fitness function to values in a
range that is suitable for the selection function.

FitnessScalingFcn specifies the function that performs the scaling. The options are

• 'fitscalingrank' — The default fitness scaling function, 'fitscalingrank', scales the raw
scores based on the rank of each individual instead of its score. The rank of an individual is its
position in the sorted scores. An individual with rank r has scaled score proportional to 1/ r. So
the scaled score of the most fit individual is proportional to 1, the scaled score of the next most fit
is proportional to 1/ 2, and so on. Rank fitness scaling removes the effect of the spread of the raw
scores. The square root makes poorly ranked individuals more nearly equal in score, compared to
rank scoring. For more information, see “Fitness Scaling” on page 8-77.

• 'fitscalingprop' — Proportional scaling makes the scaled value of an individual proportional
to its raw fitness score.

• 'fitscalingtop' — Top scaling scales the top individuals equally. You can modify the top
scaling using an additional parameter:

options = optimoptions('ga',...
    'FitnessScalingFcn',{@fitscalingtop,quantity})

quantity specifies the number of individuals that are assigned positive scaled values. quantity
can be an integer from 1 through the population size or a fraction from 0 through 1 specifying a
fraction of the population size. The default value is 0.4. Each of the individuals that produce
offspring is assigned an equal scaled value, while the rest are assigned the value 0. The scaled
values have the form [01/n 1/n 0 0 1/n 0 0 1/n ...].

• 'fitscalingshiftlinear' — Shift linear scaling scales the raw scores so that the expectation
of the fittest individual is equal to a constant called rate multiplied by the average score. You can
modify the rate parameter:

options = optimoptions('ga','FitnessScalingFcn',...
    {@fitscalingshiftlinear, rate})

The default value of rate is 2.
• A function handle lets you write your own scaling function.

options = optimoptions('ga','FitnessScalingFcn',@myfun);

Your scaling function must have the following calling syntax:

function expectation = myfun(scores, nParents)

The input arguments to the function are:

• scores — A vector of scalars, one for each member of the population
• nParents — The number of parents needed from this population

The function returns expectation, a column vector of scalars of the same length as scores,
giving the scaled values of each member of the population. The sum of the entries of
expectation must equal nParents.

“Passing Extra Parameters” explains how to provide additional parameters to the function.
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See “Fitness Scaling” on page 8-77 for more information.

Selection Options
Selection options specify how the genetic algorithm chooses parents for the next generation.

The SelectionFcn option specifies the selection function.

gamultiobj uses only the 'selectiontournament' selection function.

For ga the options are:

• 'selectionstochunif' — The ga default selection function, 'selectionstochunif', lays
out a line in which each parent corresponds to a section of the line of length proportional to its
scaled value. The algorithm moves along the line in steps of equal size. At each step, the algorithm
allocates a parent from the section it lands on. The first step is a uniform random number less
than the step size.

• 'selectionremainder' — Remainder selection assigns parents deterministically from the
integer part of each individual's scaled value and then uses roulette selection on the remaining
fractional part. For example, if the scaled value of an individual is 2.3, that individual is listed
twice as a parent because the integer part is 2. After parents have been assigned according to the
integer parts of the scaled values, the rest of the parents are chosen stochastically. The probability
that a parent is chosen in this step is proportional to the fractional part of its scaled value.

• 'selectionuniform' — Uniform selection chooses parents using the expectations and number
of parents. Uniform selection is useful for debugging and testing, but is not a very effective search
strategy.

• 'selectionroulette' — Roulette selection chooses parents by simulating a roulette wheel, in
which the area of the section of the wheel corresponding to an individual is proportional to the
individual's expectation. The algorithm uses a random number to select one of the sections with a
probability equal to its area.

• 'selectiontournament' — Tournament selection chooses each parent by choosing size
players at random and then choosing the best individual out of that set to be a parent. size must
be at least 2. The default value of size is 4. Set size to a different value as follows:

options = optimoptions('ga','SelectionFcn',...
                     {@selectiontournament,size})

When NonlinearConstraintAlgorithm is Penalty, ga uses 'selectiontournament' with
size 2.

• Note When your problem has integer constraints, ga and gamultiobj enforce that integer
constraints, bounds, and all linear constraints are feasible at each iteration. For nondefault
mutation, crossover, creation, and selection functions, ga and gamultiobj apply extra feasibility
routines after the functions operate.

• A function handle enables you to write your own selection function.

options = optimoptions('ga','SelectionFcn',@myfun);

Your selection function must have the following calling syntax:

function parents = myfun(expectation, nParents, options)

ga provides the input arguments expectation, nParents, and options. Your function returns
the indices of the parents.
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The input arguments to the function are:

• expectation

• For ga, expectation is a column vector of the scaled fitness of each member of the
population. The scaling comes from the “Fitness Scaling Options” on page 17-29.

Tip You can ensure that you have a column vector by using expectation(:,1). For
example, edit selectionstochunif or any of the other built-in selection functions.

• For gamultiobj, expectation is a matrix whose first column is the negative of the rank
of the individuals, and whose second column is the distance measure of the individuals. See
“Multiobjective Options” on page 17-38.

• nParents— Number of parents to select.
• options — Genetic algorithm options.

The function returns parents, a row vector of length nParents containing the indices of the
parents that you select.

“Passing Extra Parameters” explains how to provide additional parameters to the function.

See “Selection” on page 8-17 for more information.

Reproduction Options
Reproduction options specify how the genetic algorithm creates children for the next generation.

EliteCount specifies the number of individuals that are guaranteed to survive to the next
generation. Set EliteCount to be a positive integer less than or equal to the population size. The
default value is ceil(0.05*PopulationSize) for continuous problems, and 0.05*(default
PopulationSize) for mixed-integer problems.

CrossoverFraction specifies the fraction of the next generation, other than elite children, that are
produced by crossover. Set CrossoverFraction to be a fraction between 0 and 1. The default value
is 0.8.

See “Setting the Crossover Fraction” on page 8-82 for an example.

Mutation Options
Mutation options specify how the genetic algorithm makes small random changes in the individuals in
the population to create mutation children. Mutation provides genetic diversity and enables the
genetic algorithm to search a broader space. Specify the mutation function in the MutationFcn
option.

MutationFcn options:

• 'mutationgaussian' — The default mutation function for ga for unconstrained problems,
'mutationgaussian', adds a random number taken from a Gaussian distribution with mean 0 to
each entry of the parent vector. The standard deviation of this distribution is determined by the
parameters scale and shrink, and by the InitialPopulationRange option. Set scale and
shrink as follows:
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options = optimoptions('ga','MutationFcn', ... 
{@mutationgaussian, scale, shrink})

• The scale parameter determines the standard deviation at the first generation. If you set
InitialPopulationRange to be a 2-by-1 vector v, the initial standard deviation is the same
at all coordinates of the parent vector, and is given by scale*(v(2)-v(1)).

If you set InitialPopulationRange to be a vector v with two rows and nvars columns, the
initial standard deviation at coordinate i of the parent vector is given by scale*(v(i,2) -
v(i,1)).

• The shrink parameter controls how the standard deviation shrinks as generations go by. If
you set InitialPopulationRange to be a 2-by-1 vector, the standard deviation at the kth
generation, σk, is the same at all coordinates of the parent vector, and is given by the recursive
formula

σk = σk− 1 1− Shrink k
Generations .

If you set InitialPopulationRange to be a vector with two rows and nvars columns, the
standard deviation at coordinate i of the parent vector at the kth generation, σi,k, is given by
the recursive formula

σi, k = σi, k− 1 1− Shrink k
Generations .

If you set shrink to 1, the algorithm shrinks the standard deviation in each coordinate linearly
until it reaches 0 at the last generation is reached. A negative value of shrink causes the
standard deviation to grow.

The default value of both scale and shrink is 1.

Caution Do not use mutationgaussian when you have bounds or linear constraints. Otherwise,
your population will not necessarily satisfy the constraints. Instead, use
'mutationadaptfeasible' or a custom mutation function that satisfies linear constraints.

• 'mutationuniform' — Uniform mutation is a two-step process. First, the algorithm selects a
fraction of the vector entries of an individual for mutation, where each entry has a probability
rate of being mutated. The default value of rate is 0.01. In the second step, the algorithm
replaces each selected entry by a random number selected uniformly from the range for that
entry.

To change the default value of rate,

options = optimoptions('ga','MutationFcn', {@mutationuniform, rate})

Caution Do not use mutationuniform when you have bounds or linear constraints. Otherwise,
your population will not necessarily satisfy the constraints. Instead, use
'mutationadaptfeasible' or a custom mutation function that satisfies linear constraints.

• 'mutationadaptfeasible', the default mutation function for gamultiobj and for ga when
there are noninteger constraints, randomly generates directions that are adaptive with respect to
the last successful or unsuccessful generation. The mutation chooses a direction and step length
that satisfies bounds and linear constraints.
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• 'mutationpower' is the default mutation function for ga and gamultiobj when the problem
has integer constraints. Power mutation mutates a parent, x, via the following. For each
component of the parent, the ith component of the child is given by:

mutationChild(i) = x(i) - s(x(i) - lb(i)) if t < r

= x(i) + s(ub(i) - x(i)) if t >= r.

Here, t is the scaled distance of x(i) from the ith component of the lower bound, lb(i). s is a
random variable drawn from a power distribution and r is a random number drawn from a
uniform distribution.

This function can handle lb(i) = ub(i). New children are generated with the ith component
set to lb(i), which equals ub(i). For more information on this crossover function see section 2.1
of the following reference:

Kusum Deep, Krishna Pratap Singsh, M. L. Kansal, C. Mohan. A real coded genetic algorithm for
solving integer and mixed integer optimization problems. Applied Mathematics and Computation,
212 (2009), 505–518.

Note When your problem has integer constraints, ga and gamultiobj enforce that integer
constraints, bounds, and all linear constraints are feasible at each iteration. For nondefault
mutation, crossover, creation, and selection functions, ga and gamultiobj apply extra feasibility
routines after the functions operate.

• 'mutationpositivebasis' — This mutation function is similar to orthogonal MADS steps,
modified for linear constraints and bounds.

• A function handle enables you to write your own mutation function.

options = optimoptions('ga','MutationFcn',@myfun);

Your mutation function must have this calling syntax:

function mutationChildren = myfun(parents, options, nvars, 
FitnessFcn, state, thisScore, thisPopulation)

The arguments to the function are

• parents — Row vector of parents chosen by the selection function
• options — Options
• nvars — Number of variables
• FitnessFcn — Fitness function
• state — Structure containing information about the current generation. “The State Structure”

on page 17-25 describes the fields of state.
• thisScore — Vector of scores of the current population
• thisPopulation — Matrix of individuals in the current population

The function returns mutationChildren—the mutated offspring—as a matrix where rows
correspond to the children. The number of columns of the matrix is nvars.

“Passing Extra Parameters” explains how to provide additional parameters to the function.
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Caution When you have bounds or linear constraints, ensure that your mutation function creates
individuals that satisfy these constraints. Otherwise, your population will not necessarily satisfy
the constraints.

Crossover Options
Crossover options specify how the genetic algorithm combines two individuals, or parents, to form a
crossover child for the next generation.

CrossoverFcn specifies the function that performs the crossover. You can choose from the following
functions:

• 'crossoverscattered', the default crossover function for problems without linear constraints,
creates a random binary vector and selects the genes where the vector is a 1 from the first parent,
and the genes where the vector is a 0 from the second parent, and combines the genes to form the
child. For example, if p1 and p2 are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following child:

child1 = [a b 3 4 e 6 7 8]

Caution When your problem has linear constraints, 'crossoverscattered' can give a poorly
distributed population. In this case, use a different crossover function, such as
'crossoverintermediate'.

• 'crossoversinglepoint' chooses a random integer n between 1 and nvars and then

• Selects vector entries numbered less than or equal to n from the first parent.
• Selects vector entries numbered greater than n from the second parent.
• Concatenates these entries to form a child vector.

For example, if p1 and p2 are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover point is 3, the function returns the following child.

child = [a b c 4 5 6 7 8]

Caution When your problem has linear constraints, 'crossoversinglepoint' can give a
poorly distributed population. In this case, use a different crossover function, such as
'crossoverintermediate'.

• 'crossovertwopoint' selects two random integers m and n between 1 and nvars. The function
selects

• Vector entries numbered less than or equal to m from the first parent
• Vector entries numbered from m+1 to n, inclusive, from the second parent
• Vector entries numbered greater than n from the first parent.
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The algorithm then concatenates these genes to form a single gene. For example, if p1 and p2 are
the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover points are 3 and 6, the function returns the following child.

child = [a b c 4 5 6 g h]

Caution When your problem has linear constraints, 'crossovertwopoint' can give a poorly
distributed population. In this case, use a different crossover function, such as
'crossoverintermediate'.

• 'crossoverintermediate', the default crossover function when there are linear constraints,
creates children by taking a weighted average of the parents. You can specify the weights by a
single parameter, ratio, which can be a scalar or a row vector of length nvars. The default value
of ratio is a vector of all 1's. Set the ratio parameter as follows.

options = optimoptions('ga','CrossoverFcn', ...  
{@crossoverintermediate, ratio});

'crossoverintermediate' creates the child from parent1 and parent2 using the following
formula.

child = parent1 + rand * Ratio * ( parent2 - parent1)

If all the entries of ratio lie in the range [0, 1], the children produced are within the hypercube
defined by placing the parents at opposite vertices. If ratio is not in that range, the children
might lie outside the hypercube. If ratio is a scalar, then all the children lie on the line between
the parents.

• 'crossoverlaplace' is the default crossover function when the problem has integer
constraints. The Laplace crossover generates children using either of the following formulae
(chosen at random):

xOverKid = p1 + bl*abs(p1 – p2)

xOverKid = p2 + bl*abs(p1 – p2)

Here, p1, p2 are the parents of xOverKid and bl is a random number generated from a Laplace
distribution. For more information on this crossover function see section 2.1 of the following
reference:

Kusum Deep, Krishna Pratap Singsh, M. L. Kansal, C. Mohan. A real coded genetic algorithm for
solving integer and mixed integer optimization problems. Applied Mathematics and Computation,
212 (2009), 505–518.

• 'crossoverheuristic' returns a child that lies on the line containing the two parents, a small
distance away from the parent with the better fitness value in the direction away from the parent
with the worse fitness value. You can specify how far the child is from the better parent by the
parameter ratio. The default value of ratiois 1.2. Set the ratio parameter as follows.

options = optimoptions('ga','CrossoverFcn',...
                   {@crossoverheuristic,ratio});
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If parent1 and parent2 are the parents, and parent1 has the better fitness value, the function
returns the child

child = parent2 + ratio * (parent1 - parent2);

Caution When your problem has linear constraints, 'crossoverheuristic' can give a poorly
distributed population. In this case, use a different crossover function, such as
'crossoverintermediate'.

• 'crossoverarithmetic' creates children that are the weighted arithmetic mean of two
parents. Children are always feasible with respect to linear constraints and bounds.

• Note When your problem has integer constraints, ga and gamultiobj enforce that integer
constraints, bounds, and all linear constraints are feasible at each iteration. For nondefault
mutation, crossover, creation, and selection functions, ga and gamultiobj apply extra feasibility
routines after the functions operate.

• A function handle enables you to write your own crossover function.

options = optimoptions('ga','CrossoverFcn',@myfun);

Your crossover function must have the following calling syntax.

xoverKids = myfun(parents, options, nvars, FitnessFcn, ...
    unused,thisPopulation)

The arguments to the function are

• parents — Row vector of parents chosen by the selection function
• options — options
• nvars — Number of variables
• FitnessFcn — Fitness function
• unused — Placeholder not used
• thisPopulation — Matrix representing the current population. The number of rows of the

matrix is PopulationSize and the number of columns is nvars.

The function returns xoverKids—the crossover offspring—as a matrix where rows correspond to
the children. The number of columns of the matrix is nvars.

“Passing Extra Parameters” explains how to provide additional parameters to the function.

Caution When you have bounds or linear constraints, ensure that your crossover function creates
individuals that satisfy these constraints. Otherwise, your population will not necessarily satisfy
the constraints.

Migration Options

Note Subpopulations refer to a form of parallel processing for the genetic algorithm. ga currently
does not support this form. In subpopulations, each worker hosts a number of individuals. These
individuals are a subpopulation. The worker evolves the subpopulation independently of other
workers, except when migration causes some individuals to travel between workers.
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Because ga does not currently support this form of parallel processing, there is no benefit to setting
PopulationSize to a vector, or to setting the MigrationDirection, MigrationInterval, or
MigrationFraction options.

Migration options specify how individuals move between subpopulations. Migration occurs if you set
PopulationSize to be a vector of length greater than 1. When migration occurs, the best
individuals from one subpopulation replace the worst individuals in another subpopulation.
Individuals that migrate from one subpopulation to another are copied. They are not removed from
the source subpopulation.

You can control how migration occurs by the following three options:

• MigrationDirection — Migration can take place in one or both directions.

• If you set MigrationDirection to 'forward', migration takes place toward the last
subpopulation. That is, the nth subpopulation migrates into the (n+1)th subpopulation.

• If you set MigrationDirection to 'both', the nth subpopulation migrates into both the (n–
1)th and the (n+1)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last subpopulation migrates into
the first, and the first may migrate into the last.

• MigrationInterval — Specifies how many generation pass between migrations. For example, if
you set MigrationInterval to 20, migration takes place every 20 generations.

• MigrationFraction — Specifies how many individuals move between subpopulations.
MigrationFraction specifies the fraction of the smaller of the two subpopulations that moves.
For example, if individuals migrate from a subpopulation of 50 individuals into a subpopulation of
100 individuals and you set MigrationFraction to 0.1, the number of individuals that migrate
is 0.1*50=5.

Constraint Parameters
Constraint parameters refer to the nonlinear constraint solver. For details on the algorithm, see
“Nonlinear Constraint Solver Algorithms” on page 8-54.

Choose between the nonlinear constraint algorithms by setting the
NonlinearConstraintAlgorithm option to 'auglag' (Augmented Lagrangian) or 'penalty'
(Penalty algorithm).

• “Augmented Lagrangian Genetic Algorithm” on page 17-37
• “Penalty Algorithm” on page 17-38

Augmented Lagrangian Genetic Algorithm

• InitialPenalty — Specifies an initial value of the penalty parameter that is used by the
nonlinear constraint algorithm. InitialPenalty must be greater than or equal to 1, and has a
default of 10.

• PenaltyFactor — Increases the penalty parameter when the problem is not solved to required
accuracy and constraints are not satisfied. PenaltyFactor must be greater than 1, and has a
default of 100.
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Penalty Algorithm

The penalty algorithm uses the 'gacreationnonlinearfeasible' creation function by default.
This creation function uses fmincon to find feasible individuals.
'gacreationnonlinearfeasible' starts fmincon from a variety of initial points within the
bounds from the InitialPopulationRange option. Optionally,
'gacreationnonlinearfeasible' can run fmincon in parallel on the initial points.

You can specify tuning parameters for 'gacreationnonlinearfeasible' using the following
name-value pairs.

Name Value
SolverOpts fmincon options, created using optimoptions or optimset.
UseParallel When true, run fmincon in parallel on initial points; default is false.
NumStartPts Number of start points, a positive integer up to sum(PopulationSize) in

value.

Include the name-value pairs in a cell array along with @gacreationnonlinearfeasible.
options = optimoptions('ga','CreationFcn',{@gacreationnonlinearfeasible,...
    'UseParallel',true,'NumStartPts',20});

Multiobjective Options
Multiobjective options define parameters characteristic of the gamultiobj algorithm. You can
specify the following parameters:

• ParetoFraction — Sets the fraction of individuals to keep on the first Pareto front while the
solver selects individuals from higher fronts. This option is a scalar between 0 and 1.

Note The fraction of individuals on the first Pareto front can exceed ParetoFraction. This
occurs when there are too few individuals of other ranks in step 6 of “Iterations” on page 14-7.

• DistanceMeasureFcn — Defines a handle to the function that computes distance measure of
individuals, computed in decision variable space (genotype, also termed design variable space) or
in function space (phenotype). For example, the default distance measure function is
'distancecrowding' in function space, which is the same as
{@distancecrowding,'phenotype'}.

“Distance” measures a crowding of each individual in a population. Choose between the following:

• 'distancecrowding', or the equivalent {@distancecrowding,'phenotype'} — Measure
the distance in fitness function space.

• {@distancecrowding,'genotype'} — Measure the distance in decision variable space.
• @distancefunction — Write a custom distance function using the following template.

function distance = distancefunction(pop,score,options)
% Uncomment one of the following two lines, or use a combination of both
% y = score; % phenotype
% y = pop; % genotype
popSize = size(y,1); % number of individuals
numData = size(y,2); % number of dimensions or fitness functions
distance = zeros(popSize,1); % allocate the output
% Compute distance here

gamultiobj passes the population in pop, the computed scores for the population in scores,
and the options in options. Your distance function returns the distance from each member of

17 Options Reference

17-38



the population to a reference, such as the nearest neighbor in some sense. For an example,
edit the built-in file distancecrowding.m.

Hybrid Function Options
• “ga Hybrid Function” on page 17-39
• “gamultiobj Hybrid Function” on page 17-39

ga Hybrid Function

A hybrid function is another minimization function that runs after the genetic algorithm terminates.
You can specify a hybrid function in the HybridFcn option. Do not use with integer problems. The
choices are

• [] — No hybrid function.
• 'fminsearch' — Uses the MATLAB function fminsearch to perform unconstrained

minimization.
• 'patternsearch' — Uses a pattern search to perform constrained or unconstrained

minimization.
• 'fminunc' — Uses the Optimization Toolbox function fminunc to perform unconstrained

minimization.
• 'fmincon' — Uses the Optimization Toolbox function fmincon to perform constrained

minimization.

Note Ensure that your hybrid function accepts your problem constraints. Otherwise, ga throws an
error.

You can set separate options for the hybrid function. Use optimset for fminsearch, or
optimoptions for fmincon, patternsearch, or fminunc. For example:

hybridopts = optimoptions('fminunc','Display','iter',...
    'Algorithm','quasi-newton');

Include the hybrid options in the Genetic Algorithm options as follows:

options = optimoptions('ga',options,'HybridFcn',{@fminunc,hybridopts}); 

hybridopts must exist before you set options.

See “Hybrid Scheme in the Genetic Algorithm” on page 8-91 for an example. See “When to Use a
Hybrid Function” on page 8-112.

gamultiobj Hybrid Function

A hybrid function is another minimization function that runs after the multiobjective genetic
algorithm terminates. You can specify the hybrid function 'fgoalattain' in the HybridFcn option.

In use as a multiobjective hybrid function, the solver does the following:

1 Compute the maximum and minimum of each objective function at the solutions. For objective j
at solution k, let
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Fmax( j) = max
k

Fk( j)

Fmin( j) = min
k

Fk( j) .

2 Compute the total weight at each solution k,

w(k) = ∑
j

Fmax( j)− Fk( j)
1 + Fmax( j)− Fmin( j) .

3 Compute the weight for each objective function j at each solution k,

p( j, k) = w(k)
Fmax( j)− Fk( j)

1 + Fmax( j)− Fmin( j) .

4 For each solution k, perform the goal attainment problem with goal vector Fk(j) and weight vector
p(j,k).

For more information, see section 9.6 of Deb [3].

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can specify the following
options:

• MaxGenerations — Specifies the maximum number of iterations for the genetic algorithm to
perform. The default is 100*numberOfVariables.

• MaxTime — Specifies the maximum time in seconds the genetic algorithm runs before stopping, as
measured by tic and toc. This limit is enforced after each iteration, so ga can exceed the limit
when an iteration takes substantial time.

• FitnessLimit — The algorithm stops if the best fitness value is less than or equal to the value of
FitnessLimit. Does not apply to gamultiobj.

• MaxStallGenerations — The algorithm stops if the average relative change in the best fitness
function value over MaxStallGenerations is less than or equal to FunctionTolerance. (If the
StallTest option is 'geometricWeighted', then the test is for a geometric weighted average
relative change.) For a problem with nonlinear constraints, MaxStallGenerations applies to the
subproblem (see “Nonlinear Constraint Solver Algorithms” on page 8-54).

For gamultiobj, if the geometric average of the relative change in the spread of the Pareto
solutions over MaxStallGenerations is less than FunctionTolerance, and the final spread is
smaller than the average spread over the last MaxStallGenerations, then the algorithm stops.
The geometric average coefficient is ½. The spread is a measure of the movement of the Pareto
front. See “gamultiobj Algorithm” on page 14-5.

• MaxStallTime — The algorithm stops if there is no improvement in the best fitness value for an
interval of time in seconds specified by MaxStallTime, as measured by tic and toc.

• FunctionTolerance — The algorithm stops if the average relative change in the best fitness
function value over MaxStallGenerations is less than or equal to FunctionTolerance. (If the
StallTest option is 'geometricWeighted', then the test is for a geometric weighted average
relative change.)

For gamultiobj, if the geometric average of the relative change in the spread of the Pareto
solutions over MaxStallGenerations is less than FunctionTolerance, and the final spread is
smaller than the average spread over the last MaxStallGenerations, then the algorithm stops.
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The geometric average coefficient is ½. The spread is a measure of the movement of the Pareto
front. See “gamultiobj Algorithm” on page 14-5.

• ConstraintTolerance — The ConstraintTolerance is not used as stopping criterion. It is
used to determine the feasibility with respect to nonlinear constraints. Also,
max(sqrt(eps),ConstraintTolerance) determines feasibility with respect to linear
constraints.

See “Set Maximum Number of Generations and Stall Generations” on page 8-97 for an example.

Output Function Options
Output functions are functions that the genetic algorithm calls at each generation. Unlike other
solvers, a ga output function can not only read the values of the state of the algorithm, but also
modify those values. An output function can also halt the solver according to conditions you set.

options = optimoptions('ga','OutputFcn',@myfun);

For multiple output functions, enter a cell array of function handles:

options = optimoptions('ga','OutputFcn',{@myfun1,@myfun2,...});

To see a template that you can use to write your own output functions, enter

edit gaoutputfcntemplate

at the MATLAB command line.

For an example, see “Custom Output Function for Genetic Algorithm” on page 8-101.

Structure of the Output Function

Your output function must have the following calling syntax:

[state,options,optchanged] = myfun(options,state,flag)

MATLAB passes the options, state, and flag data to your output function, and the output function
returns state, options, and optchanged data.

Note To stop the iterations, set state.StopFlag to a nonempty character vector, such as 'y'.

The output function has the following input arguments:

• options — Options
• state — Structure containing information about the current generation. “The State Structure” on

page 17-25 describes the fields of state.
• flag — Current status of the algorithm:

• 'init' — Initialization state
• 'iter' — Iteration state
• 'interrupt' — Iteration of a subproblem of a nonlinearly constrained problem for the

'auglag' nonlinear constraint algorithm. When flag is 'interrupt':

 Genetic Algorithm Options

17-41



• The values of state fields apply to the subproblem iterations.
• ga does not accept changes in options, and ignores optchanged.
• The state.NonlinIneq and state.NonlinEq fields are not available.

• 'done' — Final state

“Passing Extra Parameters” explains how to provide additional parameters to the function.

The output function returns the following arguments to ga:

• state — Structure containing information about the current generation. “The State Structure” on
page 17-25 describes the fields of state. To stop the iterations, set state.StopFlag to a
nonempty character vector, such as 'y'.

• options — Options as modified by the output function. This argument is optional.
• optchanged — Boolean flag indicating changes to options. To change options for subsequent

iterations, set optchanged to true.

Changing the State Structure

Caution Changing the state structure carelessly can lead to inconsistent or erroneous results.
Usually, you can achieve the same or better state modifications by using mutation or crossover
functions, instead of changing the state structure in a plot function or output function.

ga output functions can change the state structure (see “The State Structure” on page 17-25). Be
careful when changing values in this structure, as you can pass inconsistent data back to ga.

Tip If your output structure changes the Population field, then be sure to update the Score field,
and possibly the Best, NonlinIneq, or NonlinEq fields, so that they contain consistent information.

To update the Score field after changing the Population field, first calculate the fitness function
values of the population, then calculate the fitness scaling for the population. See “Fitness Scaling
Options” on page 17-29.

Display to Command Window Options
'Display' specifies how much information is displayed at the command line while the genetic
algorithm is running. The available options are

• 'final' (default) — The reason for stopping is displayed.
• 'off' or the equivalent 'none' — No output is displayed.
• 'iter' — Information is displayed at each iteration.
• 'diagnose' — Information is displayed at each iteration. In addition, the diagnostic lists some

problem information and the options that have been changed from the defaults.

Both 'iter' and 'diagnose' display the following information:

• Generation — Generation number
• f-count — Cumulative number of fitness function evaluations

17 Options Reference

17-42



• Best f(x) — Best fitness function value
• Mean f(x) — Mean fitness function value
• Stall generations — Number of generations since the last improvement of the fitness

function

When a nonlinear constraint function has been specified, 'iter' and 'diagnose' do not display the
Mean f(x), but additionally display:

• Max Constraint — Maximum nonlinear constraint violation

In addition, 'iter' and 'diagnose' display problem information before the iterative display, such
as problem type and which creation, mutation, crossover, and selection functions ga or gamultiobj
is using.

Vectorize and Parallel Options (User Function Evaluation)
You can choose to have your fitness and constraint functions evaluated in serial, parallel, or in a
vectorized fashion. Set the 'UseVectorized' and 'UseParallel' options with optimoptions.

• When 'UseVectorized' is false (default), ga calls the fitness function on one individual at a
time as it loops through the population. (This assumes 'UseParallel' is at its default value of
false.)

• When 'UseVectorized' is true, ga calls the fitness function on the entire population at once, in
a single call to the fitness function.

If there are nonlinear constraints, the fitness function and the nonlinear constraints all need to be
vectorized in order for the algorithm to compute in a vectorized manner.

See “Vectorize the Fitness Function” on page 8-99 for an example.
• When UseParallel is true, ga calls the fitness function in parallel, using the parallel

environment you established (see “How to Use Parallel Processing in Global Optimization Toolbox”
on page 16-11). Set UseParallel to false (default) to compute serially.

Note You cannot simultaneously use vectorized and parallel computations. If you set
'UseParallel' to true and 'UseVectorized' to true, ga evaluates your fitness and constraint
functions in a vectorized manner, not in parallel.

How Fitness and Constraint Functions Are Evaluated

 UseVectorized = false UseVectorized = true
UseParallel = false Serial Vectorized
UseParallel = true Parallel Vectorized

 Genetic Algorithm Options

17-43



Particle Swarm Options
In this section...
“Specifying Options for particleswarm” on page 17-44
“Swarm Creation” on page 17-44
“Display Settings” on page 17-45
“Algorithm Settings” on page 17-45
“Hybrid Function” on page 17-46
“Output Function and Plot Function” on page 17-47
“Parallel or Vectorized Function Evaluation” on page 17-48
“Stopping Criteria” on page 17-49

Specifying Options for particleswarm
Create options using the optimoptions function as follows.

options = optimoptions('particleswarm',...
    'Param1',value1,'Param2',value2,...);

For an example, see “Optimize Using Particle Swarm” on page 10-5.

Each option in this section is listed by its field name in options. For example, Display refers to the
corresponding field of options.

Swarm Creation
By default, particleswarm calls the 'pswcreationuniform' swarm creation function. This
function works as follows.

1 If an InitialSwarmMatrix option exists, 'pswcreationuniform' takes the first SwarmSize
rows of the InitialSwarmMatrix matrix as the swarm. If the number of rows of the
InitialSwarmMatrix matrix is smaller than SwarmSize, then 'pswcreationuniform'
continues to the next step.

2 'pswcreationuniform' creates enough particles so that there are SwarmSize in total.
'pswcreationuniform' creates particles that are randomly, uniformly distributed. The range
for any swarm component is -InitialSwarmSpan/2,InitialSwarmSpan/2, shifted and
scaled if necessary to match any bounds.

After creation, particleswarm checks that all particles satisfy any bounds, and truncates
components if necessary. If the Display option is 'iter' and a particle needed truncation, then
particleswarm notifies you.

Custom Creation Function

Set a custom creation function using optimoptions to set the CreationFcn option to
@customcreation, where customcreation is the name of your creation function file. A custom
creation function has this syntax.

swarm = customcreation(problem)
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The creation function should return a matrix of size SwarmSize-by-nvars, where each row
represents the location of one particle. See problem for details of the problem structure. In
particular, you can obtain SwarmSize from problem.options.SwarmSize, and nvars from
problem.nvars.

For an example of a creation function, see the code for pswcreationuniform.

edit pswcreationuniform

Display Settings
The Display option specifies how much information is displayed at the command line while the
algorithm is running.

• 'off' or 'none' — No output is displayed.
• 'iter' — Information is displayed at each iteration.
• 'final' (default) — The reason for stopping is displayed.

iter displays:

• Iteration — Iteration number
• f-count — Cumulative number of objective function evaluations
• Best f(x) — Best objective function value
• Mean f(x) — Mean objective function value over all particles
• Stall Iterations — Number of iterations since the last change in Best f(x)

The DisplayInterval option sets the number of iterations that are performed before the iterative
display updates. Give a positive integer.

Algorithm Settings
The details of the particleswarm algorithm appear in “Particle Swarm Optimization Algorithm” on
page 10-11. This section describes the tuning parameters.

The main step in the particle swarm algorithm is the generation of new velocities for the swarm:

For u1 and u2 uniformly (0,1) distributed random vectors of length nvars, update the velocity

v = W*v + y1*u1.*(p-x) + y2*u2.*(g-x).

The variables W = inertia, y1 = SelfAdjustmentWeight, and y2 =
SocialAdjustmentWeight.

This update uses a weighted sum of:

• The previous velocity v
• x-p, the difference between the current position x and the best position p the particle has seen
• x-g, the difference between the current position x and the best position g in the current

neighborhood

Based on this formula, the options have the following effect:
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• Larger absolute value of inertia W leads to the new velocity being more in the same line as the old,
and with a larger absolute magnitude. A large absolute value of W can destabilize the swarm. The
value of W stays within the range of the two-element vector InertiaRange.

• Larger values of y1 = SelfAdjustmentWeight make the particle head more toward the best
place it has visited.

• Larger values of y2 = SocialAdjustmentWeight make the particle head more toward the best
place in the current neighborhood.

Large values of inertia, SelfAdjustmentWeight, or SocialAdjustmentWeight can destabilize
the swarm.

The MinNeighborsFraction option sets both the initial neighborhood size for each particle, and
the minimum neighborhood size; see “Particle Swarm Optimization Algorithm” on page 10-11. Setting
MinNeighborsFraction to 1 has all members of the swarm use the global minimum point as their
societal adjustment target.

See “Optimize Using Particle Swarm” on page 10-5 for an example that sets a few of these tuning
options.

Hybrid Function
A hybrid function is another minimization function that runs after the particle swarm algorithm
terminates. You can specify a hybrid function in the HybridFcn option. The choices are

• [] — No hybrid function.
• 'fminsearch' — Use the MATLAB function fminsearch to perform unconstrained

minimization.
• 'patternsearch' — Use a pattern search to perform constrained or unconstrained

minimization.
• 'fminunc' — Use the Optimization Toolbox function fminunc to perform unconstrained

minimization.
• 'fmincon' — Use the Optimization Toolbox function fmincon to perform constrained

minimization.

Note Ensure that your hybrid function accepts your problem constraints. Otherwise,
particleswarm throws an error.

You can set separate options for the hybrid function. Use optimset for fminsearch, or
optimoptions for fmincon, patternsearch, or fminunc. For example:

hybridopts = optimoptions('fminunc',...
    'Display','iter','Algorithm','quasi-newton');

Include the hybrid options in the particleswarm options as follows:

options = optimoptions(options,'HybridFcn',{@fminunc,hybridopts}); 

hybridopts must exist before you set options.

For an example that uses a hybrid function, see “Optimize Using Particle Swarm” on page 10-5. See
“When to Use a Hybrid Function” on page 8-112.
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Output Function and Plot Function
Output functions are functions that particleswarm calls at each iteration. Output functions can halt
particleswarm, or can perform other tasks. To specify an output function,

options = optimoptions(@particleswarm,'OutputFcn',@outfun)

where outfun is a function with syntax specified in “Structure of the Output Function or Plot
Function” on page 17-47. If you have several output functions, pass them as a cell array of function
handles:

options = optimoptions(@particleswarm,...
    'OutputFcn',{@outfun1,@outfun2,@outfun3})

Similarly, plot functions are functions that particleswarm calls at each iteration. The difference
between an output function and a plot function is that a plot function has built-in plotting
enhancements, such as buttons that appear on the plot window to pause or stop particleswarm.
The lone built-in plot function 'pswplotbestf' plots the best objective function value against
iterations. To specify it,

options = optimoptions(@particleswarm,'PlotFcn','pswplotbestf')

To create a custom plot function, write a function with syntax specified in “Structure of the Output
Function or Plot Function” on page 17-47. To specify a custom plot function, use a function handle.
If you have several plot functions, pass them as a cell array of function handles:

options = optimoptions(@particleswarm,...
    'PlotFcn',{@plotfun1,@plotfun2,@plotfun3})

For an example of a custom output function, see “Particle Swarm Output Function” on page 10-8.

Structure of the Output Function or Plot Function

An output function has the following calling syntax:

stop = myfun(optimValues,state)

If your function sets stop to true, iterations end. Set stop to false to have particleswarm
continue to calculate.

The function has the following input arguments:

• optimValues — Structure containing information about the swarm in the current iteration.
Details are in “optimValues Structure” on page 17-48.

• state — String giving the state of the current iteration.

• 'init' — The solver has not begun to iterate. Your output function or plot function can use
this state to open files, or set up data structures or plots for subsequent iterations.

• 'iter' — The solver is proceeding with its iterations. Typically, this is where your output
function or plot function performs its work.

• 'done' — The solver reached a stopping criterion. Your output function or plot function can
use this state to clean up, such as closing any files it opened.

“Passing Extra Parameters” explains how to provide additional parameters to output functions or plot
functions.
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optimValues Structure

particleswarm passes the optimValues structure to your output functions or plot functions. The
optimValues structure has the following fields.

Field Contents
funccount Total number of objective function evaluations.
bestx Best solution point found, corresponding to the best objective function

value bestfval.
bestfval Best (lowest) objective function value found.
iteration Iteration number.
meanfval Mean objective function among all particles at the current iteration.
stalliterations Number of iterations since the last change in bestfval.
swarm Matrix containing the particle positions. Each row contains the

position of one particle, and the number of rows is equal to the swarm
size.

swarmfvals Vector containing the objective function values of particles in the
swarm. For particle i, swarmfvals(i) = fun(swarm(i,:)),
where fun is the objective function.

Parallel or Vectorized Function Evaluation
For increased speed, you can set your options so that particleswarm evaluates the objective
function for the swarm in parallel or in a vectorized fashion. You can use only one of these options. If
you set UseParallel to true and UseVectorized to true, then the computations are done in a
vectorized fashion, and not in parallel.

• “Parallel particleswarm” on page 17-48
• “Vectorized particleswarm” on page 17-48

Parallel particleswarm

If you have a Parallel Computing Toolbox license, you can distribute the evaluation of the objective
functions to the swarm among your processors or cores. Set the UseParallel option to true.

Parallel computation is likely to be faster than serial when your objective function is computationally
expensive, or when you have many particles and processors. Otherwise, communication overhead can
cause parallel computation to be slower than serial computation.

For details, see “Parallel Computing”.

Vectorized particleswarm

If your objective function can evaluate all the particles at once, you can usually save time by setting
the UseVectorized option to true. Your objective function should accept an M-by-N matrix, where
each row represents one particle, and return an M-by-1 vector of objective function values. This option
works the same way as the patternsearch and ga UseVectorized options. For patternsearch
details, see “Vectorize the Objective and Constraint Functions” on page 6-79.
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Stopping Criteria
particleswarm stops iterating when any of the following occur.

Stopping Option Stopping Test Exit Flag
MaxStallIterations and
FunctionTolerance

Relative change in the best
objective function value g over
the last MaxStallIterations
iterations is less than
FunctionTolerance.

1

MaxIterations Number of iterations reaches
MaxIterations.

0

OutputFcn or PlotFcn OutputFcn or PlotFcn can
halt the iterations.

-1

ObjectiveLimit Best objective function value g
of a feasible point is less than
ObjectiveLimit.

-3

MaxStallTime Best objective function value g
did not change in the last
MaxStallTime seconds.

-4

MaxTime Function run time exceeds
MaxTime seconds.

-5

Also, if you set the FunValCheck option to 'on', and the swarm has particles with NaN, Inf, or
complex objective function values, particleswarm stops and issues an error.
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Surrogate Optimization Options

Algorithm Control
To control the surrogate optimization algorithm, use the following options.

• ConstraintTolerance — The constraint tolerance is not used as a stopping criterion. It is used
to determine feasibility with respect to nonlinear constraints. The tolerance is satisfied when
max(fun(x).Ineq) <= ConstraintTolerance, and otherwise is violated. The default value is
1e-3.

• InitialPoints — Specify initial points in one of two ways.

• Matrix — Each row of the matrix represents an initial point. The length of each row is the same
as the number of elements in the bounds lb or ub. The number of rows is arbitrary.
surrogateopt uses all the rows to construct the initial surrogate. If there are fewer than
MinSurrogatePoints rows, then surrogateopt generates the remaining initial points.
surrogateopt evaluates the objective function at each initial point.

• Structure — The structure contains the field X and, optionally, the fields Fval and Ineq. The X
field contains a matrix where each row represents an initial point. The Fval field contains a
vector representing the objective function values at each point in X. Passing Fval saves time
for the solver, because otherwise the solver evaluates the objective function value at each
initial point. The Ineq field contains a matrix containing nonlinear inequality constraint values.
Each row of Ineq represents one initial point, and each column represents a nonlinear
constraint function value at that point. Passing Ineq saves time for the solver, because
otherwise the solver evaluates the constraint function values at each initial point.

• MinSurrogatePoints — Number of initial points used for constructing the surrogate. Larger
values lead to a more accurate finished surrogate, but take more time to finish the surrogate.
surrogateopt creates this number of random points after each switch to the random generation
phase. See “Surrogate Optimization Algorithm” on page 11-3.

When BatchUpdateInterval > 1, the minimum number of random sample points used to create
a surrogate is the larger of MinSurrogatePoints and BatchUpdateInterval.

• MinSampleDistance — This option controls two aspects of the algorithm.

• During the phase to estimate the minimum value of the surrogate, the algorithm generates
random points at which to evaluate the surrogate. If any of these points are closer than
MinSampleDistance to any previous point whose objective function value was evaluated,
then surrogateopt discards the newly generated points and does not evaluate them.

• If surrogateopt discards all of the random points, then it does not try to minimize the
surrogate and, instead, switches to the random generation phase. If the surrogateoptplot
plot function is running, then it marks this switch with a blue vertical line.

• BatchUpdateInterval — This option controls three aspects of the algorithm:

• Number of function evaluations before the surrogate is updated.
• Number of points to pass in a vectorized evaluation. When UseVectorized is true,

surrogateopt passes a matrix of size BatchUpdateInterval-by-nvar, where nvar is the
number of problem variables. Each row of the matrix represents one evaluation point. For the
final iteration (the one that causes MaxFunctionEvaluations function evaluations), if
MaxFunctionEvaluations is not an integer multiple of BatchUpdateInterval,
surrogateopt passes a matrix with fewer than BatchUpdateInterval rows.
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• When BatchUpdateInterval > 1, the minimum number of random sample points used to
create a surrogate is the larger of MinSurrogatePoints and BatchUpdateInterval.

Output functions and plot functions are updated after each batch is evaluated completely.

For details, see “Surrogate Optimization Algorithm” on page 11-3.

Stopping Criteria
Generally, the algorithm stops only when it reaches a limit that you set in the solver options.
Additionally, a plot function or output function can halt the solver.

Stopping Option Stopping Test Exit Flag
MaxFunctionEvaluations The solver stops after it completes

MaxFunctionEvaluations function
evaluations. When computing in parallel, the
solver stops all workers after a worker
returns with the final function evaluation,
leaving some computations incomplete and
unused.

0

MaxTime The solver stops after it reaches MaxTime
seconds from the start of the optimization,
as measured by tic / toc. The solver does
not interrupt a function evaluation in
progress, so the actual compute time can
exceed MaxTime.

0

ObjectiveLimit The solver stops if an objective function
value of a feasible point is less than
ObjectiveLimit.

1

OutputFcn or PlotFcn An OutputFcn or PlotFcn can halt the
iterations.

-1

Bounds lb and ub If an entry in lb exceeds the corresponding
entry in ub, the solver stops because the
bounds are inconsistent.

-2

Command-Line Display
Set the Display option to control what surrogateopt returns to the command line.

• 'final' — Return only the exit message. This is the default behavior.
• 'iter' — Return iterative display.
• 'off' or the equivalent 'none' — No command-line display.

With an iterative display, the solver returns the following information in table format.

• F-count — Number of function evaluations
• Time(s) — Time in seconds since the solver started
• Best Fval — Lowest objective function value obtained
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• Current Fval — Latest objective function value
• Trial Type — Algorithm giving the evaluated point, either random or adaptive. For details,

see “Surrogate Optimization Algorithm” on page 11-3.

When the objective function returns a nonlinear constraint, the iterative display of Best Fval and
Current Fval changes. Instead, the titles are Best and Current, and each displays two columns,
(Fval, Infeas).

• When a point is feasible, surrogateopt displays the function value, and shows - as the
infeasibility.

• When a point is infeasible, surrogateopt displays the maximum infeasibility among all nonlinear
constraint functions (a positive number), and shows - as the function value.

• Once surrogateopt finds a feasible point, subsequent entries in the Best column show only the
smallest function value found, and show - as the best infeasibility.

With iterative display, the solver also returns problem information before the table:

• Number of variables
• Type of objective function (scalar or none)
• Number of inequalities

Output Function
An output function can halt the solver or perform a computation at each iteration. To include an
output function, set the OutputFcn option to @myoutputfcn, where myoutputfcn is a function
with the syntax described in the next paragraph. This syntax is the same as for Optimization Toolbox
output functions, but with different meanings of the x and optimValues arguments. For information
about those output functions, see “Output Function and Plot Function Syntax”. For an example of an
output function, see “Integer Optimization with Custom Output Function” on page 11-67.

The syntax of an output function is:

stop = outfun(x,optimValues,state)

surrogateopt passes the values of x, optimValues, and state to the output function (outfun, in
this case) at each iteration. The output function returns stop, a Boolean value (true or false)
indicating whether to stop surrogateopt.

• x — The input argument x is the best point found so far, meaning the point with the lowest
objective function value.

• optimValues — This input argument is a structure containing the following fields. For more
information about these fields, see “Surrogate Optimization Algorithm” on page 11-3.
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optimValues Structure

Field Name Contents
constrviolation Maximum constraint violation of best point,

max(optimValues.ineq)
currentConstrviolation Maximum constraint violation of current point,

max(optimValues.currentIneq)
currentFlag How the current point was created.

• 'initial' — Initial point passed in
options.InitialPoints

• 'random' — Random sample within the bounds
• 'adaptive' — Result of the solver trying to minimize the

surrogate
currentFval Objective function value at the current point
currentIneq Constraint violation vector of current point,

fun(currentX).Ineq
currentX Current point
elapsedtime Time in seconds since the solver started
flag How the best point was created

• 'initial' — Initial point passed in
options.InitialPoints

• 'random' — Random sample within the bounds
• 'adaptive' — Result of the solver trying to minimize the

surrogate
funccount Total number of objective function evaluations
fval Lowest objective function value encountered
incumbentConstrviolation Maximum constraint violation of current point,

max(optimValues.incumbentIneq)
incumbentIneq Constraint violation vector of incumbent point,

fun(incumbentX).Ineq
incumbentFlag How the incumbent point was created

• 'initial' — Initial point passed in
options.InitialPoints

• 'random' — Random sample within the bounds
• 'adaptive' — Result of the solver trying to minimize the

surrogate
incumbentFval Objective function value at the incumbent point
incumbentX Incumbent point, meaning the best point found since the last

phase shift to random sampling
ineq Constraint violation vector of best point, fun(x).Ineq
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Field Name Contents
iteration Number of iterations completed. Equal to funccount, except

during the 'iter' state, when iteration is equal to
funccount – 1. This field allows surrogateopt to use the
same plot functions as some other solvers

surrogateReset Boolean value indicating that the current iteration resets the
model and switches to random sampling

surrogateResetCount Total number of times that surrogateReset is true

• state — This input argument is the state of the algorithm, specified as one of these values.

• 'init' — The algorithm is in the initial state before the first iteration. When the algorithm is
in this state, you can set up plot axes or other data structures or open files.

Note When state is 'init', the input arguments x and optimValues.fval are empty ([])
because surrogateopt is designed for time-consuming objective functions, and so does not
evaluate the objective function before calling the initialization step.

• 'iter' — The algorithm just evaluated the objective function. You perform most calculations
and view most displays when the algorithm is in this state.

• 'done' — The algorithm performed its final objective function evaluation. When the algorithm
is in this state, you can close files, finish plots, or prepare in other ways for surrogateopt to
stop.

Plot Function
A plot function displays information at each iteration. You can pause or halt the solver by clicking
buttons on the plot. To include a plot function, set the PlotFcn option to a function name or function
handle or cell array of function names or handles to plot functions. The four built-in plot functions
are:

• 'optimplotfvalconstr' (default) — Plot the best feasible objective function value found as a
line plot. If there is no objective function, plot the maximum nonlinear constraint violation as a
line plot.

• The plot shows infeasible points as red and feasible points as blue.
• If there is no objective function, the plot title shows the number of feasible solutions.

• 'optimplotfval' — Shows the best function value. If you do not choose a plot function,
surrogateopt uses @optimplotfval.

• 'optimplotx' — Shows the best point found as a bar plot.
• 'surrogateoptplot' — Shows the current objective function value, best function value, and

information about the algorithm phase. See “Interpret surrogateoptplot” on page 11-25.

You can write a custom plot function using the syntax of an “Output Function” on page 17-52. For an
example, examine the code for surrogateoptplot by entering type surrogateoptplot at the
MATLAB command line.
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Parallel Computing
When you set the UseParallel option to true, surrogateopt computes in parallel. Computing in
parallel requires a Parallel Computing Toolbox license. For details, see “Surrogate Optimization
Algorithm” on page 11-3.

You cannot specify both UseParallel = true and UseVectorized = true. If you set both to
true, the solver ignores UseVectorized and attempts to compute in parallel using a parallel pool, if
possible.

Vectorized Computing
When you set the UseVectorized option to true, surrogateopt passes a matrix to the objective
function. Each row of the matrix represents one point to evaluate. The matrix has
options.BatchUpdateInterval rows; however, the matrix can have fewer rows during the final
iteration. Use this option for custom parallel computing, as shown in “Vectorized Surrogate
Optimization for Custom Parallel Simulation” on page 11-92.

You cannot specify both UseParallel = true and UseVectorized = true. If you set both to
true, the solver ignores UseVectorized and attempts to compute in parallel using a parallel pool, if
possible.

Checkpoint File
When you set the name of a checkpoint file using the CheckpointFile option, surrogateopt
writes data to the file after each iteration, which enables the function to resume the optimization
from the current state. When restarting, surrogateopt does not evaluate the objective function
value at previously evaluated points.

A checkpoint file can be a file path such as "C:\Documents\MATLAB\check1.mat" or a file name
such as 'checkpoint1June2019.mat'. If you specify a file name without a path, surrogateopt
saves the checkpoint file in the current folder.

You can change only the following options when resuming the optimization:

• BatchUpdateInterval
• CheckpointFile
• Display
• MaxFunctionEvaluations
• MaxTime
• MinSurrogatePoints
• ObjectiveLimit
• OutputFcn
• PlotFcn
• UseParallel
• UseVectorized

To resume the optimization from a checkpoint file, call surrogateopt with the file name as the first
argument.
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[x,fval,exitflag,output] = surrogateopt('check1.mat')

To resume the optimization using new options, include the new options as the second argument.

opts = optimoptions(options,'MaxFunctionEvaluations',500);
[x,fval,exitflag,output] = surrogateopt('check1.mat',opts)

During the restart, surrogateopt runs any output functions and plot functions, based on the
original function evaluations. So, for example, you can create a different plot based on an
optimization that already ran. See “Work with Checkpoint Files” on page 11-56.

Note surrogateopt does not save all details of the state in the checkpoint file. Therefore,
subsequent iterations can differ from the iterations that the solver takes without stopping at the
checkpointed state.

Note Checkpointing takes time. This overhead is especially noticeable for functions that otherwise
take little time to evaluate.

Warning Do not resume surrogateopt from a checkpoint file created with a different MATLAB
version. surrogateopt can throw an error or give inconsistent results.

See Also
surrogateopt

More About
• “Surrogate Optimization”
• “Surrogate Optimization Algorithm” on page 11-3
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Simulated Annealing Options
In this section...
“Set Simulated Annealing Options at the Command Line” on page 17-57
“Plot Options” on page 17-57
“Temperature Options” on page 17-58
“Algorithm Settings” on page 17-59
“Hybrid Function Options” on page 17-60
“Stopping Criteria Options” on page 17-61
“Output Function Options” on page 17-61
“Display Options” on page 17-62

Set Simulated Annealing Options at the Command Line
Specify options by creating an options object using the optimoptions function as follows:

options = optimoptions(@simulannealbnd,...
    'Param1',value1,'Param2',value2, ...);

Each option in this section is listed by its field name in options. For example,
InitialTemperature refers to the corresponding field of options.

Plot Options
Plot options enable you to plot data from the simulated annealing solver while it is running.

PlotInterval specifies the number of iterations between consecutive calls to the plot function.

To display a plot when calling simulannealbnd from the command line, set the PlotFcn field of
options to be a built-in plot function name or handle to the plot function. You can specify any of the
following plots:

• 'saplotbestf' plots the best objective function value.
• 'saplotbestx' plots the current best point.
• 'saplotf' plots the current function value.
• 'saplotx' plots the current point.
• 'saplotstopping' plots stopping criteria levels.
• 'saplottemperature' plots the temperature at each iteration.
• @myfun plots a custom plot function, where myfun is the name of your function. See “Structure of

the Plot Functions” on page 17-8 for a description of the syntax.

For example, to display the best objective plot, set options as follows

options = optimoptions(@simulannealbnd,'PlotFcn','saplotbestf');

To display multiple plots, use the cell array syntax

options = optimoptions(@simulannealbnd,...
    'PlotFcn',{@plotfun1,@plotfun2, ...});
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where @plotfun1, @plotfun2, and so on are function handles to the plot functions.

If you specify more than one plot function, all plots appear as subplots in the same window. Right-
click any subplot to obtain a larger version in a separate figure window.

Structure of the Plot Functions

The first line of a plot function has the form

function stop = plotfun(options,optimvalues,flag)

The input arguments to the function are

• options — Options created using optimoptions.
• optimvalues — Structure containing information about the current state of the solver. The

structure contains the following fields:

• x — Current point
• fval — Objective function value at x
• bestx — Best point found so far
• bestfval — Objective function value at best point
• temperature — Current temperature
• iteration — Current iteration
• funccount — Number of function evaluations
• t0 — Start time for algorithm
• k — Annealing parameter

• flag — Current state in which the plot function is called. The possible values for flag are

• 'init' — Initialization state
• 'iter' — Iteration state
• 'done' — Final state

The output argument stop provides a way to stop the algorithm at the current iteration. stop can
have the following values:

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

Temperature Options
Temperature options specify how the temperature will be lowered at each iteration over the course of
the algorithm.

• InitialTemperature — Initial temperature at the start of the algorithm. The default is 100. The
initial temperature can be a vector with the same length as x, the vector of unknowns.
simulannealbnd expands a scalar initial temperature into a vector.

• TemperatureFcn — Function used to update the temperature schedule. Let k denote the
annealing parameter. (The annealing parameter is the same as the iteration number until
reannealing.) The options are:
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• 'temperatureexp' — The temperature is equal to InitialTemperature * 0.95^k. This is the
default.

• 'temperaturefast' — The temperature is equal to InitialTemperature / k.
• 'temperatureboltz' — The temperature is equal to InitialTemperature / ln(k).
• @myfun — Uses a custom function, myfun, to update temperature. The syntax is:

temperature = myfun(optimValues,options)

where optimValues is a structure described in “Structure of the Plot Functions” on page 17-
58. options is either created with optimoptions, or consists of default options, if you did
not create any options. Both the annealing parameter optimValues.k and the temperature
optimValues.temperature are vectors with length equal to the number of elements of the
current point x. For example, the function temperaturefast is:

temperature = options.InitialTemperature./optimValues.k;

Algorithm Settings
Algorithm settings define algorithmic specific parameters used in generating new points at each
iteration.

Parameters that can be specified for simulannealbnd are:

• DataType — Type of data to use in the objective function. Choices:

• 'double' (default) — A vector of type double.
• 'custom' — Any other data type. You must provide a 'custom' annealing function. You

cannot use a hybrid function.
• AnnealingFcn — Function used to generate new points for the next iteration. The choices are:

• 'annealingfast' — The step has length temperature, with direction uniformly at random.
This is the default.

• 'annealingboltz' — The step has length square root of temperature, with direction
uniformly at random.

• @myfun — Uses a custom annealing algorithm, myfun. The syntax is:

newx = myfun(optimValues,problem)

where optimValues is a structure described in “Structure of the Output Function” on page
17-62, and problem is a structure containing the following information:

• objective: function handle to the objective function
• x0: the start point
• nvar: number of decision variables
• lb: lower bound on decision variables
• ub: upper bound on decision variables

For example, the current position is optimValues.x, and the current objective function value
is problem.objective(optimValues.x).
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You can write a custom objective function by modifying the saannealingfcntemplate.m file.
To keep all iterates within bounds, have your custom annealing function call sahonorbounds
as the final command.

• ReannealInterval — Number of points accepted before reannealing. The default value is 100.
• AcceptanceFcn — Function used to determine whether a new point is accepted or not. The

choices are:

• 'acceptancesa' — Simulated annealing acceptance function, the default. If the new
objective function value is less than the old, the new point is always accepted. Otherwise, the
new point is accepted at random with a probability depending on the difference in objective
function values and on the current temperature. The acceptance probability is

1
1 + exp Δ

max(T)
,

where Δ = new objective – old objective, and T is the current temperature. Since both Δ and T
are positive, the probability of acceptance is between 0 and 1/2. Smaller temperature leads to
smaller acceptance probability. Also, larger Δ leads to smaller acceptance probability.

• @myfun — A custom acceptance function, myfun. The syntax is:

acceptpoint = myfun(optimValues,newx,newfval);

where optimValues is a structure described in “Structure of the Output Function” on page
17-62, newx is the point being evaluated for acceptance, and newfval is the objective
function at newx. acceptpoint is a Boolean, with value true to accept newx, and false to
reject newx.

Hybrid Function Options
A hybrid function is another minimization function that runs during or at the end of iterations of the
solver. HybridInterval specifies the interval (if not never or end) at which the hybrid function is
called. You can specify a hybrid function using the HybridFcn option. The choices are:

• [] — No hybrid function.
• 'fminsearch' — Uses the MATLAB function fminsearch to perform unconstrained

minimization.
• 'patternsearch' — Uses patternsearch to perform constrained or unconstrained

minimization.
• 'fminunc' — Uses the Optimization Toolbox function fminunc to perform unconstrained

minimization.
• 'fmincon' — Uses the Optimization Toolbox function fmincon to perform constrained

minimization.

Note Ensure that your hybrid function accepts your problem constraints. Otherwise,
simulannealbnd throws an error.

You can set separate options for the hybrid function. Use optimset for fminsearch, or
optimoptions for fmincon, patternsearch, or fminunc. For example:
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hybridopts = optimoptions('fminunc',...
    'Display','iter','Algorithm','quasi-newton');

Include the hybrid options in the simulannealbnd options as follows:

options = optimoptions(@simulannealbnd,options,...
    'HybridFcn',{@fminunc,hybridopts}); 

hybridopts must exist before you set options.

See “Hybrid Scheme in the Genetic Algorithm” on page 8-91 for an example. See “When to Use a
Hybrid Function” on page 8-112.

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can specify the following
options:

• FunctionTolerance — The algorithm runs until the average change in value of the objective
function in StallIterLim iterations is less than FunctionTolerance. The default value is
1e-6.

• MaxIterations — The algorithm stops if the number of iterations exceeds this maximum number
of iterations. You can specify the maximum number of iterations as a positive integer or Inf. Inf
is the default.

• MaxFunctionEvaluations specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds the maximum number
of function evaluations. The allowed maximum is 3000*numberofvariables.

• MaxTime specifies the maximum time in seconds the algorithm runs before stopping.
• ObjectiveLimit — The algorithm stops if the best objective function value of a feasible point is

less than ObjectiveLimit.

Output Function Options
Output functions are functions that the algorithm calls at each iteration. The default value is to have
no output function, []. You must first create an output function using the syntax described in
“Structure of the Output Function” on page 17-62.

Using the Optimization app:

• Specify Output function as @myfun, where myfun is the name of your function.
• To pass extra parameters in the output function, use “Anonymous Functions”.
• For multiple output functions, enter a cell array of output function handles:

{@myfun1,@myfun2,...}.

At the command line:

• options = optimoptions(@simulannealbnd,'OutputFcn',@myfun);
• For multiple output functions, enter a cell array of function handles:

options = optimoptions(@simulannealbnd,...
    'OutputFcn',{@myfun1,@myfun2,...});
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To see a template that you can use to write your own output functions, enter

edit saoutputfcntemplate

at the MATLAB command line.

Structure of the Output Function

The output function has the following calling syntax.

[stop,options,optchanged] = myfun(options,optimvalues,flag)

The function has the following input arguments:

• options — Options created using optimoptions.
• optimvalues — Structure containing information about the current state of the solver. The

structure contains the following fields:

• x — Current point
• fval — Objective function value at x
• bestx — Best point found so far
• bestfval — Objective function value at best point
• temperature — Current temperature, a vector the same length as x
• iteration — Current iteration
• funccount — Number of function evaluations
• t0 — Start time for algorithm
• k — Annealing parameter, a vector the same length as x

• flag — Current state in which the output function is called. The possible values for flag are

• 'init' — Initialization state
• 'iter' — Iteration state
• 'done' — Final state

“Passing Extra Parameters” explains how to provide additional parameters to the output function.

The output function returns the following arguments:

• stop — Provides a way to stop the algorithm at the current iteration. stop can have the following
values:

• false — The algorithm continues to the next iteration.
• true — The algorithm terminates at the current iteration.

• options — Options as modified by the output function.
• optchanged — A Boolean flag indicating changes were made to options. This must be set to

true if options are changed.

Display Options
Use the Display option to specify how much information is displayed at the command line while the
algorithm is running. The available options are
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• off — No output is displayed. This is the default value for options exported from the
Optimization app.

• iter — Information is displayed at each iteration.
• diagnose — Information is displayed at each iteration. In addition, the diagnostic lists some

problem information and the options that have been changed from the defaults.
• final — The reason for stopping is displayed. This is the default for options created using

optimoptions.

Both iter and diagnose display the following information:

• Iteration — Iteration number
• f-count — Cumulative number of objective function evaluations
• Best f(x) — Best objective function value
• Current f(x) — Current objective function value
• Mean Temperature — Mean temperature function value
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Options Changes in R2016a
In this section...
“Use optimoptions to Set Options” on page 17-64
“Options that optimoptions Hides” on page 17-64
“Table of Option Names in Legacy Order” on page 17-66
“Table of Option Names in Current Order” on page 17-69

Use optimoptions to Set Options
Before R2016a, you set options for some Global Optimization Toolbox solvers by using a dedicated
option function:

• gaoptimset for ga and gamultiobj
• psoptimset for patternsearch
• saoptimset for simulannealbnd

Beginning in R2016a, the recommended way to set options is to use optimoptions. (You already set
particleswarm options using optimoptions.)

Note GlobalSearch and MultiStart use a different mechanism for setting properties. See
“GlobalSearch and MultiStart Properties (Options)” on page 17-2. Some of these property names
changed as solver option names changed.

Some option names changed in R2016a. See “Table of Option Names in Legacy Order” on page 17-
66.

optimoptions “hides” some options, meaning it does not display their values. optimoptions
displays only current names, not legacy names. For details, see “View Options”.

Options that optimoptions Hides
optimoptions does not display some options. To view the setting of any such “hidden” option, use
dot notation. For details, see “View Options”. These options are listed in italics in the options tables in
the function reference pages.
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Options that optimoptions Hides

Option Description Solvers Reason for Hiding
Cache With Cache set to 'on',

patternsearch keeps
a history of the mesh
points it polls. At
subsequent iterations,
patternsearch does
not poll points close to
those it already polled.
Use this option if
patternsearch runs
slowly while computing
the objective function. If
the objective function is
stochastic, do not use
this option.

patternsearch Works poorly

CacheSize Size of the history. patternsearch Works poorly
CacheTol Largest distance from

the current mesh point
to any point in the
history in order for
patternsearch to
avoid polling the
current point. Use if
'Cache' option is set
to 'on'.

patternsearch Works poorly

DisplayInterval Interval for iterative
display. The iterative
display prints one line
for every
DisplayInterval
iterations.

particleswarm,
simulannealbnd

Not generally useful

FunValCheck Check whether
objective function and
constraints values are
valid. 'on' displays an
error when the
objective function or
constraints return a
value that is complex,
Inf, or NaN.

particleswarm Not generally useful

HybridInterval Interval (if not 'end' or
'never') at which
HybridFcn is called.

simulannealbnd Not generally useful

InitialPenalty Initial value of penalty
parameter.

ga, patternsearch Difficult to know how to
set
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Option Description Solvers Reason for Hiding
MaxMeshSize Maximum mesh size

used in a poll or search
step.

patternsearch Not generally useful

MeshRotate Rotate the pattern
before declaring a point
to be optimum.

patternsearch Default value is best

MigrationDirection Direction of migration
— see “Migration
Options” on page 17-36.

ga Not useful

MigrationFraction Scalar between 0 and 1
specifying the fraction
of individuals in each
subpopulation that
migrates to a different
subpopulation — see
“Migration Options” on
page 17-36.

ga Not useful

MigrationInterval Positive integer
specifying the number
of generations that take
place between
migrations of
individuals between
subpopulations — see
“Migration Options” on
page 17-36

ga Not useful

PenaltyFactor Penalty update
parameter.

ga, patternsearch Difficult to know how to
set

PlotInterval Positive integer
specifying the number
of generations between
consecutive calls to the
plot functions.

ga, patternsearch,
simulannealbnd

Not useful

StallTest String describing the
stopping test.

ga Default value is best

TolBind Binding tolerance. See
“Constraint
Parameters” on page
17-15.

patternsearch Default value is usually
best

Table of Option Names in Legacy Order
These two tables have identical information. One is in alphabetical order by legacy option name, the
other is in order by current option name. The tables show values only when the values differ between
legacy and current, and show only the names that differ. For changes in Optimization Toolbox solvers,
see “Current and Legacy Option Names”.
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* indicates GlobalSearch and MultiStart property names as well as solver option names.
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Option Names in Legacy Order

Legacy Name Current Name Legacy Values Current Values
CompletePoll UseCompletePoll 'on', 'off' true, false
CompleteSearch UseCompleteSearch 'on', 'off' true, false
Generations MaxGenerations   
InitialPopulation InitialPopulationM

atrix
  

InitialScores InitialScoreMatrix   
InitialSwarm InitialSwarmMatrix   
MaxFunEvals MaxFunctionEvaluat

ions
  

MaxIter MaxIterations   
MeshAccelerator AccelerateMesh 'on', 'off' true, false
MeshContraction MeshContractionFac

tor
  

MeshExpansion MeshExpansionFacto
r

  

MinFractionNeighbo
rs

MinNeighborsFracti
on

  

NonlinConAlgorithm NonlinearConstrain
tAlgorithm

  

* OutputFcns * OutputFcn   
* PlotFcns * PlotFcn   
PollingOrder PollOrderAlgorithm   
PopInitRange InitialPopulationR

ange
  

SearchMethod SearchFcn   
SelfAdjustment SelfAdjustmentWeig

ht
  

SocialAdjustment SocialAdjustmentWe
ight

  

StallGenLimit MaxStallGeneration
s

  

StallIterLimit MaxStallIterations   
StallTimeLimit MaxStallTime   
TimeLimit MaxTime   
TolCon ConstraintToleranc

e
  

* TolFun * FunctionTolerance   
TolMesh MeshTolerance   
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Legacy Name Current Name Legacy Values Current Values
* TolX StepTolerance

* XTolerance for
GlobalSearch and
MultiStart

  

Vectorized UseVectorized 'on', 'off' true, false

Table of Option Names in Current Order
* indicates GlobalSearch and MultiStart property names as well as solver option names.
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Option Names in Current Order

Current Name Legacy Name Current Values Legacy Values
AccelerateMesh MeshAccelerator true, false 'on', 'off'
ConstraintToleranc
e

TolCon   

* FunctionTolerance * TolFun   
InitialPopulationM
atrix

InitialPopulation   

InitialPopulationR
ange

PopInitRange   

InitialScoreMatrix InitialScores   
InitialSwarmMatrix InitialSwarm   
MaxFunctionEvaluat
ions

MaxFunEvals   

MaxGenerations Generations   
MaxIterations MaxIter   
MaxStallGeneration
s

StallGenLimit   

MaxStallIterations StallIterLimit   
MaxStallTime StallTimeLimit   
MaxTime TimeLimit   
MeshContractionFac
tor

MeshContraction   

MeshExpansionFacto
r

MeshExpansion   

MeshTolerance TolMesh   
MinNeighborsFracti
on

MinFractionNeighbo
rs

  

NonlinearConstrain
tAlgorithm

NonlinConAlgorithm   

* OutputFcn * OutputFcns   
* PlotFcn * PlotFcns   
PollOrderAlgorithm PollingOrder   
SearchFcn SearchMethod   
SelfAdjustmentWeig
ht

SelfAdjustment   

SocialAdjustmentWe
ight

SocialAdjustment   

StepTolerance TolX   
UseCompletePoll CompletePoll true, false 'on', 'off'

17 Options Reference

17-70



Current Name Legacy Name Current Values Legacy Values
UseCompleteSearch CompleteSearch true, false 'on', 'off'
UseVectorized Vectorized true, false 'on', 'off'
* XTolerance * TolX   
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createOptimProblem
Create optimization problem structure

Syntax
problem = createOptimProblem('solverName')
problem = createOptimProblem('solverName','ParameterName',ParameterValue,...)

Description
problem = createOptimProblem('solverName') creates an empty optimization problem
structure for the solverName solver.

problem = createOptimProblem('solverName','ParameterName',ParameterValue,...)
accepts one or more comma-separated parameter name/value pairs. Specify ParameterName inside
single quotes.

Input Arguments
solverName

Name of the solver. For a GlobalSearch problem, use 'fmincon'. For a MultiStart problem, use
'fmincon', 'fminunc', 'lsqcurvefit' or 'lsqnonlin'.

Parameter Name/Value Pairs

Aeq

Matrix for linear equality constraints. The constraints have the form:

Aeq x = beq

Aineq

Matrix for linear inequality constraints. The constraints have the form:

Aineq x ≤ bineq

beq

Vector for linear equality constraints. The constraints have the form:

Aeq x = beq

bineq

Vector for linear inequality constraints. The constraints have the form:

Aineq x ≤ bineq
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lb

Vector of lower bounds.

lb can also be an array; see “Matrix Arguments”.

nonlcon

Function handle to the nonlinear constraint function. The constraint function must accept a vector x
and return two vectors: c, the nonlinear inequality constraints, and ceq, the nonlinear equality
constraints. If one of these constraint functions is empty, nonlcon must return [] for that function.

If the GradConstr option is 'on', then in addition nonlcon must return two additional outputs,
gradc and gradceq. The gradc parameter is a matrix with one column for the gradient of each
constraint, as is gradceq.

For more information, see “Write Constraints” on page 2-6.

objective

Function handle to the objective function. For all solvers except lsqnonlin and lsqcurvefit, the
objective function must accept a vector x and return a scalar. If the GradObj option is 'on', then the
objective function must return a second output, a vector, representing the gradient of the objective.
For lsqnonlin, the objective function must accept a vector x and return a vector. lsqnonlin sums
the squares of the objective function values. For lsqcurvefit, the objective function must accept
two inputs, x and xdata, and return a vector.

For more information, see “Compute Objective Functions” on page 2-2.

options

Optimization options. Create options with optimoptions.

ub

Vector of upper bounds.

ub can also be an array; see “Matrix Arguments”.

x0

A vector, a potential starting point for the optimization. Gives the dimensionality of the problem.

x0 can also be an array; see “Matrix Arguments”.

xdata

Vector of data points for lsqcurvefit.

ydata

Vector of data points for lsqcurvefit.
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Output Arguments
problem

Optimization problem structure.

Examples
Create a problem structure using Rosenbrock's function as objective (see “Hybrid Scheme in the
Genetic Algorithm” on page 8-91), the interior-point algorithm for fmincon, and bounds with
absolute value 2:

anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);
opts = optimoptions(@fmincon,'Algorithm','interior-point');
problem = createOptimProblem('fmincon','x0',randn(2,1),...
    'objective',anonrosen,'lb',[-2;-2],'ub',[2;2],...
    'options',opts);

See Also
MultiStart | GlobalSearch

Topics
“Create Problem Structure” on page 4-4

Introduced in R2010a
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CustomStartPointSet
Custom start points

Description
A CustomStartPointSet is an object wrapper of a matrix whose rows represent start points for
MultiStart.

Creation

Syntax
tpoints = CustomStartPointSet(ptmatrix)

Description

tpoints = CustomStartPointSet(ptmatrix) generates a CustomStartPointSet object from
the ptmatrix matrix. Each row of ptmatrix represents one start point.

Input Arguments

ptmatrix — Start points
matrix

Start points, specified as a matrix. Each row of ptmatrix represents one start point.
Example: randn(40,3) creates 40 start points of 3 dimensions.
Data Types: double

Properties
NumStartPoints — Number of start points
positive integer

This property is read-only.

Number of start points, specified as a positive integer. NumStartPoints is the number of rows in
ptmatrix.
Example: 40
Data Types: double

StartPointsDimension — Dimension of each start point
positive integer

This property is read-only.
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Dimension of each start point, specified as a positive integer. StartPointsDimension is the
number of columns in ptmatrix.

StartPointsDimension is the same as the number of elements in problem.x0, the problem
structure you pass to run.
Example: 5
Data Types: double

Object Functions
list List start points

Examples

Create CustomStartPointSet

Create a CustomStartPointSet object with 64 three-dimensional points.

[x,y,z] = meshgrid(1:4);
ptmatrix = [x(:),y(:),z(:)] + [10,20,30];
tpoints = CustomStartPointSet(ptmatrix);

tpoints is the ptmatrix matrix contained in a CustomStartPointSet object.

Extract the original matrix from the tpoints object by using list.

tpts = list(tpoints);

Check that the tpts output is identical to ptmatrix.

isequal(ptmatrix,tpts)

ans = logical
   1

See Also
MultiStart | RandomStartPointSet | list

Topics
“CustomStartPointSet Object for Start Points” on page 4-11
“Workflow for GlobalSearch and MultiStart” on page 4-3

Introduced in R2010a
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ga
Find minimum of function using genetic algorithm

Syntax
x = ga(fun,nvars)
x = ga(fun,nvars,A,b)
x = ga(fun,nvars,A,b,Aeq,beq)
x = ga(fun,nvars,A,b,Aeq,beq,lb,ub)
x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon)
x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon)
x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon,options)
x = ga(problem)
[x,fval] = ga( ___ )
[x,fval,exitflag,output] = ga( ___ )
[x,fval,exitflag,output,population,scores] = ga( ___ )

Description
x = ga(fun,nvars) finds a local unconstrained minimum, x, to the objective function, fun. nvars
is the dimension (number of design variables) of fun.

Note “Passing Extra Parameters” explains how to pass extra parameters to the objective function
and nonlinear constraint functions, if necessary.

x = ga(fun,nvars,A,b) finds a local minimum x to fun, subject to the linear inequalities
A*x ≤ b. ga evaluates the matrix product A*x as if x is transposed (A*x').

x = ga(fun,nvars,A,b,Aeq,beq) finds a local minimum x to fun, subject to the linear equalities
Aeq*x = beq and A*x ≤ b. (Set A=[] and b=[] if no linear inequalities exist.) ga evaluates the
matrix product Aeq*x as if x is transposed (Aeq*x').

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design
variables, x, so that a solution is found in the range lb ≤ x ≤ ub. (Set Aeq=[] and beq=[] if no
linear equalities exist.)

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization to the constraints
defined in nonlcon. The function nonlcon accepts x and returns vectors C and Ceq, representing
the nonlinear inequalities and equalities respectively. ga minimizes the fun such that C(x) ≤ 0 and
Ceq(x) = 0. (Set lb=[] and ub=[] if no bounds exist.)

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes with the default
optimization parameters replaced by values in options. (Set nonlcon=[] if no nonlinear constraints
exist.) Create options using optimoptions.

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon) or x = ga(fun,nvars,A,b,Aeq,
beq,lb,ub,nonlcon,intcon,options) requires that the variables listed in intcon take integer
values.
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Note When there are integer constraints, ga does not accept nonlinear equality constraints, only
nonlinear inequality constraints.

x = ga(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = ga( ___ ), for any previous input arguments, also returns fval, the value of the
fitness function at x.

[x,fval,exitflag,output] = ga( ___ ) also returns exitflag, an integer identifying the
reason the algorithm terminated, and output, a structure that contains output from each generation
and other information about the performance of the algorithm.

[x,fval,exitflag,output,population,scores] = ga( ___ ) also returns a matrix
population, whose rows are the final population, and a vector scores, the scores of the final
population.

Examples

Optimize a Nonsmooth Function Using ga

The ps_example.m file ships with your software. Plot the function.

xi = linspace(-6,2,300);
yi = linspace(-4,4,300);
[X,Y] = meshgrid(xi,yi);
Z = ps_example([X(:),Y(:)]);
Z = reshape(Z,size(X));
surf(X,Y,Z,'MeshStyle','none')
colormap 'jet'
view(-26,43)
xlabel('x(1)')
ylabel('x(2)')
title('ps\_example(x)')
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Find the minimum of this function using ga.

rng default % For reproducibility
x = ga(@ps_example,2)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×2

   -4.6793   -0.0860

Minimize a Nonsmooth Function with Linear Constraints

Use the genetic algorithm to minimize the ps_example function on the region x(1) + x(2) >= 1
and x(2) <= 5 + x(1).

First, convert the two inequality constraints to the matrix form A*x <= b. In other words, get the x
variables on the left-hand side of the inequality, and make both inequalities less than or equal:

-x(1) -x(2) <= -1

-x(1) + x(2) <= 5
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A = [-1,-1;
    -1,1];
b = [-1;5];

Solve the constrained problem using ga.

rng default % For reproducibility
fun = @ps_example;
x = ga(fun,2,A,b)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×2

    0.9991    0.0000

The constraints are satisfied to within the default value of the constraint tolerance, 1e-3. To see this,
compute A*x' - b, which should have negative components.

disp(A*x' - b)

    0.0009
   -5.9991

Minimize a Nonsmooth Function with Linear Equality and Inequality Constraints

Use the genetic algorithm to minimize the ps_example function on the region x(1) + x(2) >= 1
and x(2) == 5 + x(1).

First, convert the two constraints to the matrix form A*x <= b and Aeq*x = beq. In other words,
get the x variables on the left-hand side of the expressions, and make the inequality into less than or
equal form:

-x(1) -x(2) <= -1

-x(1) + x(2) == 5

A = [-1 -1];
b = -1;
Aeq = [-1 1];
beq = 5;

Solve the constrained problem using ga.

rng default % For reproducibility
fun = @ps_example;
x = ga(fun,2,A,b,Aeq,beq)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×2

   -2.0005    2.9995
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Check that the constraints are satisfied to within the default value of ConstraintTolerance, 1e-3.

disp(A*x' - b)

   1.0000e-03

disp(Aeq*x' - beq)

   2.2598e-08

Optimize with Linear Constraints and Bounds

Use the genetic algorithm to minimize the ps_example function on the region x(1) + x(2) >= 1
and x(2) == 5 + x(1). In addition, set bounds 1 <= x(1) <= 6 and -3 <= x(2) <= 8.

First, convert the two linear constraints to the matrix form A*x <= b and Aeq*x = beq. In other
words, get the x variables on the left-hand side of the expressions, and make the inequality into less
than or equal form:

-x(1) -x(2) <= -1

-x(1) + x(2) == 5

A = [-1 -1];
b = -1;
Aeq = [-1 1];
beq = 5;

Set bounds lb and ub.

lb = [1 -3];
ub = [6 8];

Solve the constrained problem using ga.

rng default % For reproducibility
fun = @ps_example;
x = ga(fun,2,A,b,Aeq,beq,lb,ub)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×2

    1.0000    6.0000

Check that the linear constraints are satisfied to within the default value of ConstraintTolerance,
1e-3.

disp(A*x' - b)

   -6.0000

disp(Aeq*x' - beq)

  -3.8979e-05
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Optimize with Nonlinear Constraints Using ga

Use the genetic algorithm to minimize the ps_example function on the region 2x1
2 + x2

2 ≤ 3 and
(x1 + 1)2 = (x2/2)4.

To do so, first write a function ellipsecons.m that returns the inequality constraint in the first
output, c, and the equality constraint in the second output, ceq. Save the file ellipsecons.m to a
folder on your MATLAB® path.

type ellipsecons

function [c,ceq] = ellipsecons(x)

c = 2*x(1)^2 + x(2)^2 - 3;
ceq = (x(1)+1)^2 - (x(2)/2)^4;

Include a function handle to ellipsecons as the nonlcon argument.

nonlcon = @ellipsecons;
fun = @ps_example;
rng default % For reproducibility
x = ga(fun,2,[],[],[],[],[],[],nonlcon)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
 and constraint violation is less than options.ConstraintTolerance.

x = 1×2

   -0.9766    0.0362

Check that the nonlinear constraints are satisfied at x. The constraints are satisfied when c ≤ 0 and
ceq = 0 to within the default value of ConstraintTolerance, 1e-3.

[c,ceq] = nonlcon(x)

c = -1.0911

ceq = 5.4645e-04

Minimize with Nondefault Options

Use the genetic algorithm to minimize the ps_example function on the region x(1) + x(2) >= 1
and x(2) == 5 + x(1) using a constraint tolerance that is smaller than the default.

First, convert the two constraints to the matrix form A*x <= b and Aeq*x = beq. In other words,
get the x variables on the left-hand side of the expressions, and make the inequality into less than or
equal form:

-x(1) -x(2) <= -1

-x(1) + x(2) == 5
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A = [-1 -1];
b = -1;
Aeq = [-1 1];
beq = 5;

To obtain a more accurate solution, set a constraint tolerance of 1e-6. And to monitor the solver
progress, set a plot function.

options = optimoptions('ga','ConstraintTolerance',1e-6,'PlotFcn', @gaplotbestf);

Solve the minimization problem.

rng default % For reproducibility
fun = @ps_example;
x = ga(fun,2,A,b,Aeq,beq,[],[],[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×2

   -2.0000    3.0000

Check that the linear constraints are satisfied to within 1e-6.

disp(A*x' - b)

   9.9830e-07
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disp(Aeq*x' - beq)

  -1.4587e-07

Minimize a Nonlinear Function with Integer Constraints

Use the genetic algorithm to minimize the ps_example function subject to the constraint that x(1)
is an integer.

intcon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
x = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,intcon)

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x = 1×2

   -5.0000   -0.0834

Obtain the Solution and Function Value

Use the genetic algorithm to minimize an integer-constrained nonlinear problem. Obtain both the
location of the minimum and the minimum function value.

intcon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
[x,fval] = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,intcon)

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x = 1×2

   -5.0000   -0.0834
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fval = -1.8344

Compare this result to the solution of the problem with no constraints.

[x,fval] = ga(fun,2)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

x = 1×2

   -4.6906   -0.0078

fval = -1.9918

Obtain Diagnostic Information

Use the genetic algorithm to minimize the ps_example function constrained to have x(1) integer-
valued. To understand the reason the solver stopped and how ga searched for a minimum, obtain the
exitflag and output results. Also, plot the minimum observed objective function value as the
solver progresses.

intcon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
options = optimoptions('ga','PlotFcn', @gaplotbestf);
[x,fval,exitflag,output] = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,intcon,options)
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Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

x = 1×2

   -5.0000   -0.0834

fval = -1.8344

exitflag = 1

output = struct with fields:
      problemtype: 'integerconstraints'
         rngstate: [1x1 struct]
      generations: 86
        funccount: 3311
          message: 'Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance...'
    maxconstraint: 0
       hybridflag: []

Obtain Final Population and Scores

Use the genetic algorithm to minimize the ps_example function constrained to have x(1) integer-
valued. Obtain all outputs, including the final population and vector of scores.
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intcon = 1;
rng default % For reproducibility
fun = @ps_example;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
[x,fval,exitflag,output,population,scores] = ga(fun,2,A,b,Aeq,beq,lb,ub,nonlcon,intcon);

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

Examine the first 10 members of the final population and their corresponding scores. Notice that
x(1) is integer-valued for all these population members. The integer ga algorithm generates only
integer-feasible populations.

disp(population(1:10,:))

   1.0e+03 *

   -0.0050   -0.0001
   -0.0050   -0.0001
   -1.6420    0.0027
   -1.5070    0.0010
   -0.4540    0.0104
   -0.2530   -0.0011
   -0.1210   -0.0003
   -0.1040    0.1314
   -0.0140   -0.0010
    0.0160   -0.0002

disp(scores(1:10))

   1.0e+06 *

   -0.0000
   -0.0000
    2.6798
    2.2560
    0.2016
    0.0615
    0.0135
    0.0099
    0.0001
    0.0000

Input Arguments
fun — Objective function
function handle | function name

Objective function, specified as a function handle or function name. Write the objective function to
accept a row vector of length nvars and return a scalar value.

 ga
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When the 'UseVectorized' option is true, write fun to accept a pop-by-nvars matrix, where pop
is the current population size. In this case, fun returns a vector the same length as pop containing
the fitness function values. Ensure that fun does not assume any particular size for pop, since ga can
pass a single member of a population even in a vectorized calculation.
Example: fun = @(x)(x-[4,2]).^2
Data Types: char | function_handle | string

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length nvars to
fun.
Example: 4
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-nvars matrix, where M is the
number of inequalities.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of nvars variables x(:), and b is a column vector with M elements.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:).

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.
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For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-nvars matrix, where Me is the
number of equalities.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, to specify

x1 + 2x2 + 3x3 = 10
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2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a real vector or array of doubles. lb represents the lower bounds
element-wise in lb ≤ x ≤ ub.

Internally, ga converts an array lb to the vector lb(:).
Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.
Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a real vector or array of doubles. ub represents the upper bounds
element-wise in lb ≤ x ≤ ub.

Internally, ga converts an array ub to the vector ub(:).
Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a vector or array x and returns two arrays, c(x) and ceq(x).

• c(x) is the array of nonlinear inequality constraints at x. ga attempts to satisfy

c(x) <= 0

for all entries of c.
• ceq(x) is the array of nonlinear equality constraints at x. ga attempts to satisfy

ceq(x) = 0

for all entries of ceq.

For example,

x = ga(@myfun,4,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as
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function [c,ceq] = mycon(x)
c = ...     % Compute nonlinear inequalities at x.
ceq = ...   % Compute nonlinear equalities at x.

For more information, see “Nonlinear Constraints”.

To learn how to use vectorized constraints, see “Vectorized Constraints” on page 2-7.

Note ga does not enforce nonlinear constraints to be satisfied when the PopulationType option is
set to 'bitString' or 'custom'.

If intcon is not empty, the second output of nonlcon (ceq) must be an empty entry ([]).

For information on how ga uses nonlcon, see “Nonlinear Constraint Solver Algorithms” on page 8-
54.

Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure

Optimization options, specified as the output of optimoptions or a structure.

optimoptions hides the options listed in italics. See “Options that optimoptions Hides” on page 17-
64.

• Values in {} denote the default value.
• {}* represents the default when there are linear constraints, and for MutationFcn also when

there are bounds.
• I* indicates default for integer constraints, or indicates special considerations for integer

constraints.
• NM indicates that the option does not apply to gamultiobj.
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Options for ga and gamultiobj

Option Description Values
ConstraintTolerance Determines the feasibility with respect to

nonlinear constraints. Also,
max(sqrt(eps),ConstraintTolerance)
determines feasibility with respect to linear
constraints.

For an options structure, use TolCon.

Positive scalar | {1e-3}

CreationFcn Function that creates the initial population.
Specify as a name of a built-in creation function
or a function handle. See “Population Options”
on page 17-26.

{'gacreationuniform'} |
{'gacreationlinearfeasib
le'}* |
'gacreationnonlinearfeas
ible' |
{'gacreationuniformint'}I
* for ga |
{'gacreationsobol'}I* for
gamultiobj | Custom creation
function on page 17-26

CrossoverFcn Function that the algorithm uses to create
crossover children. Specify as a name of a built-
in crossover function or a function handle. See
“Crossover Options” on page 17-34.

{'crossoverscattered'} for
ga,
{'crossoverintermediate'
}* for gamultiobj |
{'crossoverlaplace'}I* |
'crossoverheuristic' |
'crossoversinglepoint' |
'crossovertwopoint' |
'crossoverarithmetic' |
Custom crossover function on
page 17-34

CrossoverFraction The fraction of the population at the next
generation, not including elite children, that the
crossover function creates.

Positive scalar | {0.8}

Display Level of display. 'off' | 'iter' | 'diagnose' |
{'final'}

DistanceMeasureFcn Function that computes the distance measure of
individuals. Specify as a name of a built-in
distance measure function or a function handle.
The value applies to the decision variable or
design space (genotype) or to function space
(phenotype). The default 'distancecrowding'
is in function space (phenotype). For
gamultiobj only. See “Multiobjective Options”
on page 17-38.

For an options structure, use a function handle,
not a name.

{'distancecrowding'}
means the same as
{@distancecrowding,'phen
otype'} |
{@distancecrowding,'geno
type'} | Custom distance
function on page 17-38
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Option Description Values
EliteCount NM Positive integer specifying how many

individuals in the current generation are
guaranteed to survive to the next generation. Not
used in gamultiobj.

Positive integer |
{ceil(0.05*PopulationSiz
e)} | {0.05*(default
PopulationSize)} for mixed-
integer problems

FitnessLimit NM If the fitness function attains the value of
FitnessLimit, the algorithm halts.

Scalar | {-Inf}

FitnessScalingFcn Function that scales the values of the fitness
function. Specify as a name of a built-in scaling
function or a function handle. Option unavailable
for gamultiobj.

{'fitscalingrank'} |
'fitscalingshiftlinear' |
'fitscalingprop' |
'fitscalingtop' | Custom
fitness scaling function on page
17-29

FunctionTolerance The algorithm stops if the average relative
change in the best fitness function value over
MaxStallGenerations generations is less than
or equal to FunctionTolerance. If StallTest
is 'geometricWeighted', then the algorithm
stops if the weighted average relative change is
less than or equal to FunctionTolerance.

For gamultiobj, the algorithm stops when the
geometric average of the relative change in value
of the spread over
options.MaxStallGenerations generations
is less than options.FunctionTolerance, and
the final spread is less than the mean spread
over the past options.MaxStallGenerations
generations. See “gamultiobj Algorithm” on page
14-5.

For an options structure, use TolFun.

Positive scalar | {1e-6} for ga,
{1e-4} for gamultiobj

HybridFcn I* Function that continues the optimization after
ga terminates. Specify as a name or a function
handle.

Alternatively, a cell array specifying the hybrid
function and its options. See “ga Hybrid
Function” on page 17-39.

For gamultiobj, the only hybrid function is
@fgoalattain. See “gamultiobj Hybrid
Function” on page 17-39.

When the problem has integer constraints, you
cannot use a hybrid function.

See “When to Use a Hybrid Function” on page 8-
112.

Function name or handle |
'fminsearch' |
'patternsearch' |
'fminunc' | 'fmincon' |
{[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where
solver = fminsearch,
patternsearch, fminunc, or
fmincon {[]}
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Option Description Values
InitialPenalty NM I* Initial value of the penalty parameter Positive scalar | {10}
InitialPopulationMat
rix

Initial population used to seed the genetic
algorithm. Has up to PopulationSize rows and
N columns, where N is the number of variables.
You can pass a partial population, meaning one
with fewer than PopulationSize rows. In that
case, the genetic algorithm uses CreationFcn
to generate the remaining population members.
See “Population Options” on page 17-26.

For an options structure, use
InitialPopulation.

Matrix | {[]}

InitialPopulationRan
ge

Matrix or vector specifying the range of the
individuals in the initial population. Applies to
gacreationuniform creation function. ga
shifts and scales the default initial range to
match any finite bounds.

For an options structure, use PopInitRange.

Matrix or vector | {[-10;10]}
for unbounded components,
{[-1e4+1;1e4+1]} for
unbounded components of
integer-constrained problems,
{[lb;ub]} for bounded
components, with the default
range modified to match one-
sided bounds

InitialScoresMatrix Initial scores used to determine fitness. Has up to
PopulationSize rows and Nf columns, where
Nf is the number of fitness functions (1 for ga,
greater than 1 for gamultiobj). You can pass a
partial scores matrix, meaning one with fewer
than PopulationSize rows. In that case, the
solver fills in the scores when it evaluates the
fitness functions.

For an options structure, use InitialScores.

Column vector for single
objective | matrix for
multiobjective | {[]}

MaxGenerations Maximum number of iterations before the
algorithm halts.

For an options structure, use Generations.

Positive integer |
{100*numberOfVariables}
for ga,
{200*numberOfVariables}
for gamultiobj
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Option Description Values
MaxStallGenerations The algorithm stops if the average relative

change in the best fitness function value over
MaxStallGenerations generations is less than
or equal to FunctionTolerance. If StallTest
is 'geometricWeighted', then the algorithm
stops if the weighted average relative change is
less than or equal to FunctionTolerance.

For gamultiobj, the algorithm stops when the
geometric average of the relative change in value
of the spread over
options.MaxStallGenerations generations
is less than options.FunctionTolerance, and
the final spread is less than the mean spread
over the past options.MaxStallGenerations
generations. See “gamultiobj Algorithm” on page
14-5.

For an options structure, use StallGenLimit.

Positive integer | {50} for ga,
{100} for gamultiobj

MaxStallTime NM The algorithm stops if there is no
improvement in the objective function for
MaxStallTime seconds, as measured by tic
and toc.

For an options structure, use StallTimeLimit.

Positive scalar | {Inf}

MaxTime The algorithm stops after running for MaxTime
seconds, as measured by tic and toc. This limit
is enforced after each iteration, so ga can exceed
the limit when an iteration takes substantial
time.

For an options structure, use TimeLimit.

Positive scalar | {Inf}

MigrationDirection Direction of migration. See “Migration Options”
on page 17-36.

'both' | {'forward'}

MigrationFraction Scalar from 0 through 1 specifying the fraction of
individuals in each subpopulation that migrates
to a different subpopulation. See “Migration
Options” on page 17-36.

Scalar | {0.2}

MigrationInterval Positive integer specifying the number of
generations that take place between migrations
of individuals between subpopulations. See
“Migration Options” on page 17-36.

Positive integer | {20}
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Option Description Values
MutationFcn Function that produces mutation children.

Specify as a name of a built-in mutation function
or a function handle. See “Mutation Options” on
page 17-31.

{'mutationgaussian'} for
ga without constraints |
{'mutationadaptfeasible'
}* for gamultiobj and for ga
with constraints |
{'mutationpower'}I* |
'mutationpositivebasis' |
'mutationuniform' | Custom
mutation function on page 17-31

NonlinearConstraintA
lgorithm

Nonlinear constraint algorithm. See “Nonlinear
Constraint Solver Algorithms” on page 8-54.
Option unchangeable for gamultiobj.

For an options structure, use
NonlinConAlgorithm.

{'auglag'} for ga,
{'penalty'} for gamultiobj

OutputFcn Functions that ga calls at each iteration. Specify
as a function handle or a cell array of function
handles. See “Output Function Options” on page
17-41.

For an options structure, use OutputFcns.

Function handle or cell array of
function handles | {[]}

ParetoFraction Scalar from 0 through 1 specifying the fraction of
individuals to keep on the first Pareto front while
the solver selects individuals from higher fronts,
for gamultiobj only. See “Multiobjective
Options” on page 17-38.

Scalar | {0.35}

PenaltyFactor NM I* Penalty update parameter. Positive scalar | {100}
PlotFcn Function that plots data computed by the

algorithm. Specify as a name of a built-in plot
function, a function handle, or a cell array of
built-in names or function handles. See “Plot
Options” on page 17-23.

For an options structure, use PlotFcns.

ga or gamultiobj: {[]} |
'gaplotdistance' |
'gaplotgenealogy' |
'gaplotselection' |
'gaplotscorediversity'
|'gaplotscores' |
'gaplotstopping' |
'gaplotmaxconstr' |
Custom plot function on page
17-23

ga only: 'gaplotbestf' |
'gaplotbestindiv' |
'gaplotexpectation' |
'gaplotrange'

gamultiobj only:
'gaplotpareto' |
'gaplotparetodistance' |
'gaplotrankhist' |
'gaplotspread'
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Option Description Values
PlotInterval Positive integer specifying the number of

generations between consecutive calls to the plot
functions.

Positive integer | {1}

PopulationSize Size of the population. Positive integer | {50} when
numberOfVariables <= 5,
{200} otherwise |
{min(max(10*nvars,40),10
0)} for mixed-integer problems

PopulationType Data type of the population. Must be
'doubleVector' for mixed-integer problems.

'bitstring' | 'custom' |
{'doubleVector'}

ga ignores all constraints when
PopulationType is set to
'bitString' or 'custom'.
See “Population Options” on
page 17-26.

SelectionFcn Function that selects parents of crossover and
mutation children. Specify as a name of a built-in
selection function or a function handle.

gamultiobj uses only
'selectiontournament'.

{'selectionstochunif'} for
ga,
{'selectiontournament'}
for gamultiobj |
'selectionremainder' |
'selectionuniform' |
'selectionroulette' |
Custom selection function on
page 17-30

StallTest NM Stopping test type. 'geometricWeighted' |
{'averageChange'}

UseParallel Compute fitness and nonlinear constraint
functions in parallel. See “Vectorize and Parallel
Options (User Function Evaluation)” on page 17-
43 and “How to Use Parallel Processing in Global
Optimization Toolbox” on page 16-11.

true | {false}

UseVectorized Specifies whether functions are vectorized. See
“Vectorize and Parallel Options (User Function
Evaluation)” on page 17-43 and “Vectorize the
Fitness Function” on page 8-99.

For an options structure, use Vectorized with
the values 'on' or 'off'.

true | {false}

Example: optimoptions('ga','PlotFcn',@gaplotbestf)

intcon — Integer variables
vector of positive integers

Integer variables, specified as a vector of positive integers taking values from 1 to nvars. Each value
in intcon represents an x component that is integer-valued.
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Note When intcon is nonempty, nonlcon must return empty for ceq. For more information on
integer programming, see “Mixed Integer ga Optimization” on page 8-38.

Example: To specify that the even entries in x are integer-valued, set intcon to 2:2:nvars
Data Types: double

problem — Problem description
structure

Problem description, specified as a structure containing these fields.

fitnessfcn Fitness functions
nvars Number of design variables
Aineq A matrix for linear inequality constraints
Bineq b vector for linear inequality constraints
Aeq Aeq matrix for linear equality constraints
Beq beq vector for linear equality constraints
lb Lower bound on x
ub Upper bound on x
nonlcon Nonlinear constraint functions
intcon Indices of integer variables
rngstate Field to reset the state of the random number generator
solver 'ga'
options Options created using optimoptions or an options structure

You must specify the fields fitnessfcn, nvars, and options. The remainder are optional for ga.
Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a real vector. x is the best point that ga located during its iterations.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason ga stopped
integer

Reason that ga stopped, returned as an integer.
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Exit Flag Meaning
1 Without nonlinear constraints — Average cumulative change in value of the

fitness function over MaxStallGenerations generations is less than
FunctionTolerance, and the constraint violation is less than
ConstraintTolerance.
With nonlinear constraints — Magnitude of the complementarity measure (see
“Complementarity Measure” on page 18-30) is less than
sqrt(ConstraintTolerance), the subproblem is solved using a tolerance less
than FunctionTolerance, and the constraint violation is less than
ConstraintTolerance.

3 Value of the fitness function did not change in MaxStallGenerations
generations and the constraint violation is less than ConstraintTolerance.

4 Magnitude of step smaller than machine precision and the constraint violation is
less than ConstraintTolerance.

5 Minimum fitness limit FitnessLimit reached and the constraint violation is less
than ConstraintTolerance.

0 Maximum number of generations MaxGenerations exceeded.
-1 Optimization terminated by an output function or plot function.
-2 No feasible point found.
-4 Stall time limit MaxStallTime exceeded.
-5 Time limit MaxTime exceeded.

When there are integer constraints, ga uses the penalty fitness value instead of the fitness value for
stopping criteria.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields:

• problemtype — Problem type, one of:

• 'unconstrained'
• 'boundconstraints'
• 'linearconstraints'
• 'nonlinearconstr'
• 'integerconstraints'

• rngstate — State of the MATLAB random number generator, just before the algorithm started.
You can use the values in rngstate to reproduce the output of ga. See “Reproduce Results” on
page 8-65.

• generations — Number of generations computed.
• funccount — Number of evaluations of the fitness function.
• message — Reason the algorithm terminated.
• maxconstraint — Maximum constraint violation, if any.
• hybridflag — Exit flag from the hybrid function. Relates to the HybridFcn options. Not

applicable to gamultiobj.
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population — Final population
matrix

Final population, returned as a PopulationSize-by-nvars matrix. The rows of population are the
individuals.

scores — Final scores
column vector

Final scores, returned as a column vector.

• For non-integer problems, the final scores are the fitness function values of the rows of
population.

• For integer problems, the final scores are the penalty fitness values of the population members.
See “Integer ga Algorithm” on page 8-43.

More About
Complementarity Measure

In the Augmented Lagrangian nonlinear constraint solver, the complementarity measure is the norm
of the vector whose elements are ciλi, where ci is the nonlinear inequality constraint violation, and λi
is the corresponding Lagrange multiplier. See “Augmented Lagrangian Genetic Algorithm” on page 8-
54.

Tips
• To write a function with additional parameters to the independent variables that can be called by

ga, see “Passing Extra Parameters”.
• For problems that use the population type Double Vector (the default), ga does not accept

functions whose inputs are of type complex. To solve problems involving complex data, write your
functions so that they accept real vectors, by separating the real and imaginary parts.

Algorithms
For a description of the genetic algorithm, see “How the Genetic Algorithm Works” on page 8-13.

For a description of the mixed integer programming algorithm, see “Integer ga Algorithm” on page 8-
43.

For a description of the nonlinear constraint algorithms, see “Nonlinear Constraint Solver
Algorithms” on page 8-54.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for ga.
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Compatibility Considerations
ga Performs Fewer Fitness Function Evaluations
Behavior changed in R2019b

When the fitness function is deterministic, ga does not reevaluate the fitness function on elite
(current best) individuals. You can control this behavior by accessing the new state.EvalElites
field and modifying it in a custom output function or custom plot function. Similarly, when the initial
population has duplicate members, ga evaluates each unique member only once. You can control this
behavior in a custom output function or custom plot function by accessing and modifying the new
state.HaveDuplicates field. For details, see “Custom Output Function for Genetic Algorithm” on
page 8-101 or Custom Plot Function on page 8-57.

For details about the two new fields, see “The State Structure” on page 17-25.

References
[1] Goldberg, David E., Genetic Algorithms in Search, Optimization & Machine Learning, Addison-

Wesley, 1989.

[2] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented Lagrangian
Algorithm for Optimization with General Constraints and Simple Bounds”, SIAM Journal on
Numerical Analysis, Volume 28, Number 2, pages 545–572, 1991.

[3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented Lagrangian
Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds”,
Mathematics of Computation, Volume 66, Number 217, pages 261–288, 1997.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.

See Also
gamultiobj | optimoptions | particleswarm | patternsearch | Optimize

Topics
“Genetic Algorithm”
“Get Started with Global Optimization Toolbox”
“Solver-Based Optimization Problem Setup”

Introduced before R2006a
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gamultiobj
Find Pareto front of multiple fitness functions using genetic algorithm

Syntax
x = gamultiobj(fun,nvars)
x = gamultiobj(fun,nvars,A,b)
x = gamultiobj(fun,nvars,A,b,Aeq,beq)
x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub)
x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon)
x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,options)
x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon)
x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon,options)
x = gamultiobj(problem)
[x,fval] = gamultiobj( ___ )
[x,fval,exitflag,output] = gamultiobj( ___ )
[x,fval,exitflag,output,population,scores] = gamultiobj( ___ )

Description
x = gamultiobj(fun,nvars) finds x on the “Pareto Front” on page 18-54 of the objective
functions defined in fun. nvars is the dimension of the optimization problem (number of decision
variables). The solution x is local, which means it might not be on the global Pareto front.

Note “Passing Extra Parameters” explains how to pass extra parameters to the objective function
and nonlinear constraint functions, if necessary.

x = gamultiobj(fun,nvars,A,b) finds a local Pareto set x subject to the linear inequalities
A ∗ x ≤ b. See “Linear Inequality Constraints”. gamultiobj supports linear constraints only for the
default PopulationType option ('doubleVector').

x = gamultiobj(fun,nvars,A,b,Aeq,beq) finds a local Pareto set x subject to the linear
equalities Aeq ∗ x = beq and the linear inequalities A ∗ x ≤ b, see “Linear Equality Constraints”. (Set
A = [] and b = [] if no inequalities exist.) gamultiobj supports linear constraints only for the
default PopulationType option ('doubleVector').

x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on
the design variables x so that a local Pareto set is found in the range lb ≤ x ≤ ub, see “Bound
Constraints”. Use empty matrices for Aeq and beq if no linear equality constraints exist.
gamultiobj supports bound constraints only for the default PopulationType option
('doubleVector').

x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon) finds a Pareto set subject to the
constraints defined in nonlcon. The function nonlcon accepts x and returns vectors c and ceq,
representing the nonlinear inequalities and equalities respectively. gamultiobj minimizes fun such
that c(x) ≤ 0 and ceq(x) = 0. (Set lb = [] and ub = [] if no bounds exist.) gamultiobj
supports nonlinear constraints only for the default PopulationType option ('doubleVector').
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x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,options) or x = gamultiobj(fun,
nvars,A,b,Aeq,beq,lb,ub,nonlcon,options) finds a Pareto set x with the default optimization
parameters replaced by values in options. Create options using optimoptions (recommended)
or a structure.

x = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon) or x = gamultiobj(
fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon,options) requires that the variables listed
in intcon take integer values.

Note When there are integer constraints, gamultiobj does not accept nonlinear equality
constraints, only nonlinear inequality constraints.

x = gamultiobj(problem) finds the Pareto set for problem, where problem is a structure
described in problem.

[x,fval] = gamultiobj( ___ ), for any input variables, returns a matrix fval, the value of all the
fitness functions defined in fun for all the solutions in x. fval has nf columns, where nf is the
number of objectives, and has the same number of rows as x.

[x,fval,exitflag,output] = gamultiobj( ___ ) returns exitflag, an integer identifying the
reason the algorithm stopped, and output, a structure that contains information about the
optimization process.

[x,fval,exitflag,output,population,scores] = gamultiobj( ___ ) returns population,
whose rows are the final population, and scores, the scores of the final population.

Examples

Simple Multiobjective Problem

Find the Pareto front for a simple multiobjective problem. There are two objectives and two decision
variables x.

fitnessfcn = @(x)[norm(x)^2,0.5*norm(x(:)-[2;-1])^2+2];

Find the Pareto front for this objective function.

rng default % For reproducibility
x = gamultiobj(fitnessfcn,2);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Plot the solution points.

plot(x(:,1),x(:,2),'ko')
xlabel('x(1)')
ylabel('x(2)')
title('Pareto Points in Parameter Space')
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To see the effect of a linear constraint on this problem, see “Multiobjective Problem with Linear
Constraint” on page 18-34.

Multiobjective Problem with Linear Constraint

This example shows how to find the Pareto front for a multiobjective problem in the presence of a
linear constraint.

There are two objective functions and two decision variables x.

fitnessfcn = @(x)[norm(x)^2,0.5*norm(x(:)-[2;-1])^2+2];

The linear constraint is x(1) + x(2) ≤ 1/2.

A = [1,1];
b = 1/2;

Find the Pareto front.

rng default % For reproducibility
x = gamultiobj(fitnessfcn,2,A,b);

Optimization terminated: maximum number of generations exceeded.

Plot the constrained solution and the linear constraint.
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plot(x(:,1),x(:,2),'ko')
t = linspace(-1/2,2);
y = 1/2 - t;
hold on
plot(t,y,'b--')
xlabel('x(1)')
ylabel('x(2)')
title('Pareto Points in Parameter Space')
hold off

To see the effect of removing the linear constraint from this problem, see “Simple Multiobjective
Problem” on page 18-33.

Multiobjective Optimization with Bound Constraints

Find the Pareto front for the two fitness functions sin(x) and cos(x) on the interval 0 ≤ x ≤ 2π.

fitnessfcn = @(x)[sin(x),cos(x)];
nvars = 1;
lb = 0;
ub = 2*pi;
rng default % for reproducibility
x = gamultiobj(fitnessfcn,nvars,[],[],[],[],lb,ub)

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.
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x = 18×1

    4.7124
    4.7124
    3.1415
    3.6733
    3.9845
    3.4582
    3.9098
    4.4409
    4.0846
    3.8686
      ⋮

Plot the solution. gamultiobj finds points along the entire Pareto front.

plot(sin(x),cos(x),'r*')
xlabel('sin(x)')
ylabel('cos(x)')
title('Pareto Front')
legend('Pareto front')
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Disconnected Pareto Front

Find and plot the Pareto front for the two-objective Schaffer's second function. This function has a
disconnected Pareto front.

Copy this code to a function file on your MATLAB® path.

function y = schaffer2(x) % y has two columns

% Initialize y for two objectives and for all x
y = zeros(length(x),2);

% Evaluate first objective. 
% This objective is piecewise continuous.
for i = 1:length(x)
    if x(i) <= 1
        y(i,1) = -x(i);
    elseif x(i) <=3 
        y(i,1) = x(i) -2; 
    elseif x(i) <=4 
        y(i,1) = 4 - x(i);
    else 
        y(i,1) = x(i) - 4;
    end
end

% Evaluate second objective
y(:,2) = (x -5).^2;

Plot the two objectives.

x = -1:0.1:8;
y = schaffer2(x);
plot(x,y(:,1),'r',x,y(:,2),'b');
xlabel x
ylabel 'schaffer2(x)'
legend('Objective 1','Objective 2')
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The two objective functions compete for x in the ranges [1,3] and [4,5]. But, the Pareto-optimal
front consists of only two disconnected regions, corresponding to the x in the ranges [1,2] and
[4,5]. There are disconnected regions because the region [2,3] is inferior to [4,5]. In that range,
objective 1 has the same values, but objective 2 is smaller.

Set bounds to keep population members in the range .

lb = -5;
ub = 10;

Set options to view the Pareto front as gamultiobj runs.

options = optimoptions('gamultiobj','PlotFcn',@gaplotpareto);

Call gamultiobj.

rng default % For reproducibility
[x,fval,exitflag,output] = gamultiobj(@schaffer2,1,[],[],[],[],lb,ub,options);

Optimization terminated: maximum number of generations exceeded.
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Integer gamultiobj

Create a two-objective function in two problem variables.

rng default % For reproducibility
M = diag([-1 -1]) + randn(2)/4; % Two problem variables
fun = @(x)[(x').^2 / 30 + M*x']; % Two objectives

Specify that the second variable must be an integer.

intcon = 2;

Specify problem bounds, the gaplotpareto plot function, and a population size of 100.

lb = [0 0];
ub = [100 50];
options = optimoptions("gamultiobj","PlotFcn","gaplotpareto",...
    "PopulationSize",100);

Find the Pareto set for the problem.

nvars = 2;
A = [];
b = [];
Aeq = [];
beq = [];
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nonlcon = [];
[x,fval] = gamultiobj(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,intcon,options);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

List ten of the solutions, and notice that the second variable is integer-valued.

x(1:10,:)

ans = 10×2

    8.3393   28.0000
   12.9927   49.0000
    7.1611   27.0000
    7.0210   18.0000
    0.0004   12.0000
    9.0989   44.0000
    9.3974   29.0000
    0.5537   17.0000
    6.4010   17.0000
    7.0531   31.0000

Obtain All Outputs from gamultiobj

Run a simple multiobjective problem and obtain all available outputs.
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Set the random number generator for reproducibility.

rng default

Set the fitness functions to kur_multiobjective, a function that has three control variables and
returns two fitness function values.

fitnessfcn = @kur_multiobjective;
nvars = 3;

The kur_multiobjective function has the following code.

function y = kur_multiobjective(x)
%KUR_MULTIOBJECTIVE Objective function for a multiobjective problem. 
%   The Pareto-optimal set for this two-objective problem is nonconvex as
%   well as disconnected. The function KUR_MULTIOBJECTIVE computes two
%   objectives and returns a vector y of size 2-by-1.
%
%   Reference: Kalyanmoy Deb, "Multi-Objective Optimization using
%   Evolutionary Algorithms", John Wiley & Sons ISBN 047187339 

%   Copyright 2007 The MathWorks, Inc.

% Initialize for two objectives 
y = zeros(2,1);

% Compute first objective
for i = 1:2
  y(1) = y(1)  - 10*exp(-0.2*sqrt(x(i)^2 + x(i+1)^2));
end

% Compute second objective
for i = 1:3
   y(2) = y(2) +  abs(x(i))^0.8 + 5*sin(x(i)^3);
end

Set lower and upper bounds on all variables.

ub = [5 5 5];
lb = -ub;

Find the Pareto front and all other outputs for this problem.

[x,fval,exitflag,output,population,scores] = gamultiobj(fitnessfcn,nvars, ...
    [],[],[],[],lb,ub);

Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Examine the sizes of some of the returned variables.

sizex = size(x)
sizepopulation = size(population)
sizescores = size(scores)

sizex =
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    18     3

sizepopulation =

    50     3

sizescores =

    50     2

The returned Pareto front contains 18 points. There are 50 members of the final population. Each
population row has three dimensions, corresponding to the three decision variables. Each scores
row has two dimensions, corresponding to the two fitness functions.

Input Arguments
fun — Fitness functions to optimize
function handle | function name

Fitness functions to optimize, specified as a function handle or function name.

fun is a function that accepts a real row vector of doubles x of length nvars and returns a real
vector F(x) of objective function values. For details on writing fun, see “Compute Objective
Functions” on page 2-2.

If you set the UseVectorized option to true, then fun accepts a matrix of size n-by-nvars, where
the matrix represents n individuals. fun returns a matrix of size n-by-m, where m is the number of
objective functions. See “Vectorize the Fitness Function” on page 8-99.
Example: @(x)[sin(x),cos(x)]
Data Types: char | function_handle | string

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length nvars to
fun.
Example: 4
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-nvars matrix, where M is the
number of inequalities.

A encodes the M linear inequalities

A*x <= b,
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where x is the column vector of nvars variables x(:), and b is a column vector with M elements.

For example, give constraints A = [1,2;3,4;5,6] and b = [10;20;30] to specify these sums:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Example: To set the sum of the x-components to 1 or less, take A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:).

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of nvars variables x(:), and A is a matrix of size M-by-nvars.

For example, give constraints A = [1,2;3,4;5,6] and b = [10;20;30] to specify these sums:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Example: To set the sum of the x-components to 1 or less, take A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-nvars matrix, where Me is the
number of equalities.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of nvars variables x(:), and beq is a column vector with Me elements.

For example, give constraints Aeq = [1,2,3;2,4,1] and beq = [10;20] to specify these sums:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Example: To set the sum of the x-components to 1, take Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector
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Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of nvars variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, give constraints Aeq = [1,2,3;2,4,1] and beq = [10;20] to specify these sums:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Example: To set the sum of the x-components to 1, take Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If numel(lb) = nvars, then lb specifies that
x(i) >= lb(i) for all i.

If numel(lb) < nvars, then lb specifies that x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify all x-components as positive, set lb = zeros(nvars,1).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If numel(ub) = nvars, then ub specifies that
x(i) <= ub(i) for all i.

If numel(ub) < nvars, then ub specifies that x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify all x-components as less than one, set ub = ones(nvars,1).
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a row vector x and returns two row vectors, c(x) and ceq(x).

• c(x) is the row vector of nonlinear inequality constraints at x. The gamultiobj function
attempts to satisfy c(x) <= 0 for all entries of c.

• ceq(x) is the row vector nonlinear equality constraints at x. The gamultiobj function attempts
to satisfy ceq(x) = 0 for all entries of ceq.
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If you set the UseVectorized option to true, then nonlcon accepts a matrix of size n-by-nvars,
where the matrix represents n individuals. nonlcon returns a matrix of size n-by-mc in the first
argument, where mc is the number of nonlinear inequality constraints. nonlcon returns a matrix of
size n-by-mceq in the second argument, where mceq is the number of nonlinear equality constraints.
See “Vectorize the Fitness Function” on page 8-99.

For example, x = gamultiobj(@myfun,nvars,A,b,Aeq,beq,lb,ub,@mycon), where mycon is a
MATLAB function such as the following:

function [c,ceq] = mycon(x)
c = ...     % Compute nonlinear inequalities at x.
ceq = ...   % Compute nonlinear equalities at x.

For more information, see “Nonlinear Constraints”.
Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure

Optimization options, specified as the output of optimoptions or a structure. See option details in
“Genetic Algorithm Options” on page 17-23.

optimoptions hides the options listed in italics. See “Options that optimoptions Hides” on page 17-
64.

• Values in {} denote the default value.
• {}* represents the default when there are linear constraints, and for MutationFcn also when

there are bounds.
• I* indicates that the solver handles options for integer constraints differently.
• NM indicates that the option does not apply to gamultiobj.
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Options for ga and gamultiobj

Option Description Values
ConstraintTolerance Determines the feasibility with respect to

nonlinear constraints. Also,
max(sqrt(eps),ConstraintTolerance)
determines feasibility with respect to linear
constraints.

For an options structure, use TolCon.

Positive scalar | {1e-3}

CreationFcn Function that creates the initial population.
Specify as a name of a built-in creation function
or a function handle. See “Population Options”
on page 17-26.

{'gacreationuniform'} |
{'gacreationlinearfeasib
le'}* |
'gacreationnonlinearfeas
ible' |
{'gacreationuniformint'}I
* for ga |
{'gacreationsobol'}I* for
gamultiobj | Custom creation
function on page 17-26

CrossoverFcn Function that the algorithm uses to create
crossover children. Specify as a name of a built-
in crossover function or a function handle. See
“Crossover Options” on page 17-34.

{'crossoverscattered'} for
ga,
{'crossoverintermediate'
}* for gamultiobj |
{'crossoverlaplace'}I* |
'crossoverheuristic' |
'crossoversinglepoint' |
'crossovertwopoint' |
'crossoverarithmetic' |
Custom crossover function on
page 17-34

CrossoverFraction The fraction of the population at the next
generation, not including elite children, that the
crossover function creates.

Positive scalar | {0.8}

Display Level of display. 'off' | 'iter' | 'diagnose' |
{'final'}

DistanceMeasureFcn Function that computes the distance measure of
individuals. Specify as a name of a built-in
distance measure function or a function handle.
The value applies to the decision variable or
design space (genotype) or to function space
(phenotype). The default 'distancecrowding'
is in function space (phenotype). For
gamultiobj only. See “Multiobjective Options”
on page 17-38.

For an options structure, use a function handle,
not a name.

{'distancecrowding'}
means the same as
{@distancecrowding,'phen
otype'} |
{@distancecrowding,'geno
type'} | Custom distance
function on page 17-38
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Option Description Values
EliteCount NM Positive integer specifying how many

individuals in the current generation are
guaranteed to survive to the next generation. Not
used in gamultiobj.

Positive integer |
{ceil(0.05*PopulationSiz
e)} | {0.05*(default
PopulationSize)} for mixed-
integer problems

FitnessLimit NM If the fitness function attains the value of
FitnessLimit, the algorithm halts.

Scalar | {-Inf}

FitnessScalingFcn Function that scales the values of the fitness
function. Specify as a name of a built-in scaling
function or a function handle. Option unavailable
for gamultiobj.

{'fitscalingrank'} |
'fitscalingshiftlinear' |
'fitscalingprop' |
'fitscalingtop' | Custom
fitness scaling function on page
17-29

FunctionTolerance The algorithm stops if the average relative
change in the best fitness function value over
MaxStallGenerations generations is less than
or equal to FunctionTolerance. If StallTest
is 'geometricWeighted', then the algorithm
stops if the weighted average relative change is
less than or equal to FunctionTolerance.

For gamultiobj, the algorithm stops when the
geometric average of the relative change in value
of the spread over
options.MaxStallGenerations generations
is less than options.FunctionTolerance, and
the final spread is less than the mean spread
over the past options.MaxStallGenerations
generations. See “gamultiobj Algorithm” on page
14-5.

For an options structure, use TolFun.

Positive scalar | {1e-6} for ga,
{1e-4} for gamultiobj

HybridFcn I* Function that continues the optimization after
ga terminates. Specify as a name or a function
handle.

Alternatively, a cell array specifying the hybrid
function and its options. See “ga Hybrid
Function” on page 17-39.

For gamultiobj, the only hybrid function is
@fgoalattain. See “gamultiobj Hybrid
Function” on page 17-39.

When the problem has integer constraints, you
cannot use a hybrid function.

See “When to Use a Hybrid Function” on page 8-
112.

Function name or handle |
'fminsearch' |
'patternsearch' |
'fminunc' | 'fmincon' |
{[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where
solver = fminsearch,
patternsearch, fminunc, or
fmincon {[]}
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Option Description Values
InitialPenalty NM I* Initial value of the penalty parameter Positive scalar | {10}
InitialPopulationMat
rix

Initial population used to seed the genetic
algorithm. Has up to PopulationSize rows and
N columns, where N is the number of variables.
You can pass a partial population, meaning one
with fewer than PopulationSize rows. In that
case, the genetic algorithm uses CreationFcn
to generate the remaining population members.
See “Population Options” on page 17-26.

For an options structure, use
InitialPopulation.

Matrix | {[]}

InitialPopulationRan
ge

Matrix or vector specifying the range of the
individuals in the initial population. Applies to
gacreationuniform creation function. ga
shifts and scales the default initial range to
match any finite bounds.

For an options structure, use PopInitRange.

Matrix or vector | {[-10;10]}
for unbounded components,
{[-1e4+1;1e4+1]} for
unbounded components of
integer-constrained problems,
{[lb;ub]} for bounded
components, with the default
range modified to match one-
sided bounds

InitialScoresMatrix Initial scores used to determine fitness. Has up to
PopulationSize rows and Nf columns, where
Nf is the number of fitness functions (1 for ga,
greater than 1 for gamultiobj). You can pass a
partial scores matrix, meaning one with fewer
than PopulationSize rows. In that case, the
solver fills in the scores when it evaluates the
fitness functions.

For an options structure, use InitialScores.

Column vector for single
objective | matrix for
multiobjective | {[]}

MaxGenerations Maximum number of iterations before the
algorithm halts.

For an options structure, use Generations.

Positive integer |
{100*numberOfVariables}
for ga,
{200*numberOfVariables}
for gamultiobj
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Option Description Values
MaxStallGenerations The algorithm stops if the average relative

change in the best fitness function value over
MaxStallGenerations generations is less than
or equal to FunctionTolerance. If StallTest
is 'geometricWeighted', then the algorithm
stops if the weighted average relative change is
less than or equal to FunctionTolerance.

For gamultiobj, the algorithm stops when the
geometric average of the relative change in value
of the spread over
options.MaxStallGenerations generations
is less than options.FunctionTolerance, and
the final spread is less than the mean spread
over the past options.MaxStallGenerations
generations. See “gamultiobj Algorithm” on page
14-5.

For an options structure, use StallGenLimit.

Positive integer | {50} for ga,
{100} for gamultiobj

MaxStallTime NM The algorithm stops if there is no
improvement in the objective function for
MaxStallTime seconds, as measured by tic
and toc.

For an options structure, use StallTimeLimit.

Positive scalar | {Inf}

MaxTime The algorithm stops after running for MaxTime
seconds, as measured by tic and toc. This limit
is enforced after each iteration, so ga can exceed
the limit when an iteration takes substantial
time.

For an options structure, use TimeLimit.

Positive scalar | {Inf}

MigrationDirection Direction of migration. See “Migration Options”
on page 17-36.

'both' | {'forward'}

MigrationFraction Scalar from 0 through 1 specifying the fraction of
individuals in each subpopulation that migrates
to a different subpopulation. See “Migration
Options” on page 17-36.

Scalar | {0.2}

MigrationInterval Positive integer specifying the number of
generations that take place between migrations
of individuals between subpopulations. See
“Migration Options” on page 17-36.

Positive integer | {20}
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Option Description Values
MutationFcn Function that produces mutation children.

Specify as a name of a built-in mutation function
or a function handle. See “Mutation Options” on
page 17-31.

{'mutationgaussian'} for
ga without constraints |
{'mutationadaptfeasible'
}* for gamultiobj and for ga
with constraints |
{'mutationpower'}I* |
'mutationpositivebasis' |
'mutationuniform' | Custom
mutation function on page 17-31

NonlinearConstraintA
lgorithm

Nonlinear constraint algorithm. See “Nonlinear
Constraint Solver Algorithms” on page 8-54.
Option unchangeable for gamultiobj.

For an options structure, use
NonlinConAlgorithm.

{'auglag'} for ga,
{'penalty'} for gamultiobj

OutputFcn Functions that ga calls at each iteration. Specify
as a function handle or a cell array of function
handles. See “Output Function Options” on page
17-41.

For an options structure, use OutputFcns.

Function handle or cell array of
function handles | {[]}

ParetoFraction Scalar from 0 through 1 specifying the fraction of
individuals to keep on the first Pareto front while
the solver selects individuals from higher fronts,
for gamultiobj only. See “Multiobjective
Options” on page 17-38.

Scalar | {0.35}

PenaltyFactor NM I* Penalty update parameter. Positive scalar | {100}
PlotFcn Function that plots data computed by the

algorithm. Specify as a name of a built-in plot
function, a function handle, or a cell array of
built-in names or function handles. See “Plot
Options” on page 17-23.

For an options structure, use PlotFcns.

ga or gamultiobj: {[]} |
'gaplotdistance' |
'gaplotgenealogy' |
'gaplotselection' |
'gaplotscorediversity'
|'gaplotscores' |
'gaplotstopping' |
'gaplotmaxconstr' |
Custom plot function on page
17-23

ga only: 'gaplotbestf' |
'gaplotbestindiv' |
'gaplotexpectation' |
'gaplotrange'

gamultiobj only:
'gaplotpareto' |
'gaplotparetodistance' |
'gaplotrankhist' |
'gaplotspread'
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Option Description Values
PlotInterval Positive integer specifying the number of

generations between consecutive calls to the plot
functions.

Positive integer | {1}

PopulationSize Size of the population. Positive integer | {50} when
numberOfVariables <= 5,
{200} otherwise |
{min(max(10*nvars,40),10
0)} for mixed-integer problems

PopulationType Data type of the population. Must be
'doubleVector' for mixed-integer problems.

'bitstring' | 'custom' |
{'doubleVector'}

ga ignores all constraints when
PopulationType is set to
'bitString' or 'custom'.
See “Population Options” on
page 17-26.

SelectionFcn Function that selects parents of crossover and
mutation children. Specify as a name of a built-in
selection function or a function handle.

gamultiobj uses only
'selectiontournament'.

{'selectionstochunif'} for
ga,
{'selectiontournament'}
for gamultiobj |
'selectionremainder' |
'selectionuniform' |
'selectionroulette' |
Custom selection function on
page 17-30

StallTest NM Stopping test type. 'geometricWeighted' |
{'averageChange'}

UseParallel Compute fitness and nonlinear constraint
functions in parallel. See “Vectorize and Parallel
Options (User Function Evaluation)” on page 17-
43 and “How to Use Parallel Processing in Global
Optimization Toolbox” on page 16-11.

true | {false}

UseVectorized Specifies whether functions are vectorized. See
“Vectorize and Parallel Options (User Function
Evaluation)” on page 17-43 and “Vectorize the
Fitness Function” on page 8-99.

For an options structure, use Vectorized with
the values 'on' or 'off'.

true | {false}

Example: optimoptions('gamultiobj','PlotFcn',@gaplotpareto)

intcon — Integer variables
vector of positive integers

Integer variables, specified as a vector of positive integers taking values from 1 to nvars. Each value
in intcon represents an x component that is integer-valued.
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Note When intcon is nonempty, nonlcon must return empty for ceq.

Example: To specify that the even entries in x are integer-valued, set intcon to 2:2:nvars
Data Types: double

problem — Problem description
structure

Problem description, specified as a structure containing these fields.

fitnessfcn Fitness functions
nvars Number of design variables
Aineq A matrix for linear inequality constraints
Bineq b vector for linear inequality constraints
Aeq Aeq matrix for linear equality constraints
Beq beq vector for linear equality constraints
lb Lower bound on x
ub Upper bound on x
nonlcon Nonlinear constraint functions
intcon Indices of integer variables
rngstate Field to reset the state of the random number generator
solver 'gamultiobj'
options Options created using optimoptions or an options structure

You must specify the fields fitnessfcn, nvars, and options. The remainder are optional for
gamultiobj.
Data Types: struct

Output Arguments
x — Pareto points
m-by-nvars array

Pareto points, returned as an m-by-nvars array, where m is the number of points on the Pareto front.
Each row of x represents one point on the Pareto front.

fval — Function values on Pareto front
m-by-nf array

Function values on the Pareto front, returned as an m-by-nf array. m is the number of points on the
Pareto front, and nf is the number of fitness functions. Each row of fval represents the function
values at one Pareto point in x.

exitflag — Reason gamultiobj stopped
integer

Reason gamultiobj stopped, returned as an integer.
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exitflag Value Stopping Condition
1 Geometric average of the relative change in value of the spread over

options.MaxStallGenerations generations is less than
options.FunctionTolerance, and the final spread is less than the mean spread
over the past options.MaxStallGenerations generations

0 Maximum number of generations exceeded
-1 Optimization terminated by an output function or plot function
-2 No feasible point found
-5 Time limit exceeded

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields.

output Field Meaning
problemtype Type of problem:

• 'unconstrained' — No constraints
• 'boundconstraints' — Only bound constraints
• 'linearconstraints' — Linear constraints, with or without bound

constraints
• 'nonlinearconstr' — Nonlinear constraints, with or without other

types of constraints
rngstate State of the MATLAB random number generator, just before the algorithm

started. You can use the values in rngstate to reproduce the output of
gamultiobj. See “Reproduce Results” on page 8-65.

generations Total number of generations, excluding HybridFcn iterations.
funccount Total number of function evaluations.
message gamultiobj exit message.
averagedistance Average “distance,” which by default is the standard deviation of the norm

of the difference between Pareto front members and their mean.
spread Combination of the “distance,” and a measure of the movement of the

points on the Pareto front between the final two iterations.
maxconstraint Maximum constraint violation at the final Pareto set.

population — Final population
n-by-nvars array

Final population, returned as an n-by-nvars array, where n is the number of members of the
population.

scores — Scores of the final population
n-by-nf array

Scores of the final population, returned as an n-by-nf array. n is the number of members of the
population, and nf is the number of fitness functions.
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When there are nonlinear constraints, gamultiobj sets the scores of infeasible population
members to Inf.

More About
Pareto Front

A Pareto front is a set of points in parameter space (the space of decision variables) that have
noninferior fitness function values.

In other words, for each point on the Pareto front, you can improve one fitness function only by
degrading another. For details, see “What Is Multiobjective Optimization?” on page 14-2

As in “Local vs. Global Optima”, it is possible for a Pareto front to be local, but not global. “Local”
means that the Pareto points can be noninferior compared to nearby points, but points farther away
in parameter space could have lower function values in every component.

Algorithms
gamultiobj uses a controlled, elitist genetic algorithm (a variant of NSGA-II [1]). An elitist GA
always favors individuals with better fitness value (rank). A controlled elitist GA also favors
individuals that can help increase the diversity of the population even if they have a lower fitness
value. It is important to maintain the diversity of population for convergence to an optimal Pareto
front. Diversity is maintained by controlling the elite members of the population as the algorithm
progresses. Two options, ParetoFraction and DistanceMeasureFcn, control the elitism.
ParetoFraction limits the number of individuals on the Pareto front (elite members). The distance
function, selected by DistanceMeasureFcn, helps to maintain diversity on a front by favoring
individuals that are relatively far away on the front. The algorithm stops if the spread, a measure of
the movement of the Pareto front, is small. For details, see “gamultiobj Algorithm” on page 14-5.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for gamultiobj.

References
[1] Deb, Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester,

England: John Wiley & Sons, 2001.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.

See Also
ga | optimoptions | paretosearch | Optimize

Topics
“Pareto Front for Two Objectives” on page 14-19
“Performing a Multiobjective Optimization Using the Genetic Algorithm” on page 14-48
“What Is Multiobjective Optimization?” on page 14-2
“gamultiobj Options and Syntax: Differences from ga” on page 14-18

Introduced in R2007b
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gaoptimget
(Not recommended) Obtain values of genetic algorithm options structure

Note gaoptimget is not recommended. Instead, query options using dot notation. For more
information, see “Compatibility Considerations”.

Syntax
val = gaoptimget(options, 'name')
val = gaoptimget(options, 'name', default)

Description
val = gaoptimget(options, 'name') returns the value of the parameter name from the genetic
algorithm options structure options. gaoptimget(options, 'name') returns an empty matrix
[] if the value of name is not specified in options. It is only necessary to type enough leading
characters of name to uniquely identify it. gaoptimget ignores case in parameter names.

val = gaoptimget(options, 'name', default) returns the 'name' parameter, but will return
the default value if the name parameter is not specified (or is []) in options.

Compatibility Considerations
gaoptimget is not recommended
Not recommended starting in R2018b

To query options, the gaoptimget, psoptimget, and saoptimget functions are not recommended.
Instead, use dot notation. For example, to see the setting of the Display option in opts,

displayopt = opts.Display
% instead of
displayopt = gaoptimget(opts,'Display')

Using automatic code completions, dot notation takes fewer keystrokes: displayopt = opts.D
Tab.

There are no plans to remove gaoptimget, psoptimget, and saoptimget at this time.

See Also
ga | gamultiobj

Topics
“Genetic Algorithm Options” on page 17-23

Introduced before R2006a

18 Functions

18-56



gaoptimset
(Not recommended) Create genetic algorithm options structure

Note gaoptimset is not recommended. Use optimoptions instead. For more information, see
“Compatibility Considerations”.

Syntax
gaoptimset
options = gaoptimset(Name,Value)
options = gaoptimset
options = gaoptimset(@ga)
options = gaoptimset(@gamultiobj)
options = gaoptimset(oldopts,Name,Value)
options = gaoptimset(oldopts,newopts)

Description
gaoptimset with no input or output arguments displays a complete list of options with their valid
values. Generally, the default values appear in brackets {}.

Note The indicated default values are not defaults for all problem types. For an updated list, evaluate
optimoptions('ga') or optimoptions('gamultiobj').

options = gaoptimset(Name,Value) creates a structure named options and sets the value of
'Name1' to Value1, 'Name2' to Value2, and so on. gaoptimset sets any unspecified options to
[], meaning solvers use the default option values. You can specify a option name using only enough
leading characters to define the name uniquely. gaoptimset ignores case for option names. For
example, 'Display', 'display', and 'Disp' are equivalent option names.

options = gaoptimset (with no input arguments) creates a structure named options that
contains the options for the genetic algorithm. In this case, gaoptimset sets all option values to [],
indicating to use default values.

options = gaoptimset(@ga) or options = gaoptimset(@gamultiobj) creates an options
structure containing options with explicit default values for the ga or gamultiobj solver,
respectively.

options = gaoptimset(oldopts,Name,Value) creates a copy of oldopts, modifying the
specified options with the specified values.

options = gaoptimset(oldopts,newopts) combines an existing options structure, oldopts,
with a new options structure, newopts. Any options in newopts with nonempty values overwrite the
corresponding options in oldopts.

Examples
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View Genetic Algorithm Options

To see all the options available for ga and gamultiobj in an options structure, run gamultiobj
with no input or output arguments.

gaoptimset

          PopulationType: [ 'bitstring'      | 'custom'    | {'doubleVector'} ]
            PopInitRange: [ matrix           | {[-10;10]} ]
          PopulationSize: [ positive scalar ]
              EliteCount: [ positive scalar  | {0.05*PopulationSize} ]
       CrossoverFraction: [ positive scalar  | {0.8} ]

          ParetoFraction: [ positive scalar  | {0.35} ]

      MigrationDirection: [ 'both'           | {'forward'} ]
       MigrationInterval: [ positive scalar  | {20} ]
       MigrationFraction: [ positive scalar  | {0.2} ]

             Generations: [ positive scalar ]
               TimeLimit: [ positive scalar  | {Inf} ]
            FitnessLimit: [ scalar           | {-Inf} ]
           StallGenLimit: [ positive scalar ]
               StallTest: [ 'geometricWeighted' | {'averageChange'} ]
          StallTimeLimit: [ positive scalar  | {Inf} ]
                  TolFun: [ positive scalar ]

                  TolCon: [ positive scalar  | {1e-6} ]

       InitialPopulation: [ matrix           | {[]} ]
           InitialScores: [ column vector    | {[]} ]

      NonlinConAlgorithm: [ 'penalty' | {'auglag'} ]
          InitialPenalty: [ positive scalar | {10} ]
           PenaltyFactor: [ positive scalar | {100} ]

             CreationFcn: [ function_handle  | @gacreationuniform | @gacreationlinearfeasible ]
       FitnessScalingFcn: [ function_handle  | @fitscalingshiftlinear  | @fitscalingprop  | 
                            @fitscalingtop   | {@fitscalingrank} ]
            SelectionFcn: [ function_handle  | @selectionremainder    | @selectionuniform | 
                            @selectionroulette | @selectiontournament   | @selectionstochunif ]
            CrossoverFcn: [ function_handle  | @crossoverheuristic  | @crossoverintermediate | 
                            @crossoversinglepoint | @crossovertwopoint | @crossoverarithmetic | 
                            @crossoverscattered ]
             MutationFcn: [ function_handle  | @mutationuniform | @mutationadaptfeasible | 
                            @mutationgaussian ]
      DistanceMeasureFcn: [ function_handle  | {@distancecrowding} ]
               HybridFcn: [ @fminsearch | @patternsearch | @fminunc | @fmincon | {[]} ]

                 Display: [ 'off' | 'iter' | 'diagnose' | {'final'} ]
              OutputFcns: [ function_handle  | {[]} ]
                PlotFcns: [ function_handle  | @gaplotbestf | @gaplotbestindiv | @gaplotdistance | 
                            @gaplotexpectation | @gaplotgenealogy | @gaplotselection | @gaplotrange | 
                            @gaplotscorediversity  | @gaplotscores | @gaplotstopping  | 
                            @gaplotmaxconstr | @gaplotrankhist | @gaplotpareto | @gaplotspread | 
                            @gaplotparetodistance |{[]} ]
            PlotInterval: [ positive scalar  | {1} ]
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              Vectorized: [ 'on'  | {'off'} ]

             UseParallel: [ logical scalar | true | {false} ]

Set Nondefault Genetic Algorithm Options

Set options for ga to have a starting population that includes the point [1,1] and to use the
gaplotbestf plot function.

options = gaoptimset('InitialPopulation',[1 1],...
    'PlotFcns',@gaplotbestf);

Find a local minimum of the built-in fitness function rastriginsfcn using the specified options.

rng default % For reproducibility
nvar = 2;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nlconst = [];
[x,fval] = ga(@rastriginsfcn,nvar,A,b,Aeq,beq,lb,ub,nlconst,options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
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x = 1×2

    0.0227    0.0656

fval = 0.9442

Create Default ga Options

Use gaoptimset to create an option structure for ga with the values set to their defaults.

options = gaoptimset(@ga)

options = struct with fields:
        PopulationType: 'doubleVector'
          PopInitRange: []
        PopulationSize: '50 when numberOfVariables <= 5, else 200'
            EliteCount: '0.05*PopulationSize'
     CrossoverFraction: 0.8000
        ParetoFraction: []
    MigrationDirection: 'forward'
     MigrationInterval: 20
     MigrationFraction: 0.2000
           Generations: '100*numberOfVariables'
             TimeLimit: Inf
          FitnessLimit: -Inf
         StallGenLimit: 50
             StallTest: 'averageChange'
        StallTimeLimit: Inf
                TolFun: 1.0000e-06
                TolCon: 1.0000e-03
     InitialPopulation: []
         InitialScores: []
    NonlinConAlgorithm: 'auglag'
        InitialPenalty: 10
         PenaltyFactor: 100
          PlotInterval: 1
           CreationFcn: []
     FitnessScalingFcn: @fitscalingrank
          SelectionFcn: []
          CrossoverFcn: []
           MutationFcn: []
    DistanceMeasureFcn: []
             HybridFcn: []
               Display: 'final'
              PlotFcns: []
            OutputFcns: []
            Vectorized: 'off'
      IntegerTolerance: 1.0000e-05
           UseParallel: 0
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Modify Genetic Algorithm Options

Create genetic algorithm options to return an iterative display.

oldopts = gaoptimset('Display','iter');

Modify oldopts to include the gaplotbestf plot function and a population size of 250.

options = gaoptimset(oldopts,'PlotFcns',@gaplotbestf,...
    'PopulationSize',250)

options = struct with fields:
        PopulationType: []
          PopInitRange: []
        PopulationSize: 250
            EliteCount: []
     CrossoverFraction: []
        ParetoFraction: []
    MigrationDirection: []
     MigrationInterval: []
     MigrationFraction: []
           Generations: []
             TimeLimit: []
          FitnessLimit: []
         StallGenLimit: []
             StallTest: []
        StallTimeLimit: []
                TolFun: []
                TolCon: []
     InitialPopulation: []
         InitialScores: []
    NonlinConAlgorithm: []
        InitialPenalty: []
         PenaltyFactor: []
          PlotInterval: []
           CreationFcn: []
     FitnessScalingFcn: []
          SelectionFcn: []
          CrossoverFcn: []
           MutationFcn: []
    DistanceMeasureFcn: []
             HybridFcn: []
               Display: 'iter'
              PlotFcns: @gaplotbestf
            OutputFcns: []
            Vectorized: []
      IntegerTolerance: []
           UseParallel: []

Combine Genetic Algorithm Options

Create two sets of genetic algorithm options, oldopts and newopts. Specify an iterative display and
the gaplotbestf plot function for oldopts. Specify no display and a population size of 300 for
newopts.
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oldopts = gaoptimset('Display','iter','PlotFcns',@gaplotbestf);
newopts = gaoptimset('Display','off','PopulationSize',300);

Combine these options with newopts taking precedence.

options = gaoptimset(oldopts,newopts)

options = struct with fields:
        PopulationType: []
          PopInitRange: []
        PopulationSize: 300
            EliteCount: []
     CrossoverFraction: []
        ParetoFraction: []
    MigrationDirection: []
     MigrationInterval: []
     MigrationFraction: []
           Generations: []
             TimeLimit: []
          FitnessLimit: []
         StallGenLimit: []
             StallTest: []
        StallTimeLimit: []
                TolFun: []
                TolCon: []
     InitialPopulation: []
         InitialScores: []
    NonlinConAlgorithm: []
        InitialPenalty: []
         PenaltyFactor: []
          PlotInterval: []
           CreationFcn: []
     FitnessScalingFcn: []
          SelectionFcn: []
          CrossoverFcn: []
           MutationFcn: []
    DistanceMeasureFcn: []
             HybridFcn: []
               Display: 'off'
              PlotFcns: @gaplotbestf
            OutputFcns: []
            Vectorized: []
      IntegerTolerance: []
           UseParallel: []

Notice that the value of the Display option is the value specified in newopts.

Input Arguments
oldopts — Optimization options
structure

Optimization options, specified as a structure, such as the output of gaoptimset.
Data Types: struct

18 Functions

18-62



newopts — Optimization options
structure

Optimization options, specified as a structure, such as the output of gaoptimset. Any options in
newopts with nonempty values overwrite the corresponding options in oldopts in this syntax:

options = gaoptimset(oldopts,newopts)

Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

gaoptimset creates a structure. In the following table of option names, use the name at the bottom
of the description after the phrase "For an options structure," if specified. The first listed name
(Option) is for the optimoptions function, which is the recommended function for setting options.
For example, to specify the tolerance on nonlinear constraint violation in optimoptions you set
'ConstraintTolerance', but for gaoptimset you set 'TolCon'.
Example: options = gaoptimset('Display','off','PlotFcns',@gaplotbestf)

In the following table,

• Values in braces {} denote the default value.
• {}* represents the default when the problem has linear constraints, and when MutationFcn has

bounds.
• I* indicates that ga handles options for integer constraints differently; this notation does not apply

to gamultiobj.
• NM indicates that the option does not apply to gamultiobj.

optimoptions hides the options listed in italics; see “Options that optimoptions Hides” on page 17-
64.
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Options for ga and gamultiobj

Option Description Values
ConstraintTolerance Determines the feasibility with respect to

nonlinear constraints. Also,
max(sqrt(eps),ConstraintTolerance)
determines feasibility with respect to linear
constraints.

For an options structure, use TolCon.

Positive scalar | {1e-3}

CreationFcn Function that creates the initial population.
Specify as a name of a built-in creation function
or a function handle. See “Population Options”
on page 17-26.

{'gacreationuniform'} |
{'gacreationlinearfeasib
le'}* |
'gacreationnonlinearfeas
ible' |
{'gacreationuniformint'}I
* for ga |
{'gacreationsobol'}I* for
gamultiobj | Custom creation
function on page 17-26

CrossoverFcn Function that the algorithm uses to create
crossover children. Specify as a name of a built-
in crossover function or a function handle. See
“Crossover Options” on page 17-34.

{'crossoverscattered'} for
ga,
{'crossoverintermediate'
}* for gamultiobj |
{'crossoverlaplace'}I* |
'crossoverheuristic' |
'crossoversinglepoint' |
'crossovertwopoint' |
'crossoverarithmetic' |
Custom crossover function on
page 17-34

CrossoverFraction The fraction of the population at the next
generation, not including elite children, that the
crossover function creates.

Positive scalar | {0.8}

Display Level of display. 'off' | 'iter' | 'diagnose' |
{'final'}

DistanceMeasureFcn Function that computes the distance measure of
individuals. Specify as a name of a built-in
distance measure function or a function handle.
The value applies to the decision variable or
design space (genotype) or to function space
(phenotype). The default 'distancecrowding'
is in function space (phenotype). For
gamultiobj only. See “Multiobjective Options”
on page 17-38.

For an options structure, use a function handle,
not a name.

{'distancecrowding'}
means the same as
{@distancecrowding,'phen
otype'} |
{@distancecrowding,'geno
type'} | Custom distance
function on page 17-38
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Option Description Values
EliteCount NM Positive integer specifying how many

individuals in the current generation are
guaranteed to survive to the next generation. Not
used in gamultiobj.

Positive integer |
{ceil(0.05*PopulationSiz
e)} | {0.05*(default
PopulationSize)} for mixed-
integer problems

FitnessLimit NM If the fitness function attains the value of
FitnessLimit, the algorithm halts.

Scalar | {-Inf}

FitnessScalingFcn Function that scales the values of the fitness
function. Specify as a name of a built-in scaling
function or a function handle. Option unavailable
for gamultiobj.

{'fitscalingrank'} |
'fitscalingshiftlinear' |
'fitscalingprop' |
'fitscalingtop' | Custom
fitness scaling function on page
17-29

FunctionTolerance The algorithm stops if the average relative
change in the best fitness function value over
MaxStallGenerations generations is less than
or equal to FunctionTolerance. If StallTest
is 'geometricWeighted', then the algorithm
stops if the weighted average relative change is
less than or equal to FunctionTolerance.

For gamultiobj, the algorithm stops when the
geometric average of the relative change in value
of the spread over
options.MaxStallGenerations generations
is less than options.FunctionTolerance, and
the final spread is less than the mean spread
over the past options.MaxStallGenerations
generations. See “gamultiobj Algorithm” on page
14-5.

For an options structure, use TolFun.

Positive scalar | {1e-6} for ga,
{1e-4} for gamultiobj

HybridFcn I* Function that continues the optimization after
ga terminates. Specify as a name or a function
handle.

Alternatively, a cell array specifying the hybrid
function and its options. See “ga Hybrid
Function” on page 17-39.

For gamultiobj, the only hybrid function is
@fgoalattain. See “gamultiobj Hybrid
Function” on page 17-39.

When the problem has integer constraints, you
cannot use a hybrid function.

See “When to Use a Hybrid Function” on page 8-
112.

Function name or handle |
'fminsearch' |
'patternsearch' |
'fminunc' | 'fmincon' |
{[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where
solver = fminsearch,
patternsearch, fminunc, or
fmincon {[]}
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Option Description Values
InitialPenalty NM I* Initial value of the penalty parameter Positive scalar | {10}
InitialPopulationMat
rix

Initial population used to seed the genetic
algorithm. Has up to PopulationSize rows and
N columns, where N is the number of variables.
You can pass a partial population, meaning one
with fewer than PopulationSize rows. In that
case, the genetic algorithm uses CreationFcn
to generate the remaining population members.
See “Population Options” on page 17-26.

For an options structure, use
InitialPopulation.

Matrix | {[]}

InitialPopulationRan
ge

Matrix or vector specifying the range of the
individuals in the initial population. Applies to
gacreationuniform creation function. ga
shifts and scales the default initial range to
match any finite bounds.

For an options structure, use PopInitRange.

Matrix or vector | {[-10;10]}
for unbounded components,
{[-1e4+1;1e4+1]} for
unbounded components of
integer-constrained problems,
{[lb;ub]} for bounded
components, with the default
range modified to match one-
sided bounds

InitialScoresMatrix Initial scores used to determine fitness. Has up to
PopulationSize rows and Nf columns, where
Nf is the number of fitness functions (1 for ga,
greater than 1 for gamultiobj). You can pass a
partial scores matrix, meaning one with fewer
than PopulationSize rows. In that case, the
solver fills in the scores when it evaluates the
fitness functions.

For an options structure, use InitialScores.

Column vector for single
objective | matrix for
multiobjective | {[]}

MaxGenerations Maximum number of iterations before the
algorithm halts.

For an options structure, use Generations.

Positive integer |
{100*numberOfVariables}
for ga,
{200*numberOfVariables}
for gamultiobj
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Option Description Values
MaxStallGenerations The algorithm stops if the average relative

change in the best fitness function value over
MaxStallGenerations generations is less than
or equal to FunctionTolerance. If StallTest
is 'geometricWeighted', then the algorithm
stops if the weighted average relative change is
less than or equal to FunctionTolerance.

For gamultiobj, the algorithm stops when the
geometric average of the relative change in value
of the spread over
options.MaxStallGenerations generations
is less than options.FunctionTolerance, and
the final spread is less than the mean spread
over the past options.MaxStallGenerations
generations. See “gamultiobj Algorithm” on page
14-5.

For an options structure, use StallGenLimit.

Positive integer | {50} for ga,
{100} for gamultiobj

MaxStallTime NM The algorithm stops if there is no
improvement in the objective function for
MaxStallTime seconds, as measured by tic
and toc.

For an options structure, use StallTimeLimit.

Positive scalar | {Inf}

MaxTime The algorithm stops after running for MaxTime
seconds, as measured by tic and toc. This limit
is enforced after each iteration, so ga can exceed
the limit when an iteration takes substantial
time.

For an options structure, use TimeLimit.

Positive scalar | {Inf}

MigrationDirection Direction of migration. See “Migration Options”
on page 17-36.

'both' | {'forward'}

MigrationFraction Scalar from 0 through 1 specifying the fraction of
individuals in each subpopulation that migrates
to a different subpopulation. See “Migration
Options” on page 17-36.

Scalar | {0.2}

MigrationInterval Positive integer specifying the number of
generations that take place between migrations
of individuals between subpopulations. See
“Migration Options” on page 17-36.

Positive integer | {20}
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Option Description Values
MutationFcn Function that produces mutation children.

Specify as a name of a built-in mutation function
or a function handle. See “Mutation Options” on
page 17-31.

{'mutationgaussian'} for
ga without constraints |
{'mutationadaptfeasible'
}* for gamultiobj and for ga
with constraints |
{'mutationpower'}I* |
'mutationpositivebasis' |
'mutationuniform' | Custom
mutation function on page 17-31

NonlinearConstraintA
lgorithm

Nonlinear constraint algorithm. See “Nonlinear
Constraint Solver Algorithms” on page 8-54.
Option unchangeable for gamultiobj.

For an options structure, use
NonlinConAlgorithm.

{'auglag'} for ga,
{'penalty'} for gamultiobj

OutputFcn Functions that ga calls at each iteration. Specify
as a function handle or a cell array of function
handles. See “Output Function Options” on page
17-41.

For an options structure, use OutputFcns.

Function handle or cell array of
function handles | {[]}

ParetoFraction Scalar from 0 through 1 specifying the fraction of
individuals to keep on the first Pareto front while
the solver selects individuals from higher fronts,
for gamultiobj only. See “Multiobjective
Options” on page 17-38.

Scalar | {0.35}

PenaltyFactor NM I* Penalty update parameter. Positive scalar | {100}
PlotFcn Function that plots data computed by the

algorithm. Specify as a name of a built-in plot
function, a function handle, or a cell array of
built-in names or function handles. See “Plot
Options” on page 17-23.

For an options structure, use PlotFcns.

ga or gamultiobj: {[]} |
'gaplotdistance' |
'gaplotgenealogy' |
'gaplotselection' |
'gaplotscorediversity'
|'gaplotscores' |
'gaplotstopping' |
'gaplotmaxconstr' |
Custom plot function on page
17-23

ga only: 'gaplotbestf' |
'gaplotbestindiv' |
'gaplotexpectation' |
'gaplotrange'

gamultiobj only:
'gaplotpareto' |
'gaplotparetodistance' |
'gaplotrankhist' |
'gaplotspread'
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Option Description Values
PlotInterval Positive integer specifying the number of

generations between consecutive calls to the plot
functions.

Positive integer | {1}

PopulationSize Size of the population. Positive integer | {50} when
numberOfVariables <= 5,
{200} otherwise |
{min(max(10*nvars,40),10
0)} for mixed-integer problems

PopulationType Data type of the population. Must be
'doubleVector' for mixed-integer problems.

'bitstring' | 'custom' |
{'doubleVector'}

ga ignores all constraints when
PopulationType is set to
'bitString' or 'custom'.
See “Population Options” on
page 17-26.

SelectionFcn Function that selects parents of crossover and
mutation children. Specify as a name of a built-in
selection function or a function handle.

gamultiobj uses only
'selectiontournament'.

{'selectionstochunif'} for
ga,
{'selectiontournament'}
for gamultiobj |
'selectionremainder' |
'selectionuniform' |
'selectionroulette' |
Custom selection function on
page 17-30

StallTest NM Stopping test type. 'geometricWeighted' |
{'averageChange'}

UseParallel Compute fitness and nonlinear constraint
functions in parallel. See “Vectorize and Parallel
Options (User Function Evaluation)” on page 17-
43 and “How to Use Parallel Processing in Global
Optimization Toolbox” on page 16-11.

true | {false}

UseVectorized Specifies whether functions are vectorized. See
“Vectorize and Parallel Options (User Function
Evaluation)” on page 17-43 and “Vectorize the
Fitness Function” on page 8-99.

For an options structure, use Vectorized with
the values 'on' or 'off'.

true | {false}

Output Arguments
options — Optimization options
structure

Optimization options, returned as a structure.
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Compatibility Considerations
gaoptimset is not recommended
Not recommended starting in R2018b

To set options, the gaoptimset, psoptimset, and saoptimset functions are not recommended.
Instead, use optimoptions.

The main difference between using optimoptions and the other functions is that you include the
solver name as the first argument in optimoptions. For example, to set an iterative display in ga:

options = optimoptions('ga','Display','iter');
% instead of
options = gaoptimset('Display','iter');

The other difference is that some option names have changed. You can continue to use the old names
in optimoptions. For details, see “Options Changes in R2016a” on page 17-64.

optimoptions offers these advantages over the other functions:

• optimoptions provides better automatic code suggestions and completions, especially in the
Live Editor.

• You can use a single option-setting function instead of a variety of functions.

There are no plans to remove gaoptimset, psoptimset, and saoptimset at this time.

See Also
ga | gamultiobj | optimoptions

Topics
“Genetic Algorithm Options” on page 17-23

Introduced before R2006a
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GlobalOptimSolution
Optimization solution

Description
A GlobalOptimSolution object contains information on a local minimum, including location,
objective function value, and start point or points that lead to the minimum.

GlobalSearch and MultiStart generate a vector of GlobalOptimSolution objects. The vector is
ordered by objective function value, from lowest (best) to highest (worst). GlobalSearch and
MultiStart combine solutions that coincide with previously found solutions to within tolerances.
For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 4-37. For
MultiStart details, see “Create GlobalOptimSolution Object” on page 4-39.

Creation
When you execute run and request the “solutions” on page 18-0  output, GlobalSearch and
MultiStart create GlobalOptimSolution objects as output.

Properties
Exitflag — Exit condition of local solver
integer

Exit condition of the local solver, returned as an integer. Generally, a positive Exitflag corresponds
to a local optimum, and a zero or negative Exitflag corresponds to an unsuccessful search for a
local minimum.

For the exact meaning of each Exitflag, see the exitflag description in the appropriate local
solver function reference page:

• fmincon exitflag
• fminunc exitflag
• lsqcurvefit exitflag
• lsqnonlin exitflag

Data Types: double

Fval — Objective function value
real scalar

Objective function value, returned as a real scalar. For the lsqnonlin and lsqcurvefit solvers,
Fval is the sum of squares of the residual.
Data Types: double

Output — Output structure returned by the local solver
structure
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Output structure returned by the local solver. For details, see the output description in the
appropriate local solver function reference page:

• fmincon output
• fminunc output
• lsqcurvefit output
• lsqnonlin output

Data Types: struct

X — Local solution
array

Local solution, returned as an array with the same dimensions as problem.x0.
Data Types: double

X0 — Start points that lead to current solution
cell array

Start points that lead to current solution, returned as a cell array. Control the distance between
points considered as distinct by setting the FunctionTolerance and XTolerance properties of the
global solver.
Data Types: cell

Examples
Obtain Multiple Local Solutions

Use MultiStart to create a vector of GlobalOptimSolution objects for a problem with multiple
local minima.

rng default % For reproducibility
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
[xmin,fmin,flag,outpt,allmins] = run(ms,problem,30);

MultiStart completed the runs from all start points.

All 30 local solver runs converged with a positive local solver exit flag.

allmins is a vector of GlobalOptimSolution objects.

disp(allmins)

  1x6 GlobalOptimSolution array with properties:

    X
    Fval
    Exitflag
    Output
    X0
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Plot the objective function values at the returned solutions.

plot(arrayfun(@(x)x.Fval,allmins),'k*')
xlabel('Solution number')
ylabel('Function value')
title('Solution Function Values')

To examine the initial points that lead to the various solutions, see “Visualize the Basins of Attraction”
on page 4-24.

See Also
MultiStart | run | GlobalSearch

Topics
“Visualize the Basins of Attraction” on page 4-24
“How GlobalSearch and MultiStart Work” on page 4-34

Introduced in R2010a
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GlobalSearch
Find global minimum

Description
A GlobalSearch object contains properties (options) that affect how run repeatedly runs a local
solver to generate a GlobalOptimSolution object. When run, the solver attempts to locate a
solution that has the lowest objective function value.

Creation

Syntax
gs = GlobalSearch
gs = GlobalSearch(Name,Value)
gs = GlobalSearch(oldGS,Name,Value)
gs = GlobalSearch(ms)

Description

gs = GlobalSearch creates gs, a GlobalSearch solver with its properties set to the defaults.

gs = GlobalSearch(Name,Value) sets properties using name-value pairs.

gs = GlobalSearch(oldGS,Name,Value) creates a copy of the oldGS GlobalSearch solver,
and sets properties using name-value pairs.

gs = GlobalSearch(ms) creates gs, a GlobalSearch solver, with common property values from
the ms MultiStart solver.

Properties
BasinRadiusFactor — Basin radius decrease factor
0.2 (default) | scalar from 0 through 1

Basin radius decrease factor, specified as a scalar from 0 through 1. A basin radius decreases after
MaxWaitCycle consecutive start points are within the basin. The basin radius decreases by a factor
of 1 – BasinRadiusFactor.

Set BasinRadiusFactor to 0 to disable updates of the basin radius.
Example: 0.5
Data Types: double

Display — Level of display to the Command Window
'final' (default) | 'iter' | 'off'
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Level of display to the Command Window, specified as one of the following character vectors or
strings:

• 'final' – Report summary results after run finishes.
• 'iter' – Report results after the initial fmincon run, after Stage 1, after every 200 start points,

and after every run of fmincon, in addition to the final summary.
• 'off' – No display.

Example: 'iter'
Data Types: char | string

DistanceThresholdFactor — Multiplier for determining trial point is in existing basin
0.75 (default) | nonnegative scalar

Multiplier for determining whether a trial point is in an existing basin of attraction, specified as a
nonnegative scalar. For details, see “Examine Stage 2 Trial Point to See if fmincon Runs” on page 4-
36.
Example: 0.5
Data Types: double

FunctionTolerance — Tolerance on function values for considering solutions equal
1e-6 (default) | nonnegative scalar

Tolerance on function values for considering solutions equal, specified as a nonnegative scalar.
Solvers consider two solutions identical if they are within XTolerance relative distance of each other
and have objective function values within FunctionTolerance relative difference of each other. If
both conditions are not met, solvers report the solutions as distinct. Set FunctionTolerance to 0 to
obtain the results of every local solver run. Set FunctionTolerance to a larger value to have fewer
results. For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 4-37.
For MultiStart details, see “Create GlobalOptimSolution Object” on page 4-39.
Example: 1e-4
Data Types: double

MaxTime — Maximum time in seconds that GlobalSearch runs
Inf (default) | positive scalar

Maximum time in seconds that GlobalSearch runs, specified as a positive scalar. GlobalSearch and its
local solvers halt when MaxTime seconds have passed since the beginning of the run, as measured by
tic and toc.

MaxTime does not interrupt local solvers during a run, so the total time can exceed MaxTime.
Example: 180 stops the solver the first time a local solver call finishes after 180 seconds.
Data Types: double

MaxWaitCycle — Algorithm control parameter
20 (default) | positive integer

Algorithm control parameter, specified as a positive integer.

• If the observed penalty function of MaxWaitCycle consecutive trial points is at least the penalty
threshold, then raise the penalty threshold (see PenaltyThresholdFactor).
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• If MaxWaitCycle consecutive trial points are in a basin, then update that basin's radius (see
BasinRadiusFactor).

Example: 40
Data Types: double

NumStageOnePoints — Number of Stage 1 points
200 (default) | positive integer

Number of Stage 1 points, specified as a positive integer. For details, see “Obtain Stage 1 Start Point,
Run” on page 4-36.
Example: 1000
Data Types: double

NumTrialPoints — Number of potential start points
1000 (default) | positive integer

Number of potential start points, specified as a positive integer.
Example: 3e4
Data Types: double

OutputFcn — Report on solver progress or halt solver
[] (default) | function handle | cell array of function handles

Report on solver progress or halt solver, specified as a function handle or cell array of function
handles. Output functions run after each local solver call. They also run when the global solver starts
and ends. Write output functions using the syntax described in “OutputFcn” on page 17-3. See
“GlobalSearch Output Function” on page 4-27.
Data Types: cell | function_handle

PenaltyThresholdFactor — Increase in penalty threshold
0.2 (default) | positive scalar

Increase in the penalty threshold, specified as a positive scalar. For details, see React to Large
Counter Values on page 4-38.
Example: 0.4
Data Types: double

PlotFcn — Plot solver progress
[] (default) | function handle | cell array of function handles

Plot solver progress, specified as a function handle or cell array of function handles. Plot functions
run after each local solver call. They also run when the global solver starts and ends. Write plot
functions using the syntax described in “OutputFcn” on page 17-3.

There are two built-in plot functions:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 4-30.
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Example: @gsplotbestf
Data Types: cell | function_handle

StartPointsToRun — Start points to run
'all' (default) | 'bounds' | 'bounds-ineqs'

Start points to run, specified as:

• 'all' — Run all start points.
• 'bounds' — Run only start points that satisfy bounds.
• 'bounds-ineqs' — Run only start points that satisfy bounds and inequality constraints.

GlobalSearch checks the StartPointsToRun property only during Stage 2 of the GlobalSearch
algorithm (the main loop). For more information, see “GlobalSearch Algorithm” on page 4-35.
Example: 'bounds' runs only points that satisfy all bounds.
Data Types: char | string

XTolerance — Tolerance on distance for considering solutions equal
1e-6 (default) | nonnegative scalar

Tolerance on distance for considering solutions equal, specified as a nonnegative scalar. Solvers
consider two solutions identical if they are within XTolerance relative distance of each other and
have objective function values within FunctionTolerance relative difference of each other. If both
conditions are not met, solvers report the solutions as distinct. Set XTolerance to 0 to obtain the
results of every local solver run. Set XTolerance to a larger value to have fewer results. For
GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 4-37. For
MultiStart details, see “Create GlobalOptimSolution Object” on page 4-39.
Example: 2e-4
Data Types: double

Object Functions
run Run multiple-start solver

Examples

Run GlobalSearch on Multidimensional Problem

Create an optimization problem that has several local minima, and try to find the global minimum
using GlobalSearch. The objective is the six-hump camel back problem (see “Run the Solver” on
page 4-13).

rng default % For reproducibility
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
x = run(gs,problem)
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GlobalSearch stopped because it analyzed all the trial points.

All 8 local solver runs converged with a positive local solver exit flag.

x = 1×2

   -0.0898    0.7127

You can request the objective function value at x when you call run by using the following syntax:

[x,fval] = run(gs,problem)

However, if you neglected to request fval, you can still compute the objective function value at x.

fval = sixmin(x)

fval = -1.0316

Run GlobalSearch on 1-D Problem

Consider a function with several local minima.

fun = @(x) x.^2 + 4*sin(5*x);
fplot(fun,[-5,5])
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To search for the global minimum, run GlobalSearch using the fmincon 'sqp' algorithm.

rng default % For reproducibility
opts = optimoptions(@fmincon,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',...
    fun,'x0',3,'lb',-5,'ub',5,'options',opts);
gs = GlobalSearch;
[x,f] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

All 23 local solver runs converged with a positive local solver exit flag.

x = -0.3080

f = -3.9032

GlobalSearch Using Common Properties from MultiStart

Create a nondefault MultiStart object.

ms = MultiStart('FunctionTolerance',2e-4,'UseParallel',true)

ms = 
  MultiStart with properties:

          UseParallel: 1
              Display: 'final'
    FunctionTolerance: 2.0000e-04
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-06

Create a GlobalSearch object that uses the available properties from ms.

gs = GlobalSearch(ms)

gs = 
  GlobalSearch with properties:

             NumTrialPoints: 1000
          BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
               MaxWaitCycle: 20
          NumStageOnePoints: 200
     PenaltyThresholdFactor: 0.2000
                    Display: 'final'
          FunctionTolerance: 2.0000e-04
                    MaxTime: Inf
                  OutputFcn: []
                    PlotFcn: []
           StartPointsToRun: 'all'
                 XTolerance: 1.0000e-06
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gs has the same nondefault value of FunctionTolerance as ms. But gs does not use the
UseParallel property.

Update GlobalSearch Properties

Create a GlobalSearch object with a FunctionTolerance of 1e-4.

gs = GlobalSearch('FunctionTolerance',1e-4)

gs = 
  GlobalSearch with properties:

             NumTrialPoints: 1000
          BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
               MaxWaitCycle: 20
          NumStageOnePoints: 200
     PenaltyThresholdFactor: 0.2000
                    Display: 'final'
          FunctionTolerance: 1.0000e-04
                    MaxTime: Inf
                  OutputFcn: []
                    PlotFcn: []
           StartPointsToRun: 'all'
                 XTolerance: 1.0000e-06

Update the XTolerance property to 1e-3 and the StartPointsToRun property to 'bounds'.

gs = GlobalSearch(gs,'XTolerance',1e-3,'StartPointsToRun','bounds')

gs = 
  GlobalSearch with properties:

             NumTrialPoints: 1000
          BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
               MaxWaitCycle: 20
          NumStageOnePoints: 200
     PenaltyThresholdFactor: 0.2000
                    Display: 'final'
          FunctionTolerance: 1.0000e-04
                    MaxTime: Inf
                  OutputFcn: []
                    PlotFcn: []
           StartPointsToRun: 'bounds'
                 XTolerance: 1.0000e-03

You can also update properties one at a time by using dot notation.

gs.MaxTime = 1800

gs = 
  GlobalSearch with properties:
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             NumTrialPoints: 1000
          BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
               MaxWaitCycle: 20
          NumStageOnePoints: 200
     PenaltyThresholdFactor: 0.2000
                    Display: 'final'
          FunctionTolerance: 1.0000e-04
                    MaxTime: 1800
                  OutputFcn: []
                    PlotFcn: []
           StartPointsToRun: 'bounds'
                 XTolerance: 1.0000e-03

Algorithms
For a detailed description of the algorithm, see “GlobalSearch Algorithm” on page 4-35. Ugray et al.
[1] describe both the algorithm and the scatter-search method of generating trial points.

References
[1] Ugray, Zsolt, Leon Lasdon, John Plummer, Fred Glover, James Kelly, and Rafael Martí. Scatter

Search and Local NLP Solvers: A Multistart Framework for Global Optimization. INFORMS
Journal on Computing, Vol. 19, No. 3, 2007, pp. 328–340.

See Also
GlobalOptimSolution | MultiStart | run

Topics
“Example of Run with GlobalSearch” on page 4-13
“Workflow for GlobalSearch and MultiStart” on page 4-3

Introduced in R2010a
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list
List start points

Syntax
points = list(tpoints)
points = list(rs,problem)

Description
points = list(tpoints) returns the points inside the tpoints CustomStartPointSet object.

points = list(rs,problem) generates and returns points described by the rs
RandomStartPointSet object and problem.

Examples

Create CustomStartPointSet

Create a CustomStartPointSet object with 64 three-dimensional points.

[x,y,z] = meshgrid(1:4);
ptmatrix = [x(:),y(:),z(:)] + [10,20,30];
tpoints = CustomStartPointSet(ptmatrix);

tpoints is the ptmatrix matrix contained in a CustomStartPointSet object.

Extract the original matrix from the tpoints object by using list.

tpts = list(tpoints);

Check that the tpts output is identical to ptmatrix.

isequal(ptmatrix,tpts)

ans = logical
   1

Create RandomStartPointSet

Create a RandomStartPointSet object for 40 points.

rs = RandomStartPointSet('NumStartPoints',40);

Create a problem with 3-D variables, lower bounds of 0, and upper bounds of [10,20,30].

problem = createOptimProblem('fmincon','x0',rand(3,1),'lb',zeros(3,1),'ub',[10,20,30]);
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Generate a random set of 40 points consistent with the problem.

points = list(rs,problem);

Examine the maximum and minimum generated components.

largest = max(max(points))

largest = 29.8840

smallest = min(min(points))

smallest = 0.1390

Input Arguments
tpoints — Start points
CustomStartPointSet object

Start points, specified as a CustomStartPointSet object. list extracts the points into a matrix
where each row is one start point.
Example: tpoints = CustomStartPointSet([1:5;4:8].^2)

rs — Start points description
RandomStartPointSet object

Start points description, specified as a RandomStartPointSet object. list generates start points
using the NumStartPoints (number of points) and ArtificialBound (artificial bounds) properties
of rs. list uses the x0 field in problem to determine the number of variables in the start points.
list uses the bounds in problem as follows:

• list generates points uniformly within bounds.
• If a component has no bounds, list uses a lower bound of -ArtificialBound and an upper

bound of ArtificialBound.
• If a component has a lower bound lb but no upper bound, list uses an upper bound of

lb + 2*ArtificialBound.
• Similarly, if a component has an upper bound ub but no lower bound, list uses a lower bound of

ub - 2*ArtificialBound.

problem — Problem description
problem structure

Problem description, specified as a problem structure. Create a problem structure using
createOptimProblem. list uses only the lower and upper bounds in problem, as described in rs,
and uses the x0 field in problem to determine the number of variables.
Data Types: struct

Output Arguments
points — Start points
k-by-n matrix
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Start points, returned as a k-by-n matrix. Each row of the matrix represents one start point.

• If you list a CustomStartPointSet, then k is the NumStartPoints property, and n is the
StartPointsDimension property.

• If you list a RandomStartPointSet, then k is the NumStartPoints property, and n is inferred
from the x0 field of the problem structure.

See Also
CustomStartPointSet | RandomStartPointSet | MultiStart

Topics
“Workflow for GlobalSearch and MultiStart” on page 4-3

Introduced in R2010a
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MultiStart
Find multiple local minima

Description
A MultiStart object contains properties (options) that affect how run repeatedly runs a local solver
to generate a GlobalOptimSolution object. When run, the solver attempts to find multiple local
solutions to a problem by starting from various points.

Creation

Syntax
ms = MultiStart
ms = MultiStart(Name,Value)
ms = MultiStart(oldMS,Name,Value)
ms = MultiStart(gs)

Description

ms = MultiStart creates ms, a MultiStart solver with its properties set to the defaults.

ms = MultiStart(Name,Value) sets properties using name-value pairs.

ms = MultiStart(oldMS,Name,Value) creates a copy of the oldMS MultiStart solver, and sets
properties using name-value pairs.

ms = MultiStart(gs) creates ms, a MultiStart solver, with common parameter values from the
gs GlobalSearch solver.

Properties
Display — Level of display to the Command Window
'final' (default) | 'iter' | 'off'

Level of display to the Command Window, specified as one of the following character vectors or
strings:

• 'final' – Report summary results after run finishes.
• 'iter' – Report results after the initial fmincon run, after Stage 1, after every 200 start points,

and after every run of fmincon, in addition to the final summary.
• 'off' – No display.

Example: 'iter'
Data Types: char | string
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FunctionTolerance — Tolerance on function values for considering solutions equal
1e-6 (default) | nonnegative scalar

Tolerance on function values for considering solutions equal, specified as a nonnegative scalar.
Solvers consider two solutions identical if they are within XTolerance relative distance of each other
and have objective function values within FunctionTolerance relative difference of each other. If
both conditions are not met, solvers report the solutions as distinct. Set FunctionTolerance to 0 to
obtain the results of every local solver run. Set FunctionTolerance to a larger value to have fewer
results. For GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 4-37.
For MultiStart details, see “Create GlobalOptimSolution Object” on page 4-39.
Example: 1e-4
Data Types: double

MaxTime — Maximum time in seconds that MultiStart runs
Inf (default) | positive scalar

Maximum time in seconds that MultiStart runs, specified as a positive scalar. MultiStart and its local
solvers halt when MaxTime seconds have passed since the beginning of the run, as measured by tic
and toc.

MaxTime does not interrupt local solvers during a run, so the total time can exceed MaxTime.
Example: 180 stops the solver the first time a local solver call finishes after 180 seconds.
Data Types: double

OutputFcn — Report on solver progress or halt solver
[] (default) | function handle | cell array of function handles

Report on solver progress or halt solver, specified as a function handle or cell array of function
handles. Output functions run after each local solver call. They also run when the global solver starts
and ends. Write output functions using the syntax described in “OutputFcn” on page 17-3. See
“GlobalSearch Output Function” on page 4-27.
Data Types: cell | function_handle

PlotFcn — Plot solver progress
[] (default) | function handle | cell array of function handles

Plot solver progress, specified as a function handle or cell array of function handles. Plot functions
run after each local solver call. They also run when the global solver starts and ends. Write plot
functions using the syntax described in “OutputFcn” on page 17-3.

There are two built-in plot functions:

• @gsplotbestf plots the best objective function value.
• @gsplotfunccount plots the number of function evaluations.

See “MultiStart Plot Function” on page 4-30.
Example: @gsplotbestf
Data Types: cell | function_handle

StartPointsToRun — Start points to run
'all' (default) | 'bounds' | 'bounds-ineqs'
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Start points to run, specified as:

• 'all' — Run all start points.
• 'bounds' — Run only start points that satisfy bounds.
• 'bounds-ineqs' — Run only start points that satisfy bounds and inequality constraints.

Example: 'bounds' runs only points that satisfy all bounds.
Data Types: char | string

UseParallel — Distribute local solver calls to multiple processors
false (default) | true

Distribute local solver calls to multiple processors, specified as false or true.

• false — Do not run in parallel.
• true — Distribute the local solver calls to multiple processors.

Example: true
Data Types: logical

XTolerance — Tolerance on distance for considering solutions equal
1e-6 (default) | nonnegative scalar

Tolerance on distance for considering solutions equal, specified as a nonnegative scalar. Solvers
consider two solutions identical if they are within XTolerance relative distance of each other and
have objective function values within FunctionTolerance relative difference of each other. If both
conditions are not met, solvers report the solutions as distinct. Set XTolerance to 0 to obtain the
results of every local solver run. Set XTolerance to a larger value to have fewer results. For
GlobalSearch details, see Update Solution Set in “When fmincon Runs” on page 4-37. For
MultiStart details, see “Create GlobalOptimSolution Object” on page 4-39.
Example: 2e-4
Data Types: double

Object Functions
run Run multiple-start solver

Examples

Run MultiStart

Consider a function with several local minima.

fun = @(x) x.^2 + 4*sin(5*x);
fplot(fun,[-5,5])
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To search for the global minimum, run MultiStart on 20 instances of the problem using the
fmincon 'sqp' algorithm.

rng default % For reproducibility
opts = optimoptions(@fmincon,'Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',...
    fun,'x0',3,'lb',-5,'ub',5,'options',opts);
ms = MultiStart;
[x,f] = run(ms,problem,20)

MultiStart completed the runs from all start points.

All 20 local solver runs converged with a positive local solver exit flag.

x = -0.3080

f = -3.9032

Default MultiStart Object

Create a MultiStart object with default properties.

ms = MultiStart

ms = 
  MultiStart with properties:
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          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-06
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-06

Nondefault MultiStart Object

Create a MultiStart object with looser tolerances than default, so the solver returns fewer
solutions that are close to each other. Also, have MultiStart run only initial points that are feasible
with respect to bounds and inequality constraints.

ms = MultiStart('FunctionTolerance',2e-4,'XTolerance',5e-3,...
    'StartPointsToRun','bounds-ineqs')

ms = 
  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 2.0000e-04
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'bounds-ineqs'
           XTolerance: 0.0050

MultiStart Using Common Properties from GlobalSearch

Create a nondefault GlobalSearch object.

gs = GlobalSearch('FunctionTolerance',2e-4,'NumTrialPoints',2000)

gs = 
  GlobalSearch with properties:

             NumTrialPoints: 2000
          BasinRadiusFactor: 0.2000
    DistanceThresholdFactor: 0.7500
               MaxWaitCycle: 20
          NumStageOnePoints: 200
     PenaltyThresholdFactor: 0.2000
                    Display: 'final'
          FunctionTolerance: 2.0000e-04
                    MaxTime: Inf
                  OutputFcn: []
                    PlotFcn: []
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           StartPointsToRun: 'all'
                 XTolerance: 1.0000e-06

Create a MultiStart object that uses the available properties from gs.

ms = MultiStart(gs)

ms = 
  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 2.0000e-04
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-06

ms has the same nondefault value of FunctionTolerance as gs. But ms does not use the
NumTrialPoints property.

Update MultiStart Properties

Create a MultiStart object with a FunctionTolerance of 1e-4.

ms = MultiStart('FunctionTolerance',1e-4)

ms = 
  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-04
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'all'
           XTolerance: 1.0000e-06

Update the XTolerance property to 1e-3, and the StartPointsToRun property to 'bounds'.

ms = MultiStart(ms,'XTolerance',1e-3,'StartPointsToRun','bounds')

ms = 
  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-04
              MaxTime: Inf
            OutputFcn: []
              PlotFcn: []
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     StartPointsToRun: 'bounds'
           XTolerance: 1.0000e-03

You can also update properties one at a time by using dot notation.

ms.MaxTime = 1800

ms = 
  MultiStart with properties:

          UseParallel: 0
              Display: 'final'
    FunctionTolerance: 1.0000e-04
              MaxTime: 1800
            OutputFcn: []
              PlotFcn: []
     StartPointsToRun: 'bounds'
           XTolerance: 1.0000e-03

Algorithms
For a detailed description of the algorithm, see “MultiStart Algorithm” on page 4-38.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.

See Also
GlobalSearch | GlobalOptimSolution | CustomStartPointSet | RandomStartPointSet |
run

Topics
“Global or Multiple Starting Point Search”
“Parallel Computing”
“Workflow for GlobalSearch and MultiStart” on page 4-3

Introduced in R2010a
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packfcn
Combine objective and nonlinear constraint functions

Syntax
objconstr = packfcn(obj,nlconst)

Description
objconstr = packfcn(obj,nlconst) combines the objective function obj and nonlinear
constraint function nlconst into a function objconstr. The function objconstr(x) returns a
structure suitable for a combined surrogateopt objective and constraint function. For information
on converting between the surrogateopt structure syntax and other solvers, see “Convert
Nonlinear Constraints Between surrogateopt Form and Other Solver Forms” on page 11-74.

Examples

Combine Objective and Constraint

Combine the objective and constraint from the example “Solve a Constrained Nonlinear Problem,
Solver-Based” into a form suitable for surrogateopt.

Create the objective function as an anonymous function ros(x).

ros = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

Create the nonlinear constraint helper function unitdisk, which appears at the end of this example
on page 18-0 . Save the helper function with the name unitdisk.m in the current folder.

Combine the objective and nonlinear constraint functions into one function suitable for
surrogateopt.

objconstr = packfcn(ros,@unitdisk);

Specify bounds and solve the problem using surrogateopt.

lb = [-2 -2];
ub = -lb;
[x,fval] = surrogateopt(objconstr,lb,ub)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    0.7870    0.6177

fval = 0.0456

This code creates the unitdisk helper function.

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];
end

Input Arguments
obj — Objective function
function handle | function name

Objective function, specified as a function handle or function name.

The resulting function objconstr contains the field Fval.

objconstr.Fval = obj
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Example: @rastriginsfcn
Data Types: char | string | function_handle

nlconst — Nonlinear constraint function
function handle | function name

Nonlinear constraint function, specified as a function handle or function name. Generally, the
nonlinear constraint function returns two outputs.

[c,ceq] = nlconst(x)

The output c is a vector or array whose entries represent the inequality constraints c(x) ≤ 0. The
output ceq is a vector or array whose entries represent the inequality constraints c(x) = 0. packfcn
discards the ceq output.

The resulting function objconstr contains the field Ineq.

objconstr.Ineq = c

Data Types: char | string | function_handle

Output Arguments
objconstr — Combined objective and constraint function
function handle

Combined objective and constraint function, returned as a function handle. The function
objconstr(x) returns a structure with the fields Fval and Ineq.

• objconstr.Fval(x) is the objective function obj(x).
• objconstr.Ineq(x) is the nonlinear inequality constraint function c(x), the first output of

nlconst(x).

See Also
surrogateopt

Topics
“Convert Nonlinear Constraints Between surrogateopt Form and Other Solver Forms” on page 11-74

Introduced in R2020a
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paretosearch
Find points in Pareto set

Syntax
x = paretosearch(fun,nvars)
x = paretosearch(fun,nvars,A,b)
x = paretosearch(fun,nvars,A,b,Aeq,beq)
x = paretosearch(fun,nvars,A,b,Aeq,beq,lb,ub)
x = paretosearch(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon)
x = paretosearch(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = paretosearch(problem)
[x,fval] = paretosearch( ___ )
[x,fval,exitflag,output] = paretosearch( ___ )
[x,fval,exitflag,output,residuals] = paretosearch( ___ )

Description
x = paretosearch(fun,nvars) finds nondominated points of the multiobjective function fun.
The nvars argument is the dimension of the optimization problem (number of decision variables).

x = paretosearch(fun,nvars,A,b) finds nondominated points subject to the linear inequalities
A*x ≤ b. See “Linear Inequality Constraints”.

x = paretosearch(fun,nvars,A,b,Aeq,beq) finds nondominated points subject to the linear
constraints Aeq*x = beq and A*x ≤ b. If no linear inequalities exist, set A = [] and b = [].

x = paretosearch(fun,nvars,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds
on the design variables in x, so that x is always in the range lb ≤ x ≤ ub. If no linear equalities
exist, set Aeq = [] and beq = []. If x(i) has no lower bound, set lb(i) = -Inf. If x(i) has no
upper bound, set ub(i) = Inf.

x = paretosearch(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon) applies the nonlinear
inequalities c(x) defined in nonlcon. The paretosearch function finds nondominated points such
that c(x) ≤ 0. If no bounds exist, set lb = [], ub = [], or both.

Note Currently, paretosearch does not support nonlinear equality constraints ceq(x) = 0.

x = paretosearch(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options) finds nondominated
points with the optimization options specified in options. Use optimoptions to set these options. If
there are no nonlinear inequality or equality constraints, set nonlcon = [].

x = paretosearch(problem) finds the nondominated points for problem, where problem is a
structure described in problem.

[x,fval] = paretosearch( ___ ), for any input variables, returns the matrix fval, the value of
all the objective functions in fun for all the solutions (rows) in x. The output fval has nf columns,
where nf is the number of objectives, and has the same number of rows as x.
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[x,fval,exitflag,output] = paretosearch( ___ ) also returns exitflag, an integer
identifying the reason the algorithm stopped, and output, a structure that contains information
about the solution process.

[x,fval,exitflag,output,residuals] = paretosearch( ___ ) also returns residuals, a
structure containing the constraint values at the solution points x.

Examples

Find Pareto Front

Find points on the Pareto front of a two-objective function of a two-dimensional variable.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
rng default % For reproducibility
x = paretosearch(fun,2);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Plot the solution as a scatter plot.

plot(x(:,1),x(:,2),'m*')
xlabel('x(1)')
ylabel('x(2)')
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Theoretically, the solution of this problem is a straight line from [-2,-1] to [1,2]. paretosearch
returns evenly-spaced points close to this line.

Create Pareto Front with Linear Constraints

Create a Pareto front for a two-objective problem in two dimensions subject to the linear constraint
x(1) + x(2) <= 1.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
A = [1,1];
b = 1;
rng default % For reproducibility
x = paretosearch(fun,2,A,b);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Plot the solution as a scatter plot.

plot(x(:,1),x(:,2),'m*')
xlabel('x(1)')
ylabel('x(2)')
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Theoretically, the solution of this problem is a straight line from [-2,-1] to [0,1]. paretosearch
returns evenly-spaced points close to this line.

Create Pareto Front with Bounds

Create a Pareto front for a two-objective problem in two dimensions subject to the bounds x(1) >=
0 and x(2) <= 1.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [0,-Inf]; % x(1) >= 0
ub = [Inf,1]; % x(2) <= 1
rng default % For reproducibility
x = paretosearch(fun,2,[],[],[],[],lb,ub);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Plot the solution as a scatter plot.

plot(x(:,1),x(:,2),'m*')
xlabel('x(1)')
ylabel('x(2)')
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All of the solution points are on the constraint boundaries x(1) = 0 or x(2) = 1.

Create Pareto Front with Nonlinear Constraints

Create a Pareto front for a two-objective problem in two dimensions subject to bounds -1.1 <=
x(i) <= 1.1 and the nonlinear constraint norm(x)^2 <= 1.2. The nonlinear constraint function
appears at the end of this example, and works if you run this example as a live script. To run this
example otherwise, include the nonlinear constraint function as a file on your MATLAB® path.

To better see the effect of the nonlinear constraint, set options to use a large Pareto set size.

rng default % For reproducibility
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [-1.1,-1.1];
ub = [1.1,1.1];
options = optimoptions('paretosearch','ParetoSetSize',200);
x = paretosearch(fun,2,[],[],[],[],lb,ub,@circlecons,options);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Plot the solution as a scatter plot. Include a plot of the circular constraint boundary.
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figure
plot(x(:,1),x(:,2),'k*')
xlabel('x(1)')
ylabel('x(2)')
hold on
rectangle('Position',[-1.2 -1.2 2.4 2.4],'Curvature',1,'EdgeColor','r')
xlim([-1.2,0.5])
ylim([-0.5,1.2])
axis square
hold off

The solution points that have positive x(1) values or negative x(2) values are close to the nonlinear
constraint boundary.

function [c,ceq] = circlecons(x)
ceq = [];
c = norm(x)^2 - 1.2;
end

Find Pareto Front Using Options

To monitor the progress of paretosearch, specify the 'psplotparetof' plot function.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
options = optimoptions('paretosearch','PlotFcn','psplotparetof');
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lb = [-4,-4];
ub = -lb;
x = paretosearch(fun,2,[],[],[],[],lb,ub,[],options);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

The solution looks like a quarter-circular arc with radius 18, which can be shown to be the analytical
solution.

Find Pareto Front in Function Space and Parameter Space

Obtain the Pareto front in both function space and parameter space by calling paretosearch with
both the x and fval outputs. Set options to plot the Pareto set in both function space and parameter
space.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [-4,-4];
ub = -lb;
options = optimoptions('paretosearch','PlotFcn',{'psplotparetof' 'psplotparetox'});
rng default % For reproducibility
[x,fval] = paretosearch(fun,2,[],[],[],[],lb,ub,[],options);
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Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

The analytical solution in objective function space is a quarter-circular arc of radius 18. In parameter
space, the analytical solution is a straight line from [-2,-1] to [1,2]. The solution points are close
to the analytical curves.

Monitor Pareto Set Solution

Set options to monitor the Pareto set solution process. Also, obtain more outputs from
paretosearch to enable you to understand the solution process.

options = optimoptions('paretosearch','Display','iter',...
    'PlotFcn',{'psplotparetof' 'psplotparetox'});
fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
lb = [-4,-4];
ub = -lb;
rng default % For reproducibility
[x,fval,exitflag,output] = paretosearch(fun,2,[],[],[],[],lb,ub,[],options);

Iter   F-count   NumSolutions  Spread       Volume 
   0        60        11          -         3.7872e+02
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   1       386        12          -         3.4654e+02
   2       702        27       9.4324e-01   2.9452e+02
   3      1029        27          -         2.9904e+02
   4      1357        40       0.0000e+00   3.0154e+02
   5      1697        60       1.4903e-01   3.0369e+02
   6      1841        60       1.4515e-01   3.0439e+02
   7      1961        60       1.7716e-01   3.0465e+02
   8      2075        60       1.6123e-01   3.0475e+02
   9      2189        60       1.7419e-01   3.0449e+02

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.

Examine the additional outputs.

fprintf('Exit flag %d.\n',exitflag)

Exit flag 1.

disp(output)

         iterations: 10
          funccount: 2189
             volume: 304.4256
    averagedistance: 0.0215
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             spread: 0.1742
      maxconstraint: 0
            message: 'Pareto set found that satisfies the constraints. ...'
           rngstate: [1x1 struct]

Obtain Pareto Front Residuals

Obtain and examine the Pareto front constraint residuals. Create a problem with the linear inequality
constraint sum(x) <= -1/2 and the nonlinear inequality constraint norm(x)^2 <= 1.2. For
improved accuracy, use 200 points on the Pareto front, and a ParetoSetChangeTolerance of 1e-7,
and give the natural bounds -1.2 <= x(i) <= 1.2.

The nonlinear constraint function appears at the end of this example, and works if you run this
example as a live script. To run this example otherwise, include the nonlinear constraint function as a
file on your MATLAB® path.

fun = @(x)[norm(x-[1,2])^2;norm(x+[2,1])^2];
A = [1,1];
b = -1/2;
lb = [-1.2,-1.2];
ub = -lb;
nonlcon = @circlecons;
rng default % For reproducibility
options = optimoptions('paretosearch','ParetoSetChangeTolerance',1e-7,...
    'PlotFcn',{'psplotparetof' 'psplotparetox'},'ParetoSetSize',200);

Call paretosearch using all outputs.

[x,fval,exitflag,output,residuals] = paretosearch(fun,2,A,b,[],[],lb,ub,nonlcon,options);

Pareto set found that satisfies the constraints. 

Optimization completed because the relative change in the volume of the Pareto set 
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within 
'options.ConstraintTolerance'.
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The inequality constraints reduce the size of the Pareto set compared to an unconstrained set.
Examine the returned residuals.

fprintf('The maximum linear inequality constraint residual is %f.\n',max(residuals.ineqlin))

The maximum linear inequality constraint residual is 0.000000.

fprintf('The maximum nonlinear inequality constraint residual is %f.\n',max(residuals.ineqnonlin))

The maximum nonlinear inequality constraint residual is -0.003840.

The maximum returned residuals are negative, meaning that all the returned points are feasible. The
maximum returned residuals are close to zero, meaning that each constraint is active for some points.

function [c,ceq] = circlecons(x)
ceq = [];
c = norm(x)^2 - 1.2;
end

Input Arguments
fun — Objective functions to optimize
function handle | function name

Objective functions to optimize, specified as a function handle or function name.
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fun is a function that accepts a real row vector of doubles x of length nvars and returns a real
vector F(x) of objective function values. For details on writing fun, see “Compute Objective
Functions” on page 2-2.

If you set the UseVectorized option to true, then fun accepts a matrix of size n-by-nvars, where
the matrix represents n individuals. fun returns a matrix of size n-by-m, where m is the number of
objective functions. See “Vectorize the Fitness Function” on page 8-99.
Example: @(x)[sin(x),cos(x)]
Data Types: char | function_handle | string

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length nvars to
fun.
Example: 4
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-nvars matrix, where M is the
number of inequalities.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of nvars variables x(:), and b is a column vector with M elements.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:).

b encodes the M linear inequalities
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A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-nvars matrix, where Me is the
number of equalities.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

 paretosearch

18-107



For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a real vector or array of doubles. lb represents the lower bounds
element-wise in lb ≤ x ≤ ub.

Internally, paretosearch converts an array lb to the vector lb(:).
Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.
Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a real vector or array of doubles. ub represents the upper bounds
element-wise in lb ≤ x ≤ ub.

Internally, paretosearch converts an array ub to the vector ub(:).
Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a row vector x and returns two row vectors, c(x) and ceq(x).

• c(x) is the row vector of nonlinear inequality constraints at x. The paretosearch function
attempts to satisfy c(x) <= 0 for all entries of c.

• ceq(x) must return [], because currently paretosearch does not support nonlinear equality
constraints.

If you set the UseVectorized option to true, then nonlcon accepts a matrix of size n-by-nvars,
where the matrix represents n individuals. nonlcon returns a matrix of size n-by-mc in the first
argument, where mc is the number of nonlinear inequality constraints. See “Vectorize the Fitness
Function” on page 8-99.

For example, x = paretosearch(@myfun,nvars,A,b,Aeq,beq,lb,ub,@mycon), where mycon
is a MATLAB function such as the following:
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function [c,ceq] = mycon(x)
c = ...     % Compute nonlinear inequalities at x.
ceq = []    % No nonlinear equalities at x.

For more information, see “Nonlinear Constraints”.
Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure

Optimization options, specified as the output of optimoptions or as a structure.

optimoptions hides the options listed in italics; see “Options that optimoptions Hides” on page 17-
64.

{} denotes the default value. See option details in “Pattern Search Options” on page 17-7.
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Options for patternsearch and paretosearch

Option Description Values
ConstraintToleranc
e

Tolerance on constraints.

For an options structure, use TolCon.

Positive scalar | {1e-6}

Display Level of display. 'off' | 'iter' |
'diagnose' | {'final'}

MaxFunctionEvaluat
ions

Maximum number of objective function evaluations.

For an options structure, use MaxFunEvals.

Positive integer |
{'2000*numberOfVaria
bles'} for
patternsearch,
{'3000*(numberOfVari
ables
+numberOfObjectives)
'} for paretosearch,
where
numberOfVariables is
the number of problem
variables, and
numberOfObjectives is
the number of objective
functions

MaxIterations Maximum number of iterations.

For an options structure, use MaxIter.

Positive integer |
{'100*numberOfVariab
les'} for
patternsearch,
{'100*(numberOfVaria
bles
+numberOfObjectives)
'} for paretosearch,
where
numberOfVariables is
the number of problem
variables, and
numberOfObjectives is
the number of objective
functions

MaxTime Total time (in seconds) allowed for optimization.

For an options structure, use TimeLimit.

Positive scalar | {Inf}

MeshTolerance Tolerance on the mesh size.

For an options structure, use TolMesh.

Positive scalar | {1e-6}

OutputFcn Function that an optimization function calls at each
iteration. Specify as a function handle or a cell array of
function handles.

For an options structure, use OutputFcns.

Function handle or cell
array of function handles
on page 17-17 | {[]}
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Option Description Values
PlotFcn Plots of output from the pattern search. Specify as the

name of a built-in plot function, a function handle, or a
cell array of names of built-in plot functions or function
handles.

For an options structure, use PlotFcns.

{[]} | For both
patternsearch and
paretosearch:
'psplotfuncount' |
'psplotmaxconstr' |
custom plot function on
page 17-7

For paretosearch only
with multiple objectives:
'psplotdistance' |
'psplotparetof' |
'psplotparetox' |
'psplotspread' |
'psplotvolume'

For patternsearch only
or paretosearch with a
single objective:
'psplotbestf' |
'psplotmeshsize' |
'psplotbestx'

PollMethod Polling strategy used in the pattern search.

Note You cannot use MADS polling when the problem
has linear equality constraints.

{'GPSPositiveBasis2N
'} |
'GPSPositiveBasisNp1
' |
'GSSPositiveBasis2N'
|
'GSSPositiveBasisNp1
' |
'MADSPositiveBasis2N
' |
'MADSPositiveBasisNp
1'

For paretosearch only:
'GSSPositiveBasis2np
2' |
{'GPSPositiveBasis2n
p2'}
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Option Description Values
UseParallel Compute objective and nonlinear constraint functions in

parallel. See “Vectorized and Parallel Options” on page
17-19 and “How to Use Parallel Processing in Global
Optimization Toolbox” on page 16-11.

Note You must set UseCompletePoll to true for
patternsearch to use vectorized or parallel polling.
Similarly, set UseCompleteSearch to true for
vectorized or parallel searching.

Beginning in R2019a, when you set the UseParallel
option to true, patternsearch internally overrides the
UseCompletePoll setting to true so it polls in parallel.

true | {false}

UseVectorized Specifies whether functions are vectorized. See
“Vectorized and Parallel Options” on page 17-19 and
“Vectorize the Objective and Constraint Functions” on
page 6-79.

Note You must set UseCompletePoll to true for
patternsearch to use vectorized or parallel polling.
Similarly, set UseCompleteSearch to true for
vectorized or parallel searching.

For an options structure, use Vectorized = 'on' or
'off'.

true | {false}
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Options for paretosearch Only

Option Description Values
InitialPoints Initial points for paretosearch. Use one of these data

types:

• Matrix with nvars columns, where each row
represents one initial point.

• Structure containing the following fields (all fields are
optional except X0):

• X0 — Matrix with nvars columns, where each row
represents one initial point.

• Fvals — Matrix with numObjectives columns,
where each row represents the objective function
values at the corresponding point in X0.

• Cineq — Matrix with numIneq columns, where
each row represents the nonlinear inequality
constraint values at the corresponding point in X0.

paretosearch computes any missing values in the
Fvals and Cineq fields.

Matrix with nvars
columns | structure | {[]}

MinPollFraction Minimum fraction of the pattern to poll. Scalar from 0 through 1 |
{0}

ParetoSetSize Number of points in the Pareto set. Positive integer |
{'max(numberOfObject
ives, 60)'}, where
numberOfObjectives is
the number of objective
functions
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Option Description Values
ParetoSetChangeTol
erance

The solver stops when the relative change in a stopping
measure over a window of iterations is less than or equal
to ParetoSetChangeTolerance.

• For three or fewer objectives, paretosearch uses
the volume and spread measures.

• For four or more objectives, paretosearch uses the
spread and distance measures.

See “Definitions for paretosearch Algorithm” on page 14-
10.

The solver stops when the relative change in any
applicable measure is less than
ParetoSetChangeTolerance, or the maximum of the
squared Fourier transforms of the time series of these
measures is relatively small. See “paretosearch
Algorithm” on page 14-10.

Note Setting ParetoSetChangeTolerance <
sqrt(eps) ~ 1.5e-8 is not recommended.

Positive scalar | {1e-4}
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Options for patternsearch Only

Option Description Values
Cache With Cache set to 'on', patternsearch keeps a

history of the mesh points it polls. At subsequent
iterations, patternsearch does not poll points close to
those already polled. Use this option if patternsearch
runs slowly while computing the objective function. If the
objective function is stochastic, do not use this option.

Note Cache does not work when you run the solver in
parallel.

'on' | {'off'}

CacheSize Size of the history. Positive scalar | {1e4}
CacheTol Largest distance from the current mesh point to any

point in the history in order for patternsearch to avoid
polling the current point. Use if Cache option is set to
'on'.

Positive scalar | {eps}

FunctionTolerance Tolerance on the function. Iterations stop if the change in
function value is less than FunctionTolerance and the
mesh size is less than StepTolerance. This option does
not apply to MADS polling.

For an options structure, use TolFun.

Positive scalar | {1e-6}

InitialMeshSize Initial mesh size for the algorithm. See “How Pattern
Search Polling Works” on page 6-26.

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty parameter. See “Nonlinear
Constraint Solver Algorithm” on page 6-43.

Positive scalar | {10}

MaxMeshSize Maximum mesh size used in a poll or search step. See
“How Pattern Search Polling Works” on page 6-26.

Positive scalar | {Inf}

MeshContractionFac
tor

Mesh contraction factor for unsuccessful iteration.

For an options structure, use MeshContraction.

Positive scalar | {0.5}

MeshExpansionFacto
r

Mesh expansion factor for successful iteration.

For an options structure, use MeshExpansion.

Positive scalar | {2.0}

MeshRotate Rotate the pattern before declaring a point to be
optimum. See “Mesh Options” on page 17-15.

'off' | {'on'}

PenaltyFactor Penalty update parameter. See “Nonlinear Constraint
Solver Algorithm” on page 6-43.

Positive scalar | {100}

PlotInterval Specifies that plot functions are called at every interval. positive integer | {1}
PollOrderAlgorithm Order of poll directions in pattern search.

For an options structure, use PollingOrder.

'Random' | 'Success' |
{'Consecutive'}

ScaleMesh Automatic scaling of variables.

For an options structure, use ScaleMesh = 'on' or
'off'.

{true}| false
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Option Description Values
SearchFcn Type of search used in pattern search. Specify as a name

or a function handle.

For an options structure, use SearchMethod.

'GPSPositiveBasis2N'
|
'GPSPositiveBasisNp1
' |
'GSSPositiveBasis2N'
|
'GSSPositiveBasisNp1
' |
'MADSPositiveBasis2N
' |
'MADSPositiveBasisNp
1' | 'searchga' |
'searchlhs' |
'searchneldermead' |
{[]} | custom search
function on page 17-12

StepTolerance Tolerance on the variable. Iterations stop if both the
change in position and the mesh size are less than
StepTolerance. This option does not apply to MADS
polling.

For an options structure, use TolX.

Positive scalar | {1e-6}

TolBind Binding tolerance. See “Constraint Parameters” on page
17-15.

Positive scalar | {1e-3}

UseCompletePoll Complete poll around the current point. See “How
Pattern Search Polling Works” on page 6-26.

For an options structure, use CompletePoll = 'on' or
'off'.

true | {false}

UseCompleteSearch Complete search around current point when the search
method is a poll method. See “Searching and Polling” on
page 6-34.

For an options structure, use CompleteSearch = 'on'
or 'off'.

true | {false}

Example: options =
optimoptions('paretosearch','Display','none','UseParallel',true)

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

• objective — Objective function
• x0 — Starting point
• Aineq — Matrix for linear inequality constraints
• bineq — Vector for linear inequality constraints
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• Aeq — Matrix for linear equality constraints
• beq — Vector for linear equality constraints
• lb — Lower bound for x
• ub — Upper bound for x
• nonlcon — Nonlinear constraint function
• solver — 'paretosearch'
• options — Options created with optimoptions
• rngstate — Optional field to reset the state of the random number generator

Note All fields in problem are required, except for rngstate, which is optional.

Data Types: struct

Output Arguments
x — Pareto points
m-by-nvars array

Pareto points, returned as an m-by-nvars array, where m is the number of points on the Pareto front.
Each row of x represents one point on the Pareto front.

fval — Function values on Pareto front
m-by-nf array

Function values on the Pareto front, returned as an m-by-nf array. m is the number of points on the
Pareto front, and nf is the number of objective functions. Each row of fval represents the function
values at one Pareto point in x.

exitflag — Reason paretosearch stopped
integer

Reason paretosearch stopped, returned as one of the integer values in this table.
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Exit Flag Stopping
Condition

1 One of the
following
conditions is
met.

• Mesh size
of all
incumbents
is less than
options.M
eshTolera
nce and
constraints
(if any) are
satisfied to
within
options.C
onstraint
Tolerance
.

• Relative
change in
the spread
of the
Pareto set
is less than
options.P
aretoSetC
hangeTole
rance and
constraints
(if any) are
satisfied to
within
options.C
onstraint
Tolerance
.

• Relative
change in
the volume
of the
Pareto set
is less than
options.P
aretoSetC
hangeTole
rance and
constraints
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Exit Flag Stopping
Condition

(if any) are
satisfied to
within
options.C
onstraint
Tolerance
.

0 Number of
iterations
exceeds
options.Max
Iterations,
or the number
of function
evaluations
exceeds
options.Max
FunctionEva
luations.

-1 Optimization is
stopped by an
output
function or
plot function.

-2 Solver cannot
find a point
satisfying all
the
constraints.

-5 Optimization
time exceeds
options.Max
Time.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields:

• iterations — Total number of iterations.
• funccount — Total number of function evaluations.
• volume — Hyper-volume of the set formed from the Pareto points in function space. See
“Definitions for paretosearch Algorithm” on page 14-10.

• averagedistance — Average distance measure of the Pareto points in function space. See
“Definitions for paretosearch Algorithm” on page 14-10.

• spread — Average spread measure of the Pareto points. See “Definitions for paretosearch
Algorithm” on page 14-10.
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• maxconstraint — Maximum constraint violation, if any.
• message — Reason why the algorithm terminated.
• rngstate — State of the MATLAB random number generator just before the algorithm starts. You

can use the values in rngstate to reproduce the output when you use a random poll method such
as 'MADSPositiveBasis2N' or when you use the default quasirandom method of creating the
initial population. See “Reproduce Results” on page 8-65, which discusses the identical technique
for ga.

residuals — Constraint residuals at x
structure

Constraint residuals at x, returned as a structure with these fields (a glossary of the field size terms
and entries follows the table).

Field Name Field Size Entries
lower m-by-nvars lb – x
upper m-by-nvars x – ub
ineqlin m-by-ncon A*x - b
eqlin m-by-ncon |Aeq*x - b|
ineqnonlin m-by-ncon c(x)

• m — Number of returned points x on the Pareto front
• nvars — Number of control variables
• ncon — Number of constraints of the relevant type (such as number of rows of A or number of

returned nonlinear equalities)
• c(x) — Numeric values of the nonlinear constraint functions

More About
Nondominated

Nondominated points, also called noninferior points, are points for which no other point has lower
values of all objective functions. In other words, for nondominated points, none of the objective
function values can be improved (lowered) without raising other objective function values. See “What
Is Multiobjective Optimization?” on page 14-2.

Algorithms
paretosearch uses a pattern search to search for points on the Pareto front. For details, see
“paretosearch Algorithm” on page 14-10.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for paretosearch.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.

See Also
gamultiobj | patternsearch | Optimize

Topics
“Multiobjective Optimization”

Introduced in R2018b
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particleswarm
Particle swarm optimization

Syntax
x = particleswarm(fun,nvars)
x = particleswarm(fun,nvars,lb,ub)
x = particleswarm(fun,nvars,lb,ub,options)
x = particleswarm(problem)
[x,fval,exitflag,output] = particleswarm( ___ )

Description
x = particleswarm(fun,nvars) attempts to find a vector x that achieves a local minimum of
fun. nvars is the dimension (number of design variables) of fun.

Note “Passing Extra Parameters” explains how to pass extra parameters to the objective function, if
necessary.

x = particleswarm(fun,nvars,lb,ub) defines a set of lower and upper bounds on the design
variables, x, so that a solution is found in the range lb ≤ x ≤ ub.

x = particleswarm(fun,nvars,lb,ub,options) minimizes with the default optimization
parameters replaced by values in options. Set lb = [] and ub = [] if no bounds exist.

x = particleswarm(problem) finds the minimum for problem, a structure described in
problem.

[x,fval,exitflag,output] = particleswarm( ___ ), for any input arguments described
above, returns:

• A scalar fval, which is the objective function value fun(x)
• A value exitflag describing the exit condition
• A structure output containing information about the optimization process

Examples

Minimize a Simple Function

Minimize a simple function of two variables.

Define the objective function.

fun = @(x)x(1)*exp(-norm(x)^2);

Call particleswarm to minimize the function.
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rng default  % For reproducibility
nvars = 2;
x = particleswarm(fun,nvars)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x =

  629.4474  311.4814

This solution is far from the true minimum, as you see in a function plot.

fsurf(@(x,y)x.*exp(-(x.^2+y.^2)))

Usually, it is best to set bounds. See “Minimize a Simple Function with Bounds” on page 18-123.

Minimize a Simple Function with Bounds

Minimize a simple function of two variables with bound constraints.

Define the objective function.

fun = @(x)x(1)*exp(-norm(x)^2);

Set bounds on the variables.
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lb = [-10,-15];
ub = [15,20];

Call particleswarm to minimize the function.

rng default  % For reproducibility
nvars = 2;
x = particleswarm(fun,nvars,lb,ub)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

   -0.7071   -0.0000

Minimize Using Nondefault Options

Use a larger population and a hybrid function to try to get a better solution.

Specify the objective function and bounds.

fun = @(x)x(1)*exp(-norm(x)^2);
lb = [-10,-15];
ub = [15,20];

Specify the options.

options = optimoptions('particleswarm','SwarmSize',100,'HybridFcn',@fmincon);

Call particleswarm to minimize the function.

rng default  % For reproducibility
nvars = 2;
x = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

   -0.7071   -0.0000

Examine the Solution Process

Return the optional output arguments to examine the solution process in more detail.

Define the problem.

fun = @(x)x(1)*exp(-norm(x)^2);
lb = [-10,-15];
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ub = [15,20];
options = optimoptions('particleswarm','SwarmSize',50,'HybridFcn',@fmincon);

Call particleswarm with all outputs to minimize the function and get information about the solution
process.

rng default  % For reproducibility
nvars = 2;
[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value 
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

x = 1×2

   -0.7071   -0.0000

fval = -0.4289

exitflag = 1

output = struct with fields:
      rngstate: [1x1 struct]
    iterations: 43
     funccount: 2203
       message: 'Optimization ended: relative change in the objective value ...'
    hybridflag: 1

Input Arguments
fun — Objective function
function handle | function name

Objective function, specified as a function handle or function name. Write the objective function to
accept a row vector of length nvars and return a scalar value.

When the 'UseVectorized' option is true, write fun to accept a pop-by-nvars matrix, where pop
is the current population size. In this case, fun returns a vector the same length as pop containing
the fitness function values. Ensure that fun does not assume any particular size for pop, since
particleswarm can pass a single member of a population even in a vectorized calculation.
Example: fun = @(x)(x-[4,2]).^2
Data Types: char | function_handle | string

nvars — Number of variables
positive integer

Number of variables, specified as a positive integer. The solver passes row vectors of length nvars to
fun.
Example: 4
Data Types: double
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lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a real vector or array of doubles. lb represents the lower bounds
element-wise in lb ≤ x ≤ ub.

Internally, particleswarm converts an array lb to the vector lb(:).
Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.
Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a real vector or array of doubles. ub represents the upper bounds
element-wise in lb ≤ x ≤ ub.

Internally, particleswarm converts an array ub to the vector ub(:).
Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.
Data Types: double

options — Options for particleswarm
options created using optimoptions

Options for particleswarm, specified as the output of the optimoptions function.

Some options are absent from the optimoptions display. These options are listed in italics. For
details, see “View Options”.

CreationFcn Function that creates the initial swarm. Specify as 'pswcreationuniform'
or a function handle. Default is 'pswcreationuniform'. See “Swarm
Creation” on page 17-44.

Display Level of display returned to the command line.

• 'off' or 'none' displays no output.
• 'final' displays just the final output (default).
• 'iter' gives iterative display.

DisplayInterval Interval for iterative display. The iterative display prints one line for every
DisplayInterval iterations. Default is 1.

FunctionTolerance Nonnegative scalar with default 1e-6. Iterations end when the relative
change in best objective function value over the last MaxStallIterations
iterations is less than options.FunctionTolerance.

FunValCheck Check whether objective function and constraints values are valid. 'on'
displays an error when the objective function or constraints return a value
that is complex, Inf, or NaN. The default, 'off', displays no error.
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HybridFcn Function that continues the optimization after particleswarm terminates.
Specify as a name or a function handle. Possible values:

• 'fmincon'
• 'fminsearch'
• 'fminunc'
• 'patternsearch'

Can also be a cell array specifying the hybrid function and its options, such as
{@fmincon,fminconopts}. Default is []. See “Hybrid Function” on page
17-46.

See “When to Use a Hybrid Function” on page 8-112.
InertiaRange Two-element real vector with same sign values in increasing order. Gives the

lower and upper bound of the adaptive inertia. To obtain a constant
(nonadaptive) inertia, set both elements of InertiaRange to the same value.
Default is [0.1,1.1]. See “Particle Swarm Optimization Algorithm” on page
10-11.

InitialSwarmMatri
x

Initial population or partial population of particles. M-by-nvars matrix, where
each row represents one particle. If M < SwarmSize, then particleswarm
creates more particles so that the total number is SwarmSize. If
M > SwarmSize, then particleswarm uses the first SwarmSize rows.

InitialSwarmSpan Initial range of particle positions that @pswcreationuniform creates. Can
be a positive scalar or a vector with nvars elements, where nvars is the
number of variables. The range for any particle component is -
InitialSwarmSpan/2,InitialSwarmSpan/2, shifted and scaled if
necessary to match any bounds. Default is 2000.

InitialSwarmSpan also affects the range of initial particle velocities. See
“Initialization” on page 10-11.

MaxIterations Maximum number of iterations particleswarm takes. Default is 200*nvars,
where nvars is the number of variables.

MaxStallIteration
s

Positive integer with default 20. Iterations end when the relative change in
best objective function value over the last MaxStallIterations iterations is
less than options.FunctionTolerance.

MaxStallTime Maximum number of seconds without an improvement in the best known
objective function value. Positive scalar with default Inf.

MaxTime Maximum time in seconds that particleswarm runs. Default is Inf.
MinNeighborsFract
ion

Minimum adaptive neighborhood size, a scalar from 0 to 1. Default is 0.25.
See “Particle Swarm Optimization Algorithm” on page 10-11.

ObjectiveLimit Minimum objective value, a stopping criterion. Scalar, with default -Inf.
OutputFcn Function handle or cell array of function handles. Output functions can read

iterative data, and stop the solver. Default is []. See “Output Function and
Plot Function” on page 17-47.
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PlotFcn Function name, function handle, or cell array of function handles. For custom
plot functions, pass function handles. Plot functions can read iterative data,
plot each iteration, and stop the solver. Default is []. Available built-in plot
function: 'pswplotbestf'. See “Output Function and Plot Function” on
page 17-47.

SelfAdjustmentWei
ght

Weighting of each particle’s best position when adjusting velocity. Finite
scalar with default 1.49. See “Particle Swarm Optimization Algorithm” on
page 10-11.

SocialAdjustmentW
eight

Weighting of the neighborhood’s best position when adjusting velocity. Finite
scalar with default 1.49. See “Particle Swarm Optimization Algorithm” on
page 10-11.

SwarmSize Number of particles in the swarm, an integer greater than 1. Default is
min(100,10*nvars), where nvars is the number of variables.

UseParallel Compute objective function in parallel when true. Default is false. See
“Parallel or Vectorized Function Evaluation” on page 17-48.

UseVectorized Compute objective function in vectorized fashion when true. Default is
false. See “Parallel or Vectorized Function Evaluation” on page 17-48.

problem — Optimization problem
structure

Optimization problem, specified as a structure with the following fields.

solver 'particleswarm'
objective Function handle to the objective function, or name of the objective function.
nvars Number of variables in problem.
lb Vector or array of lower bounds.
ub Vector or array of upper bounds.
options Options created by optimoptions.
rngstate Optional state of the random number generator at the beginning of the

solution process.

Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a real vector that minimizes the objective function subject to any bound
constraints.

fval — Objective value
real scalar

Objective value, returned as the real scalar fun(x).

exitflag — Algorithm stopping condition
integer
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Algorithm stopping condition, returned as an integer identifying the reason the algorithm stopped.
The following lists the values of exitflag and the corresponding reasons particleswarm stopped.

1 Relative change in the objective value over the last
options.MaxStallIterations iterations is less than
options.FunctionTolerance.

0 Number of iterations exceeded options.MaxIterations.
-1 Iterations stopped by output function or plot function.
-2 Bounds are inconsistent: for some i, lb(i) > ub(i).
-3 Best objective function value is below options.ObjectiveLimit.
-4 Best objective function value did not change within

options.MaxStallTime seconds.
-5 Run time exceeded options.MaxTime seconds.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the optimization
process.

iterations Number of solver iterations
funccount Number of objective function evaluations.
message Reason the algorithm stopped.
hybridflag Exit flag from the hybrid function. Relates to the HybridFcn options.
rngstate State of the default random number generator just before the algorithm

started.

Algorithms
For a description of the particle swarm optimization algorithm, see “Particle Swarm Optimization
Algorithm” on page 10-11.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for particleswarm.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.
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See Also
ga | patternsearch | Optimize

Topics
“Optimize Using Particle Swarm” on page 10-5
“Particle Swarm Output Function” on page 10-8
“What Is Particle Swarm Optimization?” on page 10-2
“Solver-Based Optimization Problem Setup”

Introduced in R2014b
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patternsearch
Find minimum of function using pattern search

Syntax
x = patternsearch(fun,x0)
x = patternsearch(fun,x0,A,b)
x = patternsearch(fun,x0,A,b,Aeq,beq)
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub)
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = patternsearch(problem)
[x,fval] = patternsearch( ___ )
[x,fval,exitflag,output] = patternsearch( ___ )

Description
x = patternsearch(fun,x0) finds a local minimum, x, to the function handle fun that computes
the values of the objective function. x0 is a real vector specifying an initial point for the pattern
search algorithm.

Note “Passing Extra Parameters” explains how to pass extra parameters to the objective function
and nonlinear constraint functions, if necessary.

x = patternsearch(fun,x0,A,b) minimizes fun subject to the linear inequalities A*x ≤ b. See
“Linear Inequality Constraints”.

x = patternsearch(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear equalities
Aeq*x = beq and A*x ≤ b. If no linear inequalities exist, set A = [] and b = [].

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on
the design variables in x, so that the solution is always in the range lb ≤ x ≤ ub. If no linear
equalities exist, set Aeq = [] and beq = []. If x(i) has no lower bound, set lb(i) = -Inf. If
x(i) has no upper bound, set ub(i) = Inf.

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization to the
nonlinear inequalities c(x) or equalities ceq(x) defined in nonlcon. patternsearch optimizes
fun such that c(x) ≤ 0 and ceq(x) = 0. If no bounds exist, set lb = [], ub = [], or both.

x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes fun with the
optimization options specified in options. Use optimoptions to set these options. If there are no
nonlinear inequality or equality constraints, set nonlcon = [].

x = patternsearch(problem) finds the minimum for problem, a structure described in
problem.

[x,fval] = patternsearch( ___ ), for any syntax, returns the value of the objective function fun
at the solution x.
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[x,fval,exitflag,output] = patternsearch( ___ ) additionally returns exitflag, a value
that describes the exit condition of patternsearch, and a structure output with information about
the optimization process.

Examples

Unconstrained Pattern Search Minimization

Minimize an unconstrained problem using the patternsearch solver.

Create the following two-variable objective function. On your MATLAB® path, save the following
code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the minimum, starting at the point [0,0].

x0 = [0,0];
x = patternsearch(fun,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x =

   -0.7037   -0.1860

Pattern Search with a Linear Inequality Constraint

Minimize a function subject to some linear inequality constraints.

Create the following two-variable objective function. On your MATLAB® path, save the following
code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Set the two linear inequality constraints.
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A = [-3,-2;
    -4,-7];
b = [-1;-8];

Find the minimum, starting at the point [0.5,-0.5].

x0 = [0.5,-0.5];
x = patternsearch(fun,x0,A,b)

Optimization terminated: mesh size less than options.MeshTolerance.

x =

    5.2827   -1.8758

Pattern Search with Bounds

Find the minimum of a function that has only bound constraints.

Create the following two-variable objective function. On your MATLAB® path, save the following
code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the minimum when  and .

lb = [0,-Inf];
ub = [Inf,-3];
A = [];
b = [];
Aeq = [];
beq = [];

Find the minimum, starting at the point [1,-5].

x0 = [1,-5];
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub)

Optimization terminated: mesh size less than options.MeshTolerance.

x =

    0.1880   -3.0000
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Pattern Search with Nonlinear Constraints

Find the minimum of a function subject to a nonlinear inequality constraint.

Create the following two-variable objective function. On your MATLAB® path, save the following
code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Create the nonlinear constraint

To do so, on your MATLAB path, save the following code to a file named ellipsetilt.m.

function [c,ceq] = ellipsetilt(x)
ceq = [];
c = x(1)*x(2)/2 + (x(1)+2)^2 + (x(2)-2)^2/2 - 2;

Start patternsearch from the initial point [-2,-2].

x0 = [-2,-2];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @ellipsetilt;
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Optimization terminated: mesh size less than options.MeshTolerance
 and constraint violation is less than options.ConstraintTolerance.

x =

   -1.5144    0.0874

Pattern Search with Nondefault Options

Set options to observe the progress of the patternsearch solution process.

Create the following two-variable objective function. On your MATLAB path, save the following code
to a file named psobj.m.
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function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Set options to give iterative display and to plot the objective function at each iteration.

options = optimoptions('patternsearch','Display','iter','PlotFcn',@psplotbestf);

Find the unconstrained minimum of the objective starting from the point [0,0].

x0 = [0,0];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
x = patternsearch(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Iter     f-count          f(x)      MeshSize     Method
    0        1              1             1      
    1        4       -5.88607             2     Successful Poll
    2        8       -5.88607             1     Refine Mesh
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    3       12       -5.88607           0.5     Refine Mesh
    4       16       -5.88607          0.25     Refine Mesh

(output trimmed)

   63      218       -7.02545     1.907e-06     Refine Mesh
   64      221       -7.02545     3.815e-06     Successful Poll
   65      225       -7.02545     1.907e-06     Refine Mesh
   66      229       -7.02545     9.537e-07     Refine Mesh
Optimization terminated: mesh size less than options.MeshTolerance.

x =

   -0.7037   -0.1860

Obtain Function Value And Minimizing Point

Find a minimum value of a function and report both the location and value of the minimum.

Create the following two-variable objective function. On your MATLAB® path, save the following
code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the unconstrained minimum of the objective, starting from the point [0,0]. Return both the
location of the minimum, x, and the value of fun(x).

x0 = [0,0];
[x,fval] = patternsearch(fun,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x =

   -0.7037   -0.1860

fval =

   -7.0254

Obtain All Outputs

To examine the patternsearch solution process, obtain all outputs.
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Create the following two-variable objective function. On your MATLAB® path, save the following
code to a file named psobj.m.

function y = psobj(x)

y = exp(-x(1)^2-x(2)^2)*(1+5*x(1) + 6*x(2) + 12*x(1)*cos(x(2)));

Set the objective function to @psobj.

fun = @psobj;

Find the unconstrained minimum of the objective, starting from the point [0,0]. Return the solution,
x, the objective function value at the solution, fun(x), the exit flag, and the output structure.

x0 = [0,0];
[x,fval,exitflag,output] = patternsearch(fun,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

x =

   -0.7037   -0.1860

fval =

   -7.0254

exitflag =

     1

output = 

  struct with fields:

         function: @psobj
      problemtype: 'unconstrained'
       pollmethod: 'gpspositivebasis2n'
    maxconstraint: []
     searchmethod: []
       iterations: 66
        funccount: 229
         meshsize: 9.5367e-07
         rngstate: [1x1 struct]
          message: 'Optimization terminated: mesh size less than options.MeshTolerance.'

The exitflag is 1, indicating convergence to a local minimum.

The output structure includes information such as how many iterations patternsearch took, and
how many function evaluations. Compare this output structure with the results from “Pattern Search
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with Nondefault Options” on page 18-134. In that example, you obtain some of this information, but
did not obtain, for example, the number of function evaluations.

Input Arguments
fun — Function to be minimized
function handle | function name

Function to be minimized, specified as a function handle or function name. The fun function accepts
a vector x and returns a real scalar f, which is the objective function evaluated at x.

You can specify fun as a function handle for a file

x = patternsearch(@myfun,x0)

Here, myfun is a MATLAB function such as

function f = myfun(x)
f = ...            % Compute function value at x

fun can also be a function handle for an anonymous function

x = patternsearch(@(x)norm(x)^2,x0,A,b);

Example: fun = @(x)sin(x(1))*cos(x(2))
Data Types: char | function_handle | string

x0 — Initial point
real vector

Initial point, specified as a real vector. patternsearch uses the number of elements in x0 to
determine the number of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-nvars matrix, where M is the
number of inequalities.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of nvars variables x(:), and b is a column vector with M elements.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:
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A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:).

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-nvars matrix, where Me is the
number of equalities.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];
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Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to that
of lb, then lb specifies that

x(i) >= lb(i)

for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i)

for

1 <= i <= numel(lb)

In this case, solvers issue a warning.
Example: To specify that all control variables are positive, lb = zeros(size(x0))
Data Types: double

ub — Upper bounds
real vector | real array
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Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to that
of ub, then ub specifies that

x(i) <= ub(i)

for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i)

for

1 <= i <= numel(ub)

In this case, solvers issue a warning.
Example: To specify that all control variables are less than one, ub = ones(size(x0))
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a vector or array x and returns two arrays, c(x) and ceq(x).

• c(x) is the array of nonlinear inequality constraints at x. patternsearch attempts to satisfy

c(x) <= 0

for all entries of c.
• ceq(x) is the array of nonlinear equality constraints at x. patternsearch attempts to satisfy

ceq(x) = 0

for all entries of ceq.

For example,

x = patternsearch(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ...     % Compute nonlinear inequalities at x.
ceq = ...   % Compute nonlinear equalities at x.

For more information, see “Nonlinear Constraints”.
Data Types: char | function_handle | string

options — Optimization options
object returned by optimoptions | structure

Optimization options, specified as an object returned by optimoptions (recommended), or a
structure.
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optimoptions hides the options listed in italics; see “Options that optimoptions Hides” on page 17-
64.

{} denotes the default value. See option details in “Pattern Search Options” on page 17-7.
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Options for patternsearch and paretosearch

Option Description Values
ConstraintToleranc
e

Tolerance on constraints.

For an options structure, use TolCon.

Positive scalar | {1e-6}

Display Level of display. 'off' | 'iter' |
'diagnose' | {'final'}

MaxFunctionEvaluat
ions

Maximum number of objective function evaluations.

For an options structure, use MaxFunEvals.

Positive integer |
{'2000*numberOfVaria
bles'} for
patternsearch,
{'3000*(numberOfVari
ables
+numberOfObjectives)
'} for paretosearch,
where
numberOfVariables is
the number of problem
variables, and
numberOfObjectives is
the number of objective
functions

MaxIterations Maximum number of iterations.

For an options structure, use MaxIter.

Positive integer |
{'100*numberOfVariab
les'} for
patternsearch,
{'100*(numberOfVaria
bles
+numberOfObjectives)
'} for paretosearch,
where
numberOfVariables is
the number of problem
variables, and
numberOfObjectives is
the number of objective
functions

MaxTime Total time (in seconds) allowed for optimization.

For an options structure, use TimeLimit.

Positive scalar | {Inf}

MeshTolerance Tolerance on the mesh size.

For an options structure, use TolMesh.

Positive scalar | {1e-6}

OutputFcn Function that an optimization function calls at each
iteration. Specify as a function handle or a cell array of
function handles.

For an options structure, use OutputFcns.

Function handle or cell
array of function handles
on page 17-17 | {[]}
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Option Description Values
PlotFcn Plots of output from the pattern search. Specify as the

name of a built-in plot function, a function handle, or a
cell array of names of built-in plot functions or function
handles.

For an options structure, use PlotFcns.

{[]} | For both
patternsearch and
paretosearch:
'psplotfuncount' |
'psplotmaxconstr' |
custom plot function on
page 17-7

For paretosearch only
with multiple objectives:
'psplotdistance' |
'psplotparetof' |
'psplotparetox' |
'psplotspread' |
'psplotvolume'

For patternsearch only
or paretosearch with a
single objective:
'psplotbestf' |
'psplotmeshsize' |
'psplotbestx'

PollMethod Polling strategy used in the pattern search.

Note You cannot use MADS polling when the problem
has linear equality constraints.

{'GPSPositiveBasis2N
'} |
'GPSPositiveBasisNp1
' |
'GSSPositiveBasis2N'
|
'GSSPositiveBasisNp1
' |
'MADSPositiveBasis2N
' |
'MADSPositiveBasisNp
1'

For paretosearch only:
'GSSPositiveBasis2np
2' |
{'GPSPositiveBasis2n
p2'}
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Option Description Values
UseParallel Compute objective and nonlinear constraint functions in

parallel. See “Vectorized and Parallel Options” on page
17-19 and “How to Use Parallel Processing in Global
Optimization Toolbox” on page 16-11.

Note You must set UseCompletePoll to true for
patternsearch to use vectorized or parallel polling.
Similarly, set UseCompleteSearch to true for
vectorized or parallel searching.

Beginning in R2019a, when you set the UseParallel
option to true, patternsearch internally overrides the
UseCompletePoll setting to true so it polls in parallel.

true | {false}

UseVectorized Specifies whether functions are vectorized. See
“Vectorized and Parallel Options” on page 17-19 and
“Vectorize the Objective and Constraint Functions” on
page 6-79.

Note You must set UseCompletePoll to true for
patternsearch to use vectorized or parallel polling.
Similarly, set UseCompleteSearch to true for
vectorized or parallel searching.

For an options structure, use Vectorized = 'on' or
'off'.

true | {false}
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Options for paretosearch Only

Option Description Values
InitialPoints Initial points for paretosearch. Use one of these data

types:

• Matrix with nvars columns, where each row
represents one initial point.

• Structure containing the following fields (all fields are
optional except X0):

• X0 — Matrix with nvars columns, where each row
represents one initial point.

• Fvals — Matrix with numObjectives columns,
where each row represents the objective function
values at the corresponding point in X0.

• Cineq — Matrix with numIneq columns, where
each row represents the nonlinear inequality
constraint values at the corresponding point in X0.

paretosearch computes any missing values in the
Fvals and Cineq fields.

Matrix with nvars
columns | structure | {[]}

MinPollFraction Minimum fraction of the pattern to poll. Scalar from 0 through 1 |
{0}

ParetoSetSize Number of points in the Pareto set. Positive integer |
{'max(numberOfObject
ives, 60)'}, where
numberOfObjectives is
the number of objective
functions
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Option Description Values
ParetoSetChangeTol
erance

The solver stops when the relative change in a stopping
measure over a window of iterations is less than or equal
to ParetoSetChangeTolerance.

• For three or fewer objectives, paretosearch uses
the volume and spread measures.

• For four or more objectives, paretosearch uses the
spread and distance measures.

See “Definitions for paretosearch Algorithm” on page 14-
10.

The solver stops when the relative change in any
applicable measure is less than
ParetoSetChangeTolerance, or the maximum of the
squared Fourier transforms of the time series of these
measures is relatively small. See “paretosearch
Algorithm” on page 14-10.

Note Setting ParetoSetChangeTolerance <
sqrt(eps) ~ 1.5e-8 is not recommended.

Positive scalar | {1e-4}
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Options for patternsearch Only

Option Description Values
Cache With Cache set to 'on', patternsearch keeps a

history of the mesh points it polls. At subsequent
iterations, patternsearch does not poll points close to
those already polled. Use this option if patternsearch
runs slowly while computing the objective function. If the
objective function is stochastic, do not use this option.

Note Cache does not work when you run the solver in
parallel.

'on' | {'off'}

CacheSize Size of the history. Positive scalar | {1e4}
CacheTol Largest distance from the current mesh point to any

point in the history in order for patternsearch to avoid
polling the current point. Use if Cache option is set to
'on'.

Positive scalar | {eps}

FunctionTolerance Tolerance on the function. Iterations stop if the change in
function value is less than FunctionTolerance and the
mesh size is less than StepTolerance. This option does
not apply to MADS polling.

For an options structure, use TolFun.

Positive scalar | {1e-6}

InitialMeshSize Initial mesh size for the algorithm. See “How Pattern
Search Polling Works” on page 6-26.

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty parameter. See “Nonlinear
Constraint Solver Algorithm” on page 6-43.

Positive scalar | {10}

MaxMeshSize Maximum mesh size used in a poll or search step. See
“How Pattern Search Polling Works” on page 6-26.

Positive scalar | {Inf}

MeshContractionFac
tor

Mesh contraction factor for unsuccessful iteration.

For an options structure, use MeshContraction.

Positive scalar | {0.5}

MeshExpansionFacto
r

Mesh expansion factor for successful iteration.

For an options structure, use MeshExpansion.

Positive scalar | {2.0}

MeshRotate Rotate the pattern before declaring a point to be
optimum. See “Mesh Options” on page 17-15.

'off' | {'on'}

PenaltyFactor Penalty update parameter. See “Nonlinear Constraint
Solver Algorithm” on page 6-43.

Positive scalar | {100}

PlotInterval Specifies that plot functions are called at every interval. positive integer | {1}
PollOrderAlgorithm Order of poll directions in pattern search.

For an options structure, use PollingOrder.

'Random' | 'Success' |
{'Consecutive'}

ScaleMesh Automatic scaling of variables.

For an options structure, use ScaleMesh = 'on' or
'off'.

{true}| false
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Option Description Values
SearchFcn Type of search used in pattern search. Specify as a name

or a function handle.

For an options structure, use SearchMethod.

'GPSPositiveBasis2N'
|
'GPSPositiveBasisNp1
' |
'GSSPositiveBasis2N'
|
'GSSPositiveBasisNp1
' |
'MADSPositiveBasis2N
' |
'MADSPositiveBasisNp
1' | 'searchga' |
'searchlhs' |
'searchneldermead' |
{[]} | custom search
function on page 17-12

StepTolerance Tolerance on the variable. Iterations stop if both the
change in position and the mesh size are less than
StepTolerance. This option does not apply to MADS
polling.

For an options structure, use TolX.

Positive scalar | {1e-6}

TolBind Binding tolerance. See “Constraint Parameters” on page
17-15.

Positive scalar | {1e-3}

UseCompletePoll Complete poll around the current point. See “How
Pattern Search Polling Works” on page 6-26.

For an options structure, use CompletePoll = 'on' or
'off'.

true | {false}

UseCompleteSearch Complete search around current point when the search
method is a poll method. See “Searching and Polling” on
page 6-34.

For an options structure, use CompleteSearch = 'on'
or 'off'.

true | {false}

Example: options =
optimoptions('patternsearch','MaxIterations',150,'MeshTolerance',1e-4)

Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

• objective — Objective function
• x0 — Starting point
• Aineq — Matrix for linear inequality constraints
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• bineq — Vector for linear inequality constraints
• Aeq — Matrix for linear equality constraints
• beq — Vector for linear equality constraints
• lb — Lower bound for x
• ub — Upper bound for x
• nonlcon — Nonlinear constraint function
• solver — 'patternsearch'
• options — Options created with optimoptions or psoptimset
• rngstate — Optional field to reset the state of the random number generator

Note All fields in problem are required.

Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a real vector. The size of x is the same as the size of x0. When exitflag is
positive, x is typically a local solution to the problem.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason patternsearch stopped
integer

Reason patternsearch stopped, returned as an integer.

Exit Flag Meaning
1 Without nonlinear constraints — The magnitude of the mesh size is less than the

specified tolerance, and the constraint violation is less than ConstraintTolerance.
With nonlinear constraints — The magnitude of the complementarity measure
(defined after this table) is less than sqrt(ConstraintTolerance), the subproblem is
solved using a mesh finer than MeshTolerance, and the constraint violation is less than
ConstraintTolerance.

2 The change in x and the mesh size are both less than the specified tolerance, and the
constraint violation is less than ConstraintTolerance.

3 The change in fval and the mesh size are both less than the specified tolerance, and
the constraint violation is less than ConstraintTolerance.

4 The magnitude of the step is smaller than machine precision, and the constraint
violation is less than ConstraintTolerance.

0 The maximum number of function evaluations or iterations is reached.

18 Functions

18-150



Exit Flag Meaning
-1 Optimization terminated by an output function or plot function.
-2 No feasible point found.

In the nonlinear constraint solver, the complementarity measure is the norm of the vector whose
elements are ciλi, where ci is the nonlinear inequality constraint violation, and λi is the corresponding
Lagrange multiplier.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields:

• function — Objective function.
• problemtype — Problem type, one of:

• 'unconstrained'
• 'boundconstraints'
• 'linearconstraints'
• 'nonlinearconstr'

• pollmethod — Polling technique.
• searchmethod — Search technique used, if any.
• iterations — Total number of iterations.
• funccount — Total number of function evaluations.
• meshsize — Mesh size at x.
• maxconstraint — Maximum constraint violation, if any.
• rngstate — State of the MATLAB random number generator, just before the algorithm started.

You can use the values in rngstate to reproduce the output when you use a random search
method or random poll method. See “Reproduce Results” on page 8-65, which discusses the
identical technique for ga.

• message — Reason why the algorithm terminated.

Algorithms
By default, patternsearch looks for a minimum based on an adaptive mesh that, in the absence of
linear constraints, is aligned with the coordinate directions. See “What Is Direct Search?” on page 6-
2 and “How Pattern Search Polling Works” on page 6-26.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for patternsearch.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.

See Also
ga | optimoptions | paretosearch | Optimize

Topics
“Optimize Using the GPS Algorithm” on page 6-3
“Coding and Minimizing an Objective Function Using Pattern Search” on page 6-9
“Constrained Minimization Using Pattern Search, Solver-Based” on page 6-13
“Effects of Pattern Search Options” on page 6-17
“Optimize an ODE in Parallel” on page 6-83
“Pattern Search Climbs Mount Washington” on page 6-48
“Optimization Workflow” on page 1-29
“What Is Direct Search?” on page 6-2
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“Pattern Search Terminology” on page 6-23
“How Pattern Search Polling Works” on page 6-26
“Polling Types” on page 6-55
“Search and Poll” on page 6-39

Introduced before R2006a
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psoptimget
(Not recommended) Obtain values of pattern search options structure

Note psoptimget is not recommended. Instead, query options using dot notation. For more
information, see “Compatibility Considerations”.

Syntax
val = psoptimget(options,'name')
val = psoptimget(options,'name',default)

Description
val = psoptimget(options,'name') returns the value of the parameter name from the pattern
search options structure options. psoptimget(options,'name') returns an empty matrix [] if
the value of name is not specified in options. It is only necessary to type enough leading characters
of name to uniquely identify it. psoptimget ignores case in parameter names.

val = psoptimget(options,'name',default) returns the value of the parameter name from
the pattern search options structure options, but returns default if the parameter is not specified
(as in []) in options.

Examples
opts = psoptimset('TolX',1e-4);
val = psoptimget(opts,'TolX')

returns val = 1e-4.

Compatibility Considerations
psoptimget is not recommended
Not recommended starting in R2018b

To query options, the gaoptimget, psoptimget, and saoptimget functions are not recommended.
Instead, use dot notation. For example, to see the setting of the Display option in opts,

displayopt = opts.Display
% instead of
displayopt = gaoptimget(opts,'Display')

Using automatic code completions, dot notation takes fewer keystrokes: displayopt = opts.D
Tab.

There are no plans to remove gaoptimget, psoptimget, and saoptimget at this time.

See Also
patternsearch
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Topics
“Pattern Search Options” on page 17-7

Introduced before R2006a
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psoptimset
(Not recommended) Create pattern search options structure

Note psoptimset is not recommended. Use optimoptions instead. For more information, see
“Compatibility Considerations”.

Syntax
psoptimset
options = psoptimset
options = psoptimset(@patternsearch)
options = psoptimset('param1',value1,'param2',value2,...)
options = psoptimset(oldopts,'param1',value1,...)
options = psoptimset(oldopts,newopts)

Description
psoptimset with no input or output arguments displays a complete list of parameters with their
valid values.

options = psoptimset (with no input arguments) creates a structure called options that
contains the options, or parameters, for patternsearch, and sets parameters to [], indicating
patternsearch uses the default values.

options = psoptimset(@patternsearch) creates a structure called options that contains the
default values for patternsearch.

options = psoptimset('param1',value1,'param2',value2,...) creates a structure
options and sets the value of 'param1' to value1, 'param2' to value2, and so on. Any
unspecified parameters are set to their default values. It is sufficient to type only enough leading
characters to define the parameter name uniquely. Case is ignored for parameter names.

options = psoptimset(oldopts,'param1',value1,...) creates a copy of oldopts,
modifying the specified parameters with the specified values.

options = psoptimset(oldopts,newopts) combines an existing options structure, oldopts,
with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite
the corresponding old parameters in oldopts.

Options
The following table lists the options you can set with psoptimset. See “Pattern Search Options” on
page 17-7 for a complete description of the options and their values. Values in {} denote the default
value. You can also view the optimization parameters and defaults by typing psoptimset at the
command line.

optimoptions hides the options listed in italics, but psoptimset does not. See “Options that
optimoptions Hides” on page 17-64.
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Options for patternsearch and paretosearch

Option Description Values
ConstraintToleranc
e

Tolerance on constraints.

For an options structure, use TolCon.

Positive scalar | {1e-6}

Display Level of display. 'off' | 'iter' |
'diagnose' | {'final'}

MaxFunctionEvaluat
ions

Maximum number of objective function evaluations.

For an options structure, use MaxFunEvals.

Positive integer |
{'2000*numberOfVaria
bles'} for
patternsearch,
{'3000*(numberOfVari
ables
+numberOfObjectives)
'} for paretosearch,
where
numberOfVariables is
the number of problem
variables, and
numberOfObjectives is
the number of objective
functions

MaxIterations Maximum number of iterations.

For an options structure, use MaxIter.

Positive integer |
{'100*numberOfVariab
les'} for
patternsearch,
{'100*(numberOfVaria
bles
+numberOfObjectives)
'} for paretosearch,
where
numberOfVariables is
the number of problem
variables, and
numberOfObjectives is
the number of objective
functions

MaxTime Total time (in seconds) allowed for optimization.

For an options structure, use TimeLimit.

Positive scalar | {Inf}

MeshTolerance Tolerance on the mesh size.

For an options structure, use TolMesh.

Positive scalar | {1e-6}

OutputFcn Function that an optimization function calls at each
iteration. Specify as a function handle or a cell array of
function handles.

For an options structure, use OutputFcns.

Function handle or cell
array of function handles
on page 17-17 | {[]}
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Option Description Values
PlotFcn Plots of output from the pattern search. Specify as the

name of a built-in plot function, a function handle, or a
cell array of names of built-in plot functions or function
handles.

For an options structure, use PlotFcns.

{[]} | For both
patternsearch and
paretosearch:
'psplotfuncount' |
'psplotmaxconstr' |
custom plot function on
page 17-7

For paretosearch only
with multiple objectives:
'psplotdistance' |
'psplotparetof' |
'psplotparetox' |
'psplotspread' |
'psplotvolume'

For patternsearch only
or paretosearch with a
single objective:
'psplotbestf' |
'psplotmeshsize' |
'psplotbestx'

PollMethod Polling strategy used in the pattern search.

Note You cannot use MADS polling when the problem
has linear equality constraints.

{'GPSPositiveBasis2N
'} |
'GPSPositiveBasisNp1
' |
'GSSPositiveBasis2N'
|
'GSSPositiveBasisNp1
' |
'MADSPositiveBasis2N
' |
'MADSPositiveBasisNp
1'

For paretosearch only:
'GSSPositiveBasis2np
2' |
{'GPSPositiveBasis2n
p2'}
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Option Description Values
UseParallel Compute objective and nonlinear constraint functions in

parallel. See “Vectorized and Parallel Options” on page
17-19 and “How to Use Parallel Processing in Global
Optimization Toolbox” on page 16-11.

Note You must set UseCompletePoll to true for
patternsearch to use vectorized or parallel polling.
Similarly, set UseCompleteSearch to true for
vectorized or parallel searching.

Beginning in R2019a, when you set the UseParallel
option to true, patternsearch internally overrides the
UseCompletePoll setting to true so it polls in parallel.

true | {false}

UseVectorized Specifies whether functions are vectorized. See
“Vectorized and Parallel Options” on page 17-19 and
“Vectorize the Objective and Constraint Functions” on
page 6-79.

Note You must set UseCompletePoll to true for
patternsearch to use vectorized or parallel polling.
Similarly, set UseCompleteSearch to true for
vectorized or parallel searching.

For an options structure, use Vectorized = 'on' or
'off'.

true | {false}

 psoptimset

18-159



Options for paretosearch Only

Option Description Values
InitialPoints Initial points for paretosearch. Use one of these data

types:

• Matrix with nvars columns, where each row
represents one initial point.

• Structure containing the following fields (all fields are
optional except X0):

• X0 — Matrix with nvars columns, where each row
represents one initial point.

• Fvals — Matrix with numObjectives columns,
where each row represents the objective function
values at the corresponding point in X0.

• Cineq — Matrix with numIneq columns, where
each row represents the nonlinear inequality
constraint values at the corresponding point in X0.

paretosearch computes any missing values in the
Fvals and Cineq fields.

Matrix with nvars
columns | structure | {[]}

MinPollFraction Minimum fraction of the pattern to poll. Scalar from 0 through 1 |
{0}

ParetoSetSize Number of points in the Pareto set. Positive integer |
{'max(numberOfObject
ives, 60)'}, where
numberOfObjectives is
the number of objective
functions
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Option Description Values
ParetoSetChangeTol
erance

The solver stops when the relative change in a stopping
measure over a window of iterations is less than or equal
to ParetoSetChangeTolerance.

• For three or fewer objectives, paretosearch uses
the volume and spread measures.

• For four or more objectives, paretosearch uses the
spread and distance measures.

See “Definitions for paretosearch Algorithm” on page 14-
10.

The solver stops when the relative change in any
applicable measure is less than
ParetoSetChangeTolerance, or the maximum of the
squared Fourier transforms of the time series of these
measures is relatively small. See “paretosearch
Algorithm” on page 14-10.

Note Setting ParetoSetChangeTolerance <
sqrt(eps) ~ 1.5e-8 is not recommended.

Positive scalar | {1e-4}
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Options for patternsearch Only

Option Description Values
Cache With Cache set to 'on', patternsearch keeps a

history of the mesh points it polls. At subsequent
iterations, patternsearch does not poll points close to
those already polled. Use this option if patternsearch
runs slowly while computing the objective function. If the
objective function is stochastic, do not use this option.

Note Cache does not work when you run the solver in
parallel.

'on' | {'off'}

CacheSize Size of the history. Positive scalar | {1e4}
CacheTol Largest distance from the current mesh point to any

point in the history in order for patternsearch to avoid
polling the current point. Use if Cache option is set to
'on'.

Positive scalar | {eps}

FunctionTolerance Tolerance on the function. Iterations stop if the change in
function value is less than FunctionTolerance and the
mesh size is less than StepTolerance. This option does
not apply to MADS polling.

For an options structure, use TolFun.

Positive scalar | {1e-6}

InitialMeshSize Initial mesh size for the algorithm. See “How Pattern
Search Polling Works” on page 6-26.

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty parameter. See “Nonlinear
Constraint Solver Algorithm” on page 6-43.

Positive scalar | {10}

MaxMeshSize Maximum mesh size used in a poll or search step. See
“How Pattern Search Polling Works” on page 6-26.

Positive scalar | {Inf}

MeshContractionFac
tor

Mesh contraction factor for unsuccessful iteration.

For an options structure, use MeshContraction.

Positive scalar | {0.5}

MeshExpansionFacto
r

Mesh expansion factor for successful iteration.

For an options structure, use MeshExpansion.

Positive scalar | {2.0}

MeshRotate Rotate the pattern before declaring a point to be
optimum. See “Mesh Options” on page 17-15.

'off' | {'on'}

PenaltyFactor Penalty update parameter. See “Nonlinear Constraint
Solver Algorithm” on page 6-43.

Positive scalar | {100}

PlotInterval Specifies that plot functions are called at every interval. positive integer | {1}
PollOrderAlgorithm Order of poll directions in pattern search.

For an options structure, use PollingOrder.

'Random' | 'Success' |
{'Consecutive'}

ScaleMesh Automatic scaling of variables.

For an options structure, use ScaleMesh = 'on' or
'off'.

{true}| false
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Option Description Values
SearchFcn Type of search used in pattern search. Specify as a name

or a function handle.

For an options structure, use SearchMethod.

'GPSPositiveBasis2N'
|
'GPSPositiveBasisNp1
' |
'GSSPositiveBasis2N'
|
'GSSPositiveBasisNp1
' |
'MADSPositiveBasis2N
' |
'MADSPositiveBasisNp
1' | 'searchga' |
'searchlhs' |
'searchneldermead' |
{[]} | custom search
function on page 17-12

StepTolerance Tolerance on the variable. Iterations stop if both the
change in position and the mesh size are less than
StepTolerance. This option does not apply to MADS
polling.

For an options structure, use TolX.

Positive scalar | {1e-6}

TolBind Binding tolerance. See “Constraint Parameters” on page
17-15.

Positive scalar | {1e-3}

UseCompletePoll Complete poll around the current point. See “How
Pattern Search Polling Works” on page 6-26.

For an options structure, use CompletePoll = 'on' or
'off'.

true | {false}

UseCompleteSearch Complete search around current point when the search
method is a poll method. See “Searching and Polling” on
page 6-34.

For an options structure, use CompleteSearch = 'on'
or 'off'.

true | {false}

Compatibility Considerations
psoptimset is not recommended
Not recommended starting in R2018b

To set options, the gaoptimset, psoptimset, and saoptimset functions are not recommended.
Instead, use optimoptions.

The main difference between using optimoptions and the other functions is that you include the
solver name as the first argument in optimoptions. For example, to set an iterative display in ga:

options = optimoptions('ga','Display','iter');
% instead of
options = gaoptimset('Display','iter');
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The other difference is that some option names have changed. You can continue to use the old names
in optimoptions. For details, see “Options Changes in R2016a” on page 17-64.

optimoptions offers these advantages over the other functions:

• optimoptions provides better automatic code suggestions and completions, especially in the
Live Editor.

• You can use a single option-setting function instead of a variety of functions.

There are no plans to remove gaoptimset, psoptimset, and saoptimset at this time.

See Also
optimoptions | patternsearch

Introduced before R2006a
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RandomStartPointSet
Random start points

Description
A RandomStartPointSet object describes how to generate a set of pseudorandom points for use
with MultiStart. A RandomStartPointSet object does not contain points. It contains parameters
for generating the points when MultiStart runs or when you use the list function.

Creation

Syntax
rs = RandomStartPointSet
rs = RandomStartPointSet(Name,Value)
rs = RandomStartPointSet(oldrs,Name,Value)

Description

rs = RandomStartPointSet creates a default RandomStartPointSet object.

rs = RandomStartPointSet(Name,Value) sets properties using name-value pairs.

rs = RandomStartPointSet(oldrs,Name,Value) creates a copy of the oldrs
RandomStartPointSet object, and sets properties using name-value pairs.

Properties
ArtificialBound — Absolute value of default bounds for unbounded components
1000 (default) | positive scalar

Absolute value of the default bounds for unbounded components, specified as a positive scalar.
Example: 1e2
Data Types: double

NumStartPoints — Number of start points
10 (default) | positive integer

Number of start points, specified as a positive integer.
Example: 40
Data Types: double

Object Functions
list List start points
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Examples

Create Default RandomStartPointSet

Create a default RandomStartPointSet object.

rs = RandomStartPointSet

rs = 
  RandomStartPointSet with properties:

     NumStartPoints: 10
    ArtificialBound: 1000

Create RandomStartPointSet

Create a RandomStartPointSet object for 40 points.

rs = RandomStartPointSet('NumStartPoints',40);

Create a problem with 3-D variables, lower bounds of 0, and upper bounds of [10,20,30].

problem = createOptimProblem('fmincon','x0',rand(3,1),'lb',zeros(3,1),'ub',[10,20,30]);

Generate a random set of 40 points consistent with the problem.

points = list(rs,problem);

Examine the maximum and minimum generated components.

largest = max(max(points))

largest = 29.8840

smallest = min(min(points))

smallest = 0.1390

Update RandomStartPointSet

Create a RandomStartPointSet object that generates 50 points.

rs = RandomStartPointSet('NumStartPoints',50)

rs = 
  RandomStartPointSet with properties:

     NumStartPoints: 50
    ArtificialBound: 1000

Update rs to use 100 points and an artificial bound of 1e4.
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rs = RandomStartPointSet(rs,'NumStartPoints',100,'ArtificialBound',1e4)

rs = 
  RandomStartPointSet with properties:

     NumStartPoints: 100
    ArtificialBound: 10000

You can also update properties using dot notation.

rs.ArtificialBound = 500

rs = 
  RandomStartPointSet with properties:

     NumStartPoints: 100
    ArtificialBound: 500

See Also
MultiStart | CustomStartPointSet | list

Topics
“Workflow for GlobalSearch and MultiStart” on page 4-3

Introduced in R2010a
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run
Run multiple-start solver

Syntax
x = run(gs,problem)
x = run(ms,problem,k)
x = run(ms,problem,startpts)
[x,fval] = run( ___ )
[x,fval,exitflag,output] = run( ___ )
[x,fval,exitflag,output,solutions] = run( ___ )

Description
x = run(gs,problem) runs GlobalSearch to find a solution or multiple local solutions to
problem.

x = run(ms,problem,k) runs MultiStart on k start points to find a solution or multiple local
solutions to problem.

x = run(ms,problem,startpts) runs MultiStart on problem from the start points described
in startpts.

[x,fval] = run( ___ ) returns the objective function value at x, the best point found, using any of
the arguments in the previous syntaxes. For the lsqcurvefit and lsqnonlin local solvers, fval
contains the squared norm of the residual.

[x,fval,exitflag,output] = run( ___ ) also returns an exit flag describing the return
condition, and an output structure describing the iterations of the run.

[x,fval,exitflag,output,solutions] = run( ___ ) also returns a vector of solutions
containing the distinct local minima found during the run.

Examples

Run GlobalSearch on Multidimensional Problem

Create an optimization problem that has several local minima, and try to find the global minimum
using GlobalSearch. The objective is the six-hump camel back problem (see “Run the Solver” on
page 4-13).

rng default % For reproducibility
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
x = run(gs,problem)
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GlobalSearch stopped because it analyzed all the trial points.

All 8 local solver runs converged with a positive local solver exit flag.

x = 1×2

   -0.0898    0.7127

You can request the objective function value at x when you call run by using the following syntax:

[x,fval] = run(gs,problem)

However, if you neglected to request fval, you can still compute the objective function value at x.

fval = sixmin(x)

fval = -1.0316

Run a Multiple Start Solver

Use a default MultiStart object to solve the six-hump camel back problem (see “Run the Solver” on
page 4-13).

rng default % For reproducibility
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
[x,fval,exitflag,outpt,solutions] = run(ms,problem,30);

MultiStart completed the runs from all start points.

All 30 local solver runs converged with a positive local solver exit flag.

Examine the best function value and the location where the best function value is attained.

fprintf('The best function value is %f.\n',fval)

The best function value is -1.031628.

fprintf('The location where this value is attained is [%f,%f].',x)

The location where this value is attained is [-0.089842,0.712656].

Run MultiStart from a Regular Array

Create a set of initial 2-D points for MultiStart in the range [-3,3] for each component.

v = -3:0.5:3;
[X,Y] = meshgrid(v);
ptmatrix = [X(:),Y(:)];
tpoints = CustomStartPointSet(ptmatrix);
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Find the point that minimizes the six-hump camel back problem (see “Run the Solver” on page 4-13)
by starting MultiStart at the points in tpoints.

rng default % For reproducibility
ms = MultiStart;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
x = run(ms,problem,tpoints)

MultiStart completed the runs from all start points.

All 169 local solver runs converged with a positive local solver exit flag.

x = 1×2

   -0.0898    0.7127

Examine GlobalSearch Process

Create an optimization problem that has several local minima, and try to find the global minimum
using GlobalSearch. The objective is the six-hump camel back problem (see “Run the Solver” on
page 4-13).

rng default % For reproducibility
gs = GlobalSearch;
sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ...
    + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
    'objective',sixmin,'lb',[-3,-3],'ub',[3,3]);
[x,fval,exitflag,output,solutions] = run(gs,problem);

GlobalSearch stopped because it analyzed all the trial points.

All 8 local solver runs converged with a positive local solver exit flag.

To understand what GlobalSearch did to solve this problem, examine the output structure and
solutions object.

disp(output)

                funcCount: 2245
         localSolverTotal: 8
       localSolverSuccess: 8
    localSolverIncomplete: 0
    localSolverNoSolution: 0
                  message: 'GlobalSearch stopped because it analyzed all the trial points....'

• GlobalSearch evaluated the objective function 2261 times.
• GlobalSearch ran fmincon starting from eight different points.
• All of the fmincon runs converged successfully to a local solution.

disp(solutions)
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  1x4 GlobalOptimSolution array with properties:

    X
    Fval
    Exitflag
    Output
    X0

arrayfun(@(x)x.Output.funcCount,solutions)

ans = 1×4

    31    34    40     3

The eight local solver runs found four solutions. The funcCount output shows that fmincon took no
more than 40 function evaluations to reach each of the four solutions. The output does not show how
many function evaluations four of the fmincon runs took. Most of the 2261 function evaluations seem
to be for GlobalSearch to evaluate trial points, not for fmincon to run starting from those points.

Input Arguments
gs — GlobalSearch solver
GlobalSearch object

GlobalSearch solver, specified as a GlobalSearch object. Create gs using the GlobalSearch
command.

ms — MultiStart solver
MultiStart object

MultiStart solver, specified as a MultiStart object. Create ms using the MultiStart command.

problem — Optimization problem
problem structure

Optimization problem, specified as a problem structure. Create problem using
createOptimProblem. For further details, see “Create Problem Structure” on page 4-4.
Example: problem =
createOptimProblem('fmincon','objective',fun,'x0',x0,'lb',lb)

Data Types: struct

k — Number of start points
positive integer

Number of start points, specified as a positive integer. MultiStart generates k - 1 start points
using the same algorithm as for a RandomStartPointSet object. MultiStart also uses the x0
point from the problem structure.
Example: 50
Data Types: double

startpts — Start points for MultiStart
CustomStartPointSet object | RandomStartPointSet object | cell array of such objects
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Start points for MultiStart, specified as a CustomStartPointSet object, as a
RandomStartPointSet object, or as a cell array of such objects.
Example: {custompts,randompts}

Output Arguments
x — Best point found
real array

Best point found, returned as a real array. The best point is the one with lowest objective function
value.

fval — Lowest objective function value encountered
real scalar

Lowest objective function value encountered, returned as a real scalar. For lsqcurvefit and
lsqnonlin, the objective function is the sum of squares, also known as the squared norm of the
residual.

exitflag — Exit condition summary
integer

Exit condition summary, returned as an integer.

Global Solver Exit Flags

2 At least one feasible local minimum found. Some runs of the local solver did
not converge.

1 At least one feasible local minimum found. All runs of the local solver
converged (had positive exit flag).

0 No local minimum found. Local solver called at least once, and at least one
local solver exceeded the MaxIterations or MaxFunctionEvaluations
tolerances.

-1 One or more local solver runs stopped by the local solver output or plot
function.

-2 No feasible local minimum found.
-5 MaxTime limit exceeded.
-8 No solution found. All runs had local solver exit flag -2 or lower, not all equal

-2.
-10 Failures encountered in user-provided functions.

output — Solution process details
structure

Solution process details, returned as a structure with the following fields.

Field Meaning
funcCount Number of function evaluations.
localSolverIncomplete Number of local solver runs with 0 exit flag.
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Field Meaning
localSolverNoSolution Number of local solver runs with negative exit flag.
localSolverSuccess Number of local solver runs with positive exit flag.
localSolverTotal Total number of local solver runs.
message Exit message.

solutions — Distinct local solutions
vector of GlobalOptimSolution objects

Distinct local solutions, returned as a vector of GlobalOptimSolution objects.

See Also
MultiStart | GlobalSearch | GlobalOptimSolution

Topics
“Run the Solver” on page 4-13
“Workflow for GlobalSearch and MultiStart” on page 4-3

Introduced in R2010a
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saoptimget
(Not recommended) Values of simulated annealing options structure

Note saoptimget is not recommended. Instead, query options using dot notation. For more
information, see “Compatibility Considerations”.

Syntax
val = saoptimget(options, 'name')
val = saoptimget(options, 'name', default)

Description
val = saoptimget(options, 'name') returns the value of the parameter name from the
simulated annealing options structure options. saoptimget(options, 'name') returns an
empty matrix [] if the value of name is not specified in options. It is only necessary to type enough
leading characters of name to uniquely identify the parameter. saoptimget ignores case in
parameter names.

val = saoptimget(options, 'name', default) returns the 'name' parameter, but returns
the default value if the 'name' parameter is not specified (or is []) in options.

Examples
opts = saoptimset('TolFun',1e-4);
val = saoptimget(opts,'TolFun');

returns val = 1e-4 for TolFun.

Compatibility Considerations
saoptimget is not recommended
Not recommended starting in R2018b

To query options, the gaoptimget, psoptimget, and saoptimget functions are not recommended.
Instead, use dot notation. For example, to see the setting of the Display option in opts,

displayopt = opts.Display
% instead of
displayopt = gaoptimget(opts,'Display')

Using automatic code completions, dot notation takes fewer keystrokes: displayopt = opts.D
Tab.

There are no plans to remove gaoptimget, psoptimget, and saoptimget at this time.

See Also
simulannealbnd
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Topics
“Simulated Annealing Options” on page 17-57

Introduced in R2007a
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saoptimset
(Not recommended) Create simulated annealing options structure

Note saoptimset is not recommended. Use optimoptions instead. For more information, see
“Compatibility Considerations”.

Syntax
saoptimset
options = saoptimset
options = saoptimset('param1',value1,'param2',value2,...)
options = saoptimset(oldopts,'param1',value1,...)
options = saoptimset(oldopts,newopts)
options = saoptimset('simulannealbnd')

Description
saoptimset with no input or output arguments displays a complete list of parameters with their
valid values.

options = saoptimset (with no input arguments) creates a structure called options that
contains the options, or parameters, for the simulated annealing algorithm, with all parameters set to
[].

options = saoptimset('param1',value1,'param2',value2,...) creates a structure
options and sets the value of 'param1' to value1, 'param2' to value2, and so on. Any
unspecified parameters are set to []. It is sufficient to type only enough leading characters to define
the parameter name uniquely. Case is ignored for parameter names. Note that for character values,
correct case and the complete value are required.

options = saoptimset(oldopts,'param1',value1,...) creates a copy of oldopts,
modifying the specified parameters with the specified values.

options = saoptimset(oldopts,newopts) combines an existing options structure, oldopts,
with a new options structure, newopts. Any parameters in newopts with nonempty values overwrite
the corresponding old parameters in oldopts.

options = saoptimset('simulannealbnd') creates an options structure with all the parameter
names and default values relevant to 'simulannealbnd'. For example,

saoptimset('simulannealbnd')

ans = 
          AnnealingFcn: @annealingfast
        TemperatureFcn: @temperatureexp
         AcceptanceFcn: @acceptancesa
                TolFun: 1.0000e-006
        StallIterLimit: '500*numberofvariables'
           MaxFunctionEvaluations: '3000*numberofvariables'
             TimeLimit: Inf
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         MaxIterations: Inf
        ObjectiveLimit: -Inf
               Display: 'final'
       DisplayInterval: 10
             HybridFcn: []
        HybridInterval: 'end'
              PlotFcns: []
          PlotInterval: 1
            OutputFcns: []
    InitialTemperature: 100
      ReannealInterval: 100
              DataType: 'double'

Options
The following table lists the options you can set with saoptimset. See “Simulated Annealing
Options” on page 17-57 for a complete description of these options and their values. Values in {}
denote the default value. You can also view the options parameters by typing saoptimset at the
command line.

optimoptions hides the options listed in italics, but saoptimset does not. See “Options that
optimoptions Hides” on page 17-64.

Option Description Values
AcceptanceFcn Function the algorithm uses to

determine if a new point is accepted.
Specify as 'acceptancesa' or a
function handle.

Function handle | {'acceptancesa'}

AnnealingFcn Function the algorithm uses to
generate new points. Specify as a
name of a built-in annealing function
or a function handle.

Function handle | function name |
'annealingboltz' |
{'annealingfast'}

DataType Type of decision variable 'custom' | {'double'}
Display Level of display 'off' | 'iter' | 'diagnose' |

{'final'}
DisplayInterval Interval for iterative display Positive integer | {10}
FunctionTolerance Termination tolerance on function

value

For an options structure, use
TolFun.

Positive scalar | {1e-6}

HybridFcn Automatically run HybridFcn
(another optimization function)
during or at the end of iterations of
the solver. Specify as a name or a
function handle.

See “When to Use a Hybrid
Function” on page 8-112.

'fminsearch' | 'patternsearch' |
'fminunc' | 'fmincon' | {[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where solver =
fminsearch, patternsearch, fminunc,
or fmincon {[]}
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Option Description Values
HybridInterval Interval (if not 'end' or 'never')

at which HybridFcn is called
Positive integer | 'never' | {'end'}

InitialTemperature Initial value of temperature Positive scalar | positive vector | {100}
MaxFunctionEvaluation
s

Maximum number of objective
function evaluations allowed

For an options structure, use
MaxFunEvals.

Positive integer |
{3000*numberOfVariables}

MaxIterations Maximum number of iterations
allowed

For an options structure, use
MaxIter.

Positive integer | {Inf}

MaxStallIterations Number of iterations over which
average change in fitness function
value at current point is less than
options.FunctionTolerance

For an options structure, use
StallIterLimit.

Positive integer |
{500*numberOfVariables}

MaxTime The algorithm stops after running
for MaxTime seconds

For an options structure, use
TimeLimit.

Positive scalar | {Inf}

ObjectiveLimit Minimum objective function value
desired

Scalar | {-Inf}

OutputFcn Function(s) get(s) iterative data and
can change options at run time

For an options structure, use
OutputFcns.

Function handle | cell array of function
handles | {[]}

PlotFcn Plot function(s) called during
iterations

For an options structure, use
PlotFcns.

Function handle | built-in plot function
name | cell array of function handles | cell
array of built-in plot function names |
'saplotbestf' | 'saplotbestx' |
'saplotf' | 'saplotstopping' |
'saplottemperature' | {[]}

PlotInterval Plot functions are called at every
interval

Positive integer | {1}

ReannealInterval Reannealing interval Positive integer | {100}
TemperatureFcn Function used to update

temperature schedule
Function handle | built-in temperature
function name | 'temperatureboltz' |
'temperaturefast' |
{'temperatureexp'}
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Compatibility Considerations
saoptimset is not recommended
Not recommended starting in R2018b

To set options, the gaoptimset, psoptimset, and saoptimset functions are not recommended.
Instead, use optimoptions.

The main difference between using optimoptions and the other functions is that you include the
solver name as the first argument in optimoptions. For example, to set an iterative display in ga:

options = optimoptions('ga','Display','iter');
% instead of
options = gaoptimset('Display','iter');

The other difference is that some option names have changed. You can continue to use the old names
in optimoptions. For details, see “Options Changes in R2016a” on page 17-64.

optimoptions offers these advantages over the other functions:

• optimoptions provides better automatic code suggestions and completions, especially in the
Live Editor.

• You can use a single option-setting function instead of a variety of functions.

There are no plans to remove gaoptimset, psoptimset, and saoptimset at this time.

See Also
optimoptions | simulannealbnd

Topics
“Simulated Annealing Options” on page 17-57

Introduced in R2007a
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simulannealbnd
Find minimum of function using simulated annealing algorithm

Syntax
x = simulannealbnd(fun,x0)
x = simulannealbnd(fun,x0,lb,ub)
x = simulannealbnd(fun,x0,lb,ub,options)
x = simulannealbnd(problem)
[x,fval] = simulannealbnd( ___ )
[x,fval,exitflag,output] = simulannealbnd( ___ )

Description
x = simulannealbnd(fun,x0) finds a local minimum, x, to the function handle fun that computes
the values of the objective function. x0 is an initial point for the simulated annealing algorithm, a real
vector.

Note “Passing Extra Parameters” explains how to pass extra parameters to the objective function, if
necessary.

x = simulannealbnd(fun,x0,lb,ub) defines a set of lower and upper bounds on the design
variables in x, so that the solution is always in the range lb ≤ x ≤ ub. If x(i) is unbounded below,
set lb(i) = -Inf, and if x(i) is unbounded above, set ub(i) = Inf.

x = simulannealbnd(fun,x0,lb,ub,options) minimizes with the optimization options
specified in options. Create options using optimoptions. If no bounds exist, set lb = [] and/or
ub = [].

x = simulannealbnd(problem) finds the minimum for problem, a structure described in
problem.

[x,fval] = simulannealbnd( ___ ), for any syntax, returns the value of the objective function
fun at the solution x.

[x,fval,exitflag,output] = simulannealbnd( ___ ) additionally returns a value exitflag
that describes the exit condition of simulannealbnd, and a structure output with information
about the optimization process.

Examples

Minimize a Function with Many Local Minima

Minimize De Jong's fifth function, a two-dimensional function with many local minima.

Plot De Jong's fifth function.

dejong5fcn
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Minimize De Jong's fifth function using simulannealbnd starting from the point [0,0].

fun = @dejong5fcn;
x0 = [0 0];
x = simulannealbnd(fun,x0)

Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1×2

  -32.0285   -0.1280

The simulannealbnd algorithm uses the MATLAB® random number stream, so you might obtain a
different result.

Minimize Subject to Bounds

Minimize De Jong’s fifth function within a bounded region.

Plot De Jong's fifth function.

dejong5fcn
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Start simulannealbnd starting at the point [0,0], and set lower bounds of -64 and upper bounds of
64 on each component.

fun = @dejong5fcn;
x0 = [0 0];
lb = [-64 -64];
ub = [64 64];
x = simulannealbnd(fun,x0,lb,ub)

Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1×2

  -15.9790  -31.9593

The simulannealbnd algorithm uses the MATLAB® random number stream, so you might obtain a
different result.

Minimize Using Nondefault Options

Observe the progress of simulannealbnd by setting options to use some plot functions.

Set simulated annealing options to use several plot functions.
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options = optimoptions('simulannealbnd','PlotFcns',...
          {@saplotbestx,@saplotbestf,@saplotx,@saplotf});

Start simulannealbnd starting at the point [0,0], and set lower bounds of -64 and upper bounds of
64 on each component.

rng default % For reproducibility
fun = @dejong5fcn;
x0 = [0,0];
lb = [-64,-64];
ub = [64,64];
x = simulannealbnd(fun,x0,lb,ub,options)

Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1×2

  -15.9790  -31.9593

Obtain All Outputs

Obtain all the outputs of a simulated annealing minimization.

Plot De Jong's fifth function.
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dejong5fcn

Start simulannealbnd starting at the point [0,0], and set lower bounds of -64 and upper bounds of
64 on each component.

fun = @dejong5fcn;
x0 = [0,0];
lb = [-64,-64];
ub = [64,64];
[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub)

Optimization terminated: change in best function value less than options.FunctionTolerance.

x = 1×2

  -15.9790  -31.9593

fval = 1.9920

exitflag = 1

output = struct with fields:
     iterations: 1762
      funccount: 1779
        message: 'Optimization terminated: change in best function value less than options.FunctionTolerance.'
       rngstate: [1x1 struct]
    problemtype: 'boundconstraints'
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    temperature: [2x1 double]
      totaltime: 0.4684

The simulannealbnd algorithm uses the MATLAB® random number stream, so you might obtain a
different result.

Input Arguments
fun — Function to be minimized
function handle | function name

Function to be minimized, specified as a function handle or function name.fun is a function that
accepts a vector x and returns a real scalar f, the objective function evaluated at x.

fun can be specified as a function handle for a file:

x = simulannealbnd(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ...            % Compute function value at x

fun can also be a function handle for an anonymous function:

x = simulannealbnd(@(x)norm(x)^2,x0,lb,ub);

Example: fun = @(x)sin(x(1))*cos(x(2))
Data Types: char | function_handle | string

x0 — Initial point
real vector

Initial point, specified as a real vector. simulannealbnd uses the number of elements in x0 to
determine the number of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to that
of lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all control variables are positive, lb = zeros(size(x0))
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Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to that
of ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all control variables are less than one, ub = ones(size(x0))
Data Types: double

options — Optimization options
object returned by optimoptions | structure

Optimization options, specified as an object returned by optimoptions or a structure. For details,
see “Simulated Annealing Options” on page 17-57.

optimoptions hides the options listed in italics; see “Options that optimoptions Hides” on page 17-
64.

{} denotes the default value. See option details in “Simulated Annealing Options” on page 17-57.

Option Description Values
AcceptanceFcn Function the algorithm uses to

determine if a new point is accepted.
Specify as 'acceptancesa' or a
function handle.

Function handle | {'acceptancesa'}

AnnealingFcn Function the algorithm uses to
generate new points. Specify as a
name of a built-in annealing function
or a function handle.

Function handle | function name |
'annealingboltz' |
{'annealingfast'}

DataType Type of decision variable 'custom' | {'double'}
Display Level of display 'off' | 'iter' | 'diagnose' |

{'final'}
DisplayInterval Interval for iterative display Positive integer | {10}
FunctionTolerance Termination tolerance on function

value

For an options structure, use
TolFun.

Positive scalar | {1e-6}
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Option Description Values
HybridFcn Automatically run HybridFcn

(another optimization function)
during or at the end of iterations of
the solver. Specify as a name or a
function handle.

See “When to Use a Hybrid
Function” on page 8-112.

'fminsearch' | 'patternsearch' |
'fminunc' | 'fmincon' | {[]}

or

1-by-2 cell array | {@solver,
hybridoptions}, where solver =
fminsearch, patternsearch, fminunc,
or fmincon {[]}

HybridInterval Interval (if not 'end' or 'never')
at which HybridFcn is called

Positive integer | 'never' | {'end'}

InitialTemperature Initial value of temperature Positive scalar | positive vector | {100}
MaxFunctionEvaluation
s

Maximum number of objective
function evaluations allowed

For an options structure, use
MaxFunEvals.

Positive integer |
{3000*numberOfVariables}

MaxIterations Maximum number of iterations
allowed

For an options structure, use
MaxIter.

Positive integer | {Inf}

MaxStallIterations Number of iterations over which
average change in fitness function
value at current point is less than
options.FunctionTolerance

For an options structure, use
StallIterLimit.

Positive integer |
{500*numberOfVariables}

MaxTime The algorithm stops after running
for MaxTime seconds

For an options structure, use
TimeLimit.

Positive scalar | {Inf}

ObjectiveLimit Minimum objective function value
desired

Scalar | {-Inf}

OutputFcn Function(s) get(s) iterative data and
can change options at run time

For an options structure, use
OutputFcns.

Function handle | cell array of function
handles | {[]}

PlotFcn Plot function(s) called during
iterations

For an options structure, use
PlotFcns.

Function handle | built-in plot function
name | cell array of function handles | cell
array of built-in plot function names |
'saplotbestf' | 'saplotbestx' |
'saplotf' | 'saplotstopping' |
'saplottemperature' | {[]}
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Option Description Values
PlotInterval Plot functions are called at every

interval
Positive integer | {1}

ReannealInterval Reannealing interval Positive integer | {100}
TemperatureFcn Function used to update

temperature schedule
Function handle | built-in temperature
function name | 'temperatureboltz' |
'temperaturefast' |
{'temperatureexp'}

Example: options = optimoptions(@simulannealbnd,'MaxIterations',150)
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

• objective — Objective function
• x0 — Starting point
• lb — Lower bound for x
• ub — Upper bound for x
• solver — 'simulannealbnd'
• options — Options created with optimoptions or an options structure
• rngstate — Optional field to reset the state of the random number generator

Note problem must have all the fields as specified above.

Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a real vector. The size of x is the same as the size of x0. Typically, x is a local
solution to the problem when exitflag is positive.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason simulannealbnd stopped
integer

Reason simulannealbnd stopped, returned as an integer.
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Exit Flag Meaning
1 Average change in the value of the objective function over

options.MaxStallIterations iterations is less than
options.FunctionTolerance.

5 Objective function value is less than options.ObjectiveLimit.
0 Maximum number of function evaluations or iterations reached.
-1 Optimization terminated by an output function or plot function.
-2 No feasible point found.
-5 Time limit exceeded.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

• problemtype — Type of problem: unconstrained or bound constrained.
• iterations — The number of iterations computed.
• funccount — The number of evaluations of the objective function.
• message — The reason the algorithm terminated.
• temperature — Temperature when the solver terminated.
• totaltime — Total time for the solver to run.
• rngstate — State of the MATLAB random number generator, just before the algorithm started.

You can use the values in rngstate to reproduce the output of simulannealbnd. See
“Reproduce Your Results” on page 13-16.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for simulannealbnd.

See Also
ga | optimoptions | patternsearch | Optimize

Topics
“Minimization Using Simulated Annealing Algorithm” on page 13-17
“Simulated Annealing Options” on page 13-20
“Multiprocessor Scheduling Using Simulated Annealing with a Custom Data Type” on page 13-26
“Optimization Workflow” on page 1-29
“What Is Simulated Annealing?” on page 13-2
“Simulated Annealing Terminology” on page 13-11
“How Simulated Annealing Works” on page 13-13

Introduced in R2007a
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surrogateopt
Surrogate optimization for global minimization of time-consuming objective functions

Syntax
x = surrogateopt(objconstr,lb,ub)
x = surrogateopt(objconstr,lb,ub,intcon)
x = surrogateopt(objconstr,lb,ub,intcon,A,b,Aeq,beq)
x = surrogateopt( ___ ,options)
x = surrogateopt(problem)

x = surrogateopt(checkpointFile)
x = surrogateopt(checkpointFile,opts)

[x,fval] = surrogateopt( ___ )
[x,fval,exitflag,output] = surrogateopt( ___ )
[x,fval,exitflag,output,trials] = surrogateopt( ___ )

Description
surrogateopt is a global solver for time-consuming objective functions.

surrogateopt attempts to solve problems of the form

min
x

f (x) such that 

lb ≤ x ≤ ub
A · x ≤ b
Aeq · x = beq
c(x) ≤ 0
xi integer, i ∈ intcon.

The solver searches for the global minimum of a real-valued objective function in multiple
dimensions, subject to bounds, optional linear constraints, optional integer constraints, and optional
nonlinear inequality constraints. surrogateopt is best suited to objective functions that take a long
time to evaluate. The objective function can be nonsmooth. The solver requires finite bounds on all
variables. The solver can optionally maintain a checkpoint file to enable recovery from crashes or
partial execution, or optimization continuation after meeting a stopping condition. The objective
function f(x) can be empty ([]), in which case surrogateopt attempts to find a point satisfying all
the constraints.

x = surrogateopt(objconstr,lb,ub) searches for a global minimum of objconstr(x) in the
region lb <= x <= ub. If objconstr(x) returns a structure, then surrogateopt searches for a
minimum of objconstr(x).Fval, subject to objconstr(x).Ineq <= 0.

Note “Passing Extra Parameters” explains how to pass extra parameters to the objective function, if
necessary.

x = surrogateopt(objconstr,lb,ub,intcon) requires that the variables listed in intcon take
integer values.
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x = surrogateopt(objconstr,lb,ub,intcon,A,b,Aeq,beq) requires that the solution x
satisfy the inequalities A*x <= b and the equalities Aeq*x = beq. If no inequalities exist, set A =
[] and b = []. Similarly, if no equalities exist, set Aeq = [] and beq = [].

x = surrogateopt( ___ ,options) modifies the search procedure using the options in options.
Specify options following any input argument combination in the previous syntaxes.

x = surrogateopt(problem) searches for a minimum for problem, a structure described in
problem.

x = surrogateopt(checkpointFile) continues running the optimization from the state in a
saved checkpoint file. See “Work with Checkpoint Files” on page 11-56.

x = surrogateopt(checkpointFile,opts) continues running the optimization from the state in
a saved checkpoint file, and replaces options in checkpointFile with those in opts. See
“Checkpoint File” on page 17-55.

[x,fval] = surrogateopt( ___ ) also returns the best (smallest) value of the objective function
found by the solver, using any of the input argument combinations in the previous syntaxes.

[x,fval,exitflag,output] = surrogateopt( ___ ) also returns exitflag, an integer
describing the reason the solver stopped, and output, a structure describing the optimization
procedure.

[x,fval,exitflag,output,trials] = surrogateopt( ___ ) also returns a structure
containing all of the evaluated points and the objective function values at those points.

Examples

Search for Global Minimum

Search for a minimum of the six-hump camel back function in the region -2.1 <= x(i) <= 2.1.
This function has two global minima with the objective function value -1.0316284... and four local
minima with higher objective function values.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
x = surrogateopt(objconstr,lb,ub)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    0.0893   -0.7130

Solve Problem with Nonlinear Constraints

Find the minimum of Rosenbrock's function

100(x(2)− x(1)2)2 + (1− x(1))2

subject to the nonlinear constraint that the solution lies in a disk of radius 1/3 around the point
[1/3,1/3]:

(x(1)− 1/3)2 + (x(2)− 1/3)2 ≤ (1/3)2.

To do so, write a function objconstr(x) that returns the value of Rosenbrock's function in a structure
field Fval, and returns the nonlinear constraint value in the form c(x) ≤ 0 in the structure field Ineq.

type objconstr
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function f = objconstr(x)
f.Fval = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
f.Ineq = (x(1)-1/3)^2 + (x(2)-1/3)^2 - (1/3)^2;

Call surrogateopt using lower bounds of 0 and upper bounds of 2/3 on each component.

lb = [0,0];
ub = [2/3,2/3];
[x,fval,exitflag] = surrogateopt(@objconstr,lb,ub)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    0.6544    0.4280

fval = 0.1194

exitflag = 0

Check the value of the nonlinear constraint at the solution.

disp(objconstr(x).Ineq)

   9.3778e-04

The constraint function value is near zero, indicating that the constraint is active at the solution.
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Solve Mixed-Integer Problem

Find the minimum of the ps_example function for a two-dimensional variable x whose first
component is restricted to integer values, and all components are between –5 and 5.

intcon = 1;
rng default % For reproducibility
objconstr = @ps_example;
lb = [-5,-5];
ub = [5,5];
x = surrogateopt(objconstr,lb,ub,intcon)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

   -5.0000    0.0006
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Surrogate Optimization Using Nondefault Options

Minimize the six-hump camel back function in the region -2.1 <= x(i) <= 2.1. This function has
two global minima with the objective function value -1.0316284... and four local minima with
higher objective function values.

To search the region systematically, use a regular grid of starting points. Set 120 as the maximum
number of function evaluations. Use the 'surrogateoptplot' plot function. To understand the
'surrogateoptplot' plot, see “Interpret surrogateoptplot” on page 11-25.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
[Xpts,Ypts] = meshgrid(-3:3);
startpts = [Xpts(:),Ypts(:)];
options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot',...
    'InitialPoints',startpts,'MaxFunctionEvaluations',120);
x = surrogateopt(objconstr,lb,ub,options)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    0.0900   -0.7123
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Linear Constraints in surrogateopt

Minimize a nonlinear objective function subject to linear inequality constraints. Minimize for 200
function evaluations.

objconstr = @multirosenbrock;
nvar = 6;
lb = -2*ones(nvar,1);
ub = -lb;
intcon = [];
A = ones(1,nvar);
b = 3;
Aeq = [];
beq = [];
options = optimoptions('surrogateopt','MaxFunctionEvaluations',200);
[sol,fval,exitflag,output] = ...
    surrogateopt(objconstr,lb,ub,intcon,A,b,Aeq,beq,options)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

sol = 1×6

    0.0159    0.0061    0.0289    0.0046    0.0207    0.0209
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fval = 2.9173

exitflag = 0

output = struct with fields:
        elapsedtime: 21.2274
          funccount: 200
    constrviolation: 0
               ineq: [1x0 double]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'

Surrogate Optimization of Problem Structure

Create a problem structure representing the six-hump camel back function in the region -2.1 <=
x(i) <= 2.1. Set 120 as the maximum number of function evaluations.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
options = optimoptions('surrogateopt','MaxFunctionEvaluations',120);
problem = struct('objective',objconstr,...
    'lb',[-2.1,-2.1],...
    'ub',[2.1,2.1],...
    'options',options,...
    'solver','surrogateopt');
x = surrogateopt(problem)
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surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

   -0.0892    0.7129

Return Surrogate Optimization Objective Function Value

Minimize the six-hump camel back function and return both the minimizing point and the objective
function value. Set options to suppress all other display.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
options = optimoptions('surrogateopt','Display','off','PlotFcn',[]);
[x,fval] = surrogateopt(objconstr,lb,ub,options)

x = 1×2

    0.0893   -0.7130
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fval = -1.0316

Monitor Surrogate Optimization Process

Monitor the surrogate optimization process by requesting that surrogateopt return more outputs.
Use the 'surrogateoptplot' plot function. To understand the 'surrogateoptplot' plot, see
“Interpret surrogateoptplot” on page 11-25.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
options = optimoptions('surrogateopt','PlotFcn','surrogateoptplot');
[x,fval,exitflag,output] = surrogateopt(objconstr,lb,ub,options)

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    0.0893   -0.7130

fval = -1.0316
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exitflag = 0

output = struct with fields:
        elapsedtime: 32.7609
          funccount: 200
    constrviolation: 0
               ineq: [1x0 double]
           rngstate: [1x1 struct]
            message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'

Restart Surrogate Optimization

Conclude a surrogate optimization quickly by setting a small maximum number of function
evaluations. To prepare for the possibility of restarting the optimization, request all solver outputs.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
ub = -lb;
options = optimoptions('surrogateopt','MaxFunctionEvaluations',20);
[x,fval,exitflag,output,trials] = surrogateopt(objconstr,lb,ub,options);

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.
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Optimize for another 20 function evaluations, starting from the previously evaluated points.

options.InitialPoints = trials;
[x,fval,exitflag,output,trials] = surrogateopt(objconstr,lb,ub,options);

surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

By comparing the plots of these 40 function evaluations to those in “Search for Global Minimum” on
page 18-191, you see that restarting surrogate optimization is not the same as having the solver run
continuously.

Restart Surrogate Optimization from Checkpoint File

To enable restarting surrogate optimization due to a crash or any other reason, set a checkpoint file
name.

opts = optimoptions('surrogateopt','CheckpointFile','checkfile.mat');

Create an optimization problem and set a small number of function evaluations.

rng default % For reproducibility
objconstr = @(x)(4*x(:,1).^2 - 2.1*x(:,1).^4 + x(:,1).^6/3 ...
    + x(:,1).*x(:,2) - 4*x(:,2).^2 + 4*x(:,2).^4);
lb = [-2.1,-2.1];
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ub = -lb;
opts.MaxFunctionEvaluations = 30;
[x,fval,exitflag,output] = surrogateopt(objconstr,lb,ub,opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x = 1×2

    0.0067   -0.7343

fval = -0.9986

exitflag = 0

output = struct with fields:
        elapsedtime: 28.7221
          funccount: 30
    constrviolation: 0
               ineq: [1×0 double]
           rngstate: [1×1 struct]
            message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by ↵'options.MaxFunctionEvaluations'.'

Set options to use 100 function evaluations (which means 70 more than already done) and restart the
optimization.
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opts.MaxFunctionEvaluations = 100;
[x2,fval2,exitflag2,output2] = surrogateopt('checkfile.mat',opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by 
'options.MaxFunctionEvaluations'.

x2 = 1×2

    0.0895   -0.7130

fval2 = -1.0316

exitflag2 = 0

output2 = struct with fields:
        elapsedtime: 159.2411
          funccount: 100
    constrviolation: 0
               ineq: [1×0 double]
           rngstate: [1×1 struct]
            message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by ↵'options.MaxFunctionEvaluations'.'
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Input Arguments
objconstr — Objective function and nonlinear constraint
function handle | function name

Objective function and nonlinear constraint, specified as a function handle or function name.
objconstr accepts a single argument x, where x is typically a row vector. However, when the
Vectorized option is true, x is a matrix containing options.BatchUpdateInterval rows; each
row represents one point to evaluate. objconstr returns one of the following:

• Real scalar fval = objconstr(x).
• Structure. If the structure contains the field Fval, then surrogateopt attempts to minimize

objconstr(x).Fval. If the structure contains the field Ineq, then surrogateopt attempts to
make all components of that field nonpositive: objconstr(x).Ineq <= 0 for all entries.
objconstr(x) must include either the Fval or Ineq fields, or both. surrogateopt ignores
other fields.

When the Vectorized option is true and the BatchUpdateInterval is greater than one,
objconstr operates on each row of x and returns one of the following:

• Real vector fval = objconstr(x). fval is a column vector with
options.BatchUpdateInterval entries (or fewer for the last function evaluation when
BatchUpdateInterval does not evenly divide MaxFunctionEvaluations).

• Structure with vector entries. If the structure contains the field Fval, then surrogateopt
attempts to minimize objconstr(x).Fval, and objconstr(x).Fval is a vector of length
BatchUpdateInterval (or less). If the structure contains the field Ineq, then surrogateopt
attempts to make all components of that field nonpositive: objconstr(x).Ineq <= 0 for all
entries, and objconstr(x).Ineq contains up to BatchUpdateInterval entries.

The objective function objconstr.Fval can be empty ([]), in which case surrogateopt attempts
to find a point satisfying all the constraints. See “Solve Feasibility Problem” on page 11-78.

For examples using a nonlinear constraint, see “Solve Problem with Nonlinear Constraints” on page
18-192, “Surrogate Optimization with Nonlinear Constraint” on page 11-41, and “Solve Feasibility
Problem” on page 11-78. For information on converting between the surrogateopt structure syntax
and other solvers, see packfcn and “Convert Nonlinear Constraints Between surrogateopt Form and
Other Solver Forms” on page 11-74 For an example using vectorized batch evaluations, see
“Vectorized Surrogate Optimization for Custom Parallel Simulation” on page 11-92.
Data Types: function_handle | char | string

lb — Lower bounds
finite real vector

Lower bounds, specified as a finite real vector. lb represents the lower bounds element-wise in
lb ≤ x ≤ ub. The lengths of lb and ub must be equal to the number of variables that objconstr
accepts.

Caution Although lb is optional for most solvers, lb is a required input for surrogateopt.

Note surrogateopt allows equal entries in lb and ub. For each i in intcon, you must have
ceil(lb(i)) <= floor(ub(i)). See “Construct Surrogate Details” on page 11-4.
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Example: lb = [0;-20;4] means x(1) ≥ 0, x(2) ≥ -20, x(3) ≥ 4.
Data Types: double

ub — Upper bounds
finite real vector

Upper bounds, specified as a finite real vector. ub represents the upper bounds element-wise in
lb ≤ x ≤ ub. The lengths of lb and ub must be equal to the number of variables that objconstr
accepts.

Caution Although ub is optional for most solvers, ub is a required input for surrogateopt.

Note surrogateopt allows equal entries in lb and ub. For each i in intcon, you must have
ceil(lb(i)) <= floor(ub(i)). See “Construct Surrogate Details” on page 11-4.

Example: ub = [10;-20;4] means x(1) ≤ 10, x(2) ≤ -20, x(3) ≤ 4.
Data Types: double

intcon — Integer variables
vector of positive integers

Integer variables, specified as a vector of positive integers with values from 1 to the number of
problem variables. Each value in intcon represents an x component that is integer-valued.
Example: To specify that the even entries in x are integer-valued, set intcon to 2:2:nvars.
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-nvars matrix, where M is the
number of inequalities.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of nvars variables x(:), and b is a column vector with M elements.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
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Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:).

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, to specify

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

give these constraints:

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the control variables sum to 1 or less, give the constraints A = ones(1,N)
and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-nvars matrix, where Me is the
number of equalities.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double
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beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Meq-by-N.

For example, to specify

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

give these constraints:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the control variables sum to 1, give the constraints Aeq = ones(1,N) and
beq = 1.
Data Types: double

options — Options
output of optimoptions

Options, specified as the output of optimoptions.

For more information, see “Surrogate Optimization Options” on page 17-50.

Option Description Values
BatchUpdateInterval • Number of function evaluations before

the surrogate is updated.
• Number of points to pass in a vectorized

evaluation. When UseVectorized is
true, surrogateopt passes a matrix of
size BatchUpdateInterval-by-nvar,
where nvar is the number of problem
variables. Each row of the matrix
represents one evaluation point. Output
functions and plot functions are updated
after each batch is evaluated completely.

Positive integer. Default is
1.

 surrogateopt

18-207



Option Description Values
CheckpointFile File name for checkpointing and restarting

optimization. The file has the .mat data
type. See “Work with Checkpoint Files” on
page 11-56.

Checkpointing takes time. This overhead is
especially noticeable for functions that
otherwise take little time to evaluate.

File name or file path,
given as a string or
character array. If you
specify a file name
without a path,
surrogateopt saves the
checkpoint file in the
current folder.

ConstraintTolerance Tolerance on nonlinear constraints,
measured as the maximum of all nonlinear
constraint function values, where positive
values indicate a violation. This tolerance is
an absolute (not relative) tolerance; see
“Tolerances and Stopping Criteria”.

Positive scalar. Default is
1e-3.

Display Level of display returned at the command
line.

• 'final' (default) —
Exit message at the
end of the iterations.

• 'off' or the
equivalent 'none' —
No display.

• 'iter' — Iterative
display; see
“Command-Line
Display” on page 17-
51.

InitialPoints Initial points for solver. Matrix of initial points,
where each row is one
point. Or, a structure with
field X, whose value is a
matrix of initial points,
and these optional fields:

• Fval, a vector
containing the values
of the objective
function at the initial
points

• Ineq, a matrix
containing nonlinear
inequality constraint
values

See “Algorithm Control”
on page 17-50. Default is
[].
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Option Description Values
MaxFunctionEvaluatio
ns

Maximum number of objective function
evaluations, a stopping criterion.

Positive integer. Default is
max(200,50*nvar),
where nvar is the number
of problem variables.

MaxTime Maximum running time in seconds. The
actual running time can exceed MaxTime
because of the time required to evaluate an
objective function or because of parallel
processing delays.

Positive scalar. Default is
Inf.

MinSampleDistance Minimum distance between trial points
generated by the adaptive sampler. See
“Surrogate Optimization Algorithm” on page
11-3.

Positive scalar. Default is
1e-6.

MinSurrogatePoints Minimum number of random sample points
to create at the start of a surrogate creation
phase. See “Surrogate Optimization
Algorithm” on page 11-3.

When BatchUpdateInterval > 1, the
minimum number of random sample points
used to create a surrogate is the larger of
MinSurrogatePoints and
BatchUpdateInterval.

Integer at least nvar + 1.
Default is
max(20,2*nvar), where
nvar is the number of
problem variables.

ObjectiveLimit Tolerance on the objective function value. If
a calculated objective function value of a
feasible point is less than ObjectiveLimit,
the algorithm stops.

Double scalar value.
Default is -Inf.

OutputFcn Output function to report on solver progress
or to stop the solver. See “Output Function”
on page 17-52.

Function name, function
handle, or cell array of
function names or
handles. Default is [].
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Option Description Values
PlotFcn Plot function to display solver progress or to

stop solver. See “Plot Function” on page 17-
54.

Function name, function
handle, or cell array of
function names or
handles. Built-in plot
functions are:

• 'optimplotfvalcon
str' (default) — Plot
the best feasible
objective function
value found as a line
plot. If there is no
objective function, plot
the maximum
nonlinear constraint
violation as a line plot.

• The plot shows
infeasible points as
red and feasible
points as blue.

• If there is no
objective function,
the plot title shows
the number of
feasible solutions.

• 'optimplotfval' —
Plot the best objective
function value found as
a line plot.

• 'optimplotx' — Plot
the best solution found
as a bar chart.

• 'surrogateoptplot
' — Plot the objective
function value at each
iteration, showing
which phase of the
algorithm produces
the value and the best
value found both in
this phase and overall.
See “Interpret
surrogateoptplot” on
page 11-25.
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Option Description Values
UseParallel Boolean value indicating whether to

compute objective function values in
parallel.

You cannot specify both UseParallel =
true and UseVectorized = true. If you
set both to true, the solver ignores
UseVectorized and attempts to compute
in parallel using a parallel pool, if possible.

Boolean. Default is
false. For algorithmic
details, see “Parallel
surrogateopt Algorithm”
on page 11-10.

UseVectorized Boolean value indicating whether to
compute objective function values in batches
of size BatchUpdateInterval.

You cannot specify both UseParallel =
true and UseVectorized = true. If you
set both to true, the solver ignores
UseVectorized and attempts to compute
in parallel using a parallel pool, if possible.

Boolean. Default is
false. For an example,
see “Vectorized Surrogate
Optimization for Custom
Parallel Simulation” on
page 11-92.

Example: options =
optimoptions('surrogateopt','Display','iter','UseParallel',true)

problem — Problem structure
structure

Problem structure, specified as a structure with these fields:

• objective — Objective function, which can include nonlinear constraints, specified as a function
name or function handle

• lb — Lower bounds for x
• ub — Upper bounds for x
• solver — 'surrogateopt'
• Aineq — Matrix for linear inequality constraints (optional)
• bineq — Vector for linear inequality constraints (optional)
• Aeq — Matrix for linear equality constraints (optional)
• beq — Vector for linear equality constraints (optional)
• options — Options created with optimoptions
• rngstate — Field to reset the state of the random number generator (optional)
• intcon — Field specifying integer-valued x components (optional)

Note These problem fields are required: objective, lb, ub, solver, and options.

Data Types: struct

checkpointFile — Path to checkpoint file
string | character vector
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Path to a checkpoint file, specified as a string or character vector. A checkpoint file has the .mat
extension. If you specify a file name without a path, surrogateopt uses a checkpoint file in the
current folder.

A checkpoint file stores the state of an optimization for resuming the optimization. surrogateopt
updates the checkpoint file at each function evaluation, so you can resume the optimization even
when surrogateopt halts prematurely. For an example, see “Restart Surrogate Optimization from
Checkpoint File” on page 18-201.

surrogateopt creates a checkpoint file when it has a valid CheckpointFile option.

You can change some options when resuming from a checkpoint file. See opts.

The data in a checkpoint file is in .mat format. To avoid errors or other unexpected results, do not
modify the data before calling surrogateopt.

Warning Do not resume surrogateopt from a checkpoint file created with a different MATLAB
version. surrogateopt can throw an error or give inconsistent results.

Example: 'checkfile.mat'
Example: "C:\Program Files\MATLAB\docs\checkpointNov2019.mat"
Data Types: char | string

opts — Options for resuming from checkpoint file
[] (default) | optimoptions options from a restricted set

Options for resuming optimization from the checkpoint file, specified as optimoptions options (from
a restricted set) that you can change from the original options. The options you can change are:

• BatchUpdateInterval
• CheckpointFile
• Display
• MaxFunctionEvaluations
• MaxTime
• MinSurrogatePoints
• ObjectiveLimit
• OutputFcn
• PlotFcn
• UseParallel
• UseVectorized

Example: opts = optimoptions(options,'MaxFunctionEvaluations',400);

Output Arguments
x — Solution
real vector
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Solution, returned as a real vector. x has the same length as lb and ub.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number.

• When objconstr returns a scalar, fval is the scalar objconstr(x).
• When objconstr returns a structure, fval is the value objconstr(x).Fval, the objective

function value at x (if this value exists).

exitflag — Reason surrogateopt stopped
integer

Reason surrogateopt stopped, returned as one of the integer values described in this table.

Exit Flag Description
10 Problem has a unique feasible solution due to one of the following:

• All upper bounds ub are equal to the lower bounds lb.
• The linear equality constraints Aeq*x = beq and the bounds have a unique solution

point.

surrogateopt returns the feasible point and function value without performing any
optimization.

3 Feasible point found. Solver stopped because too few new feasible points were found to
continue.

1 The objective function value is less than options.ObjectiveLimit. This exit flag
takes precedence over exit flag 10 when both apply.

0 The number of function evaluations exceeds options.MaxFunctionEvaluations or
the elapsed time exceeds options.MaxTime. If the problem has nonlinear inequalities,
the solution is feasible.

-1 The optimization is terminated by an output function or plot function.
-2 No feasible point is found due to one of the following:

• A lower bound lb(i) exceeds a corresponding upper bound ub(i). Or one or more
ceil(lb(i)) exceeds a corresponding floor(ub(i)) for i in intcon. In this case,
surrogateopt returns x = [] and fval = [].

• lb = ub and the point lb is infeasible. In this case, x = lb, and fval =
objconstr(x).Fval.

• The linear and, if present, integer constraints are infeasible together with the
bounds. In this case, surrogateopt returns x = [] and fval = [].

• The bounds, integer, and linear constraints are feasible, but no feasible solution is
found with nonlinear constraints. In this case, x is the point of least maximum
infeasibility of nonlinear constraints, and fval = objconstr(x).Fval.

output — Information about optimization process
structure

Information about the optimization process, returned as a structure with these fields:

 surrogateopt
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• funccount — Total number of function evaluations.
• elapsedtime — Time spent running the solver in seconds, as measured by tic/toc.
• message — Reason why the algorithm stopped.
• constrviolation — Maximum nonlinear constraint violation, if any. constrviolation =

max(output.ineq).
• ineq — Nonlinear inequality constraint value at the solution x. If objconstr returns a structure,

then ineq = objconstr(x).Ineq. Otherwise, ineq is empty.
• rngstate — State of the MATLAB random number generator just before the algorithm starts. Use

this field to reproduce your results. See “Reproduce Results” on page 8-65, which discusses using
rngstate for ga.

trials — Points evaluated
structure

Points evaluated, returned as a structure with these fields:

• X — Matrix with nvars columns, where nvars is the length of lb or ub. Each row of X represents
one point evaluated by surrogateopt.

• Fval — Column vector, where each entry is the objective function value of the corresponding row
of X.

• Ineq — Matrix with each row representing the constraint function values of the corresponding
row of X.

The trials structure has the same form as the options.InitialPoints structure. So, you can
continue an optimization by passing the trials structure as the InitialPoints option.

Algorithms
surrogateopt repeatedly performs these steps:

1 Create a set of trial points by sampling MinSurrogatePoints random points within the bounds,
and evaluate the objective function at the trial points.

2 Create a surrogate model of the objective function by interpolating a radial basis function
through all of the random trial points.

3 Create a merit function that gives some weight to the surrogate and some weight to the distance
from the trial points. Locate a small value of the merit function by randomly sampling the merit
function in a region around the incumbent point (best point found since the last surrogate reset).
Use this point, called the adaptive point, as a new trial point.

4 Evaluate the objective at the adaptive point, and update the surrogate based on this point and its
value. Count a "success" if the objective function value is sufficiently lower than the previous best
(lowest) value observed, and count a "failure" otherwise.

5 Update the dispersion of the sample distribution upwards if three successes occur before
max(nvar,5) failures, where nvar is the number of dimensions. Update the dispersion
downwards if max(nvar,5) failures occur before three successes.

6 Continue from step 3 until all trial points are within MinSampleDistance of the evaluated
points. At that time, reset the surrogate by discarding all adaptive points from the surrogate,
reset the scale, and go back to step 1 to create MinSurrogatePoints new random trial points
for evaluation.
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For details, see “Surrogate Optimization Algorithm” on page 11-3.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for surrogateopt.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “How to Use Parallel Processing in Global Optimization Toolbox” on page
16-11.

See Also
patternsearch | optimoptions | packfcn | Optimize

Topics
“Surrogate Optimization”
“Local vs. Global Optima”
“Mixed Integer ga Optimization” on page 8-38
“Surrogate Optimization Options” on page 17-50

Introduced in R2018b

 surrogateopt
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